
HAL Id: hal-02416464
https://univ-pau.hal.science/hal-02416464

Submitted on 25 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Framework for Safety in Autonomous Vehicles
Matthieu Carre, Ernesto Expósito, Javier Ibañez-Guzman

To cite this version:
Matthieu Carre, Ernesto Expósito, Javier Ibañez-Guzman. Framework for Safety in Autonomous
Vehicles. Conférence Francophone sur les Architectures Logicielles (CAL 2019), Oct 2019, Hammamet,
Tunisia. �hal-02416464�

https://univ-pau.hal.science/hal-02416464
https://hal.archives-ouvertes.fr

Framework for Safety in Autonomous Vehicles
Matthieu Carré1,2, Ernesto Exposito,1 Javier Ibañez-Guzmán1,2

1 Univ Pau & Pays Adour, E2S UPPA, LIUPPA, EA3000, Anglet, 64600, France

2 Renault S.A.S, 1 av. du Golf, Guyancourt, 78288, France.
matthieu.carre@univ-pau.fr, ernesto.exposito@univ-pau.fr,

javier.ibanez-guzman@renault.com

Abstract
The integration of the Safety dimension has been a critical requirement when developing
and deploying Autonomous Vehicles (AV). While much progress has been achieved
within the past years, most work has centred on providing vehicles with the ability to
navigate autonomously. Safety has emerged as the major challenge. This paper proposes
a reference architecture that incorporates the notion of self-safety into existing AV
architectures. This architecture consists in a multi-layered control loop aimed at
managing self- adaptation processes in order to ensure safety at run-time

1 Introduction
The development and deployment of Autonomous Vehicles (AV) is a very challenging endeavour from
a safety perspective. Vehicles must navigate through multiple situations preventing any potential harm
and without disturbing traffic flow in order to be accepted by the society. Safe driving under full
computer control also requires to interact and operate around with different entities within complex
road networks and to appropriately address their different behaviours.

While much progress has been achieved within the past years, most work has centred on providing
vehicles with the ability to navigate autonomously. Safety has emerged as the major challenge, not only
on the vehicle behavioural side to address edge-cases (i.e. navigate safely) but also to manage
malfunctions or external disturbances (i.e. fault tolerant).

Current work in the safety domain has proposed relevant approaches for the analysis, refinement,
integration and enforcement of AV safety. Considering safety as a dynamic control problem as proposed
by Leveson et al. in the STPA/STAMP method [1, 2] shows promising applications and several
interesting results in [3–6]. Complementary research investigates the trade-off with the traditional
failure analysis for hazards coverage [7, 8] while others address the compatibility of the approach with
the current AV standards in [9–11]. However, most of these works converges on the difficulty to provide
a scalable integration and enforcement of AV safety based on the application of maturing safety analysis
methodology to identify safety constraints. Moreover, addressing safety management and assurance at

run-time using adaptive behaviours [28, 31–34] has been shown to require a complex combination of
AV system non-functional properties [15, 35] including observability, traceability, reconfigurability
and scalability.

The main contribution presented in this article is a reference architecture that incorporates the notion
of self-safety into an existing AV architectures. This architecture consists in two layers that manage
self- adaptation processes to ensure safety at run-time. The first layer manages directly the components
of the extended autonomous vehicle architecture with a collection of dependable processes. These
processes guarantee the satisfaction of the requirements specified by each of the concurrent safety
constraints. The second layer manages these dependable processes and guarantee their activation,
management and deactivation based on dynamic conditions observed on the context (i.e.
reconfiguration based on road conditions or to avoid conflicts between safety constants).
This paper is structured as follows: Section 2 presents the requirements for a run-time adaptive
architecture for safety assurance that is observable, traceable, reconfigurable and flexible in its way of
managing the safety constraints that can be enforced both in system design and during run-time
operations. Section 3 presents the reference architecture and section 4 details the implementation
guidelines of the reference architecture applied to AV. Finally, the conclusions and perspectives of this
work are presented.

2 Requirement Analysis
Our approach aims at proposing a reference architecture intended to provide safety assurance at run-

time as the result of active adaptation processes. These processes are dependable and intend to guarantee
both internal or external safety constraints of the AV. In order to cope with the set of NFP required for
AV safe systems (i.e. observability, traceability, reconfigurability and scalability), we propose to put
emphasis on the following design principles:

• Consider safety as a control problem guiding the design of an effective control architecture able
to react or to reduce adverse events. System Safety considers the enforcement of safety by both
the elimination of the hazards by design or the management of the hazards by control. Enforcing
safety in the vehicle on the operational contexts requires to identify the constraints that can
assess safety at run-time through monitoring, diagnosis or a full close adaptation loop.

• Enforce vehicle safe behaviours upon the different contexts the vehicle can operate in. The
system architecture needs to offer ways to satisfy the multiple safety constraints by adapting its
design or by ensuring it by run-time assurance functionalities. As the safety constraints can be
highly contextualized (i.e. assess in a specific scenario or use case), the architectural model has
to be able to capture and store this information.

• Facilitate the integration of system functions following a black-box approach, exposing only
services and interface specifications (e.g., input and output of messages). Functions allocated
to the components where safety is monitored or assessed can be discovered and integrated using
components-oriented architecture. For example, the integration of components allowing
observations, processing, and analysis and behaviour prediction (e.g., neural network, machine
learning or Markov process) would just result from the discovery and plugin of the well-adapted
component within the architecture. The only preliminary requirement is for the component to
be registered and specified in the knowledge base. This registry should include attributes such
as required resources, expected output, exhibited component properties upon safety.

• Provide built-in and bolt-on monitoring, diagnostics and adaptation processes for individual
AV mechanisms that can be composed and orchestrated at run-time in the overall design. For

the sake of observability and traceability, we want the system to be able to perform using both
built-in or bolt-on monitoring, diagnostics and adaptation processes. While bolt-on processes
can be connected to an existing system without requiring significant modification of interfaces
to the target system, built-in processes may impose design requirements. They require the
system to offer an extensible and plug- gable architecture where new components can be easily
added with their respective logic (e.g. goals and values for the decision method). The
composition and orchestration of the processes contribute to bring end-to-end visibility across
the different services and to provide deep visibility into each service’s performance and logic.

• Specify and store the adaptation processes expert knowledge in distinct knowledge bases
following distinct roles: system architecture, interfaces, goals and operational context measured
values. The presence of built-in processes imposes to have a specification model of the
architecture that defines the components, their behaviours, functions and their respective logic
that is perfectly aligned with the safety management knowledge-oriented bases. For example,
those knowledge bases result of the model of the architecture representing the system (i.e.
model-based representing and tracing the behaviours and constraints of the system to each
function and physical entities) or the representation of the operational environment (i.e.
observable state of the environment used for self-awareness).

This section has identified the safety requirements assurance guiding the design and implementation
of an AV architectural framework. In the next section, we introduce our reference architecture that
comply with those requirements by detailing and addressing each system requirement.

3 Reference Architecture
Based on the previous requirements analysis, this section proposes a reference architecture suited to

enhance AV system with two levels of adaptation in order to guarantee safety constraints. First, we
present the step by step construction of the reference architecture. Finally, we detail the main
components of the resulting reference architecture.

3.1 Architectural Design Process
Our main base architecture is an existing Renault’s vehicular architecture called ADCC

(Autonomous Driving Commuter Car) that provides autonomous driving capabilities to a vehicle. We
have based our study on this architecture since it is indispensable to start from a real cyber-physical
implementation of an autonomous vehicle, allowing to consider the real restrictions and capacities
offered and to evaluate its potential extensions. We are mainly interested in enhancing this architecture
in order to guarantee safe decision functionalities and to guarantee appropriate scaling to the range of
safety concerns we aim to consider.

On this basis, we propose a system enhancement aimed at adding an additional component intended
to manage safety by integrating external expertise to the existing ADCC architecture. Figure 1 illustrates
the reference architecture and details the perception, navigation and vehicle control mechanisms that
are connected to the vehicle world via the sensors and actuators entities (section 1). We call this
component extension the Safety Management System (SMS)

In order to manage safety, the system needs to be monitored by observing the components and
dataflow from the existing ADCC architecture. For this matter, we propose to enhance ADCC with an
interface of observers and measurers depicted in section 2.

Figure 1. Reference architecture involving several levels of adaptations

As we want to perform specific adaptations or reconfiguration of components of ADCC, we also
add the corresponding reconfiguration interface in section 2. The component reconfiguration can then
be performed by a control loop using those two interfaces with the first as data input and the second as
action output. The processes involved in each loop ensure the compliance with a safety constraint and
express the links between the observations and the reconfiguration actions as illustrated by section 3.
In order to reduce the complexity, we propose to specialize each process per safety constraint so there
will exist as much control loop process as safety constraints. The architecture results in several parallel
processes that share similar sources of observations and components to reconfigure.

In addition, the different safety constraints are possibly conflicting and may intervene only in a
specific context. To manage the concurrent safety constraints to guarantee, we propose a macro process
to manage the context and conflicts (see section 4).

Finally, to ensure the system to be evolutive, traceable, have its components embeddable and
interoperable, we propose to follow a common semantic model (see section 5). It enables each of the
interfaces to communicate and favour a granular design of the knowledge (i.e. expert knowledge on the
observations, reconfiguration, decisions, safety constraints and potential conflicts).

3.2 Components Description
The architecture of the Safety Management System (SMS) involves three main components

extending a base architecture. These components are illustrated in 1 and are described as follows:

a) ADCC interfaces to the SMS. In the scope of our study, we map sensor information to the
perceived objects by the ADS (i.e. reading vehicle’s sensor information), the intention (i.e.
reading vehicle’s planned manoeuvres), operations of the ADS (i.e. reading vehicle’s
trajectory) and other component status (e.g. vehicle profile). Reconfiguration information
encompasses the recommendation of policies, manoeuvres or imposed trajectory for the ADS
to adopt (i.e. affecting the configuration of ADS functions at different levels).

b) Safety Assessment Processes and Behavioural Safety Assurance. The first level of the
reference architecture hosts the parallel dependable processes that enforces the different safety
constraints at run-time. Each safety assessment process is allocated to the monitoring and the

assurance of a specific safety constraint. The process itself consists in a composition of
functions operating either monitoring, diagnostic from identified symptoms, planning or
reconfiguration to adapt how the ADS is behaving. The specifications are based on the
constraint requirements and the restrictions of its operating context. For example, the minimum
distance between a pedestrian and the vehicle shall be at 5 meters in urban areas at 30km/h.

c) Safety Orchestrator and Context-Dependence of Safety Assurance. The second level of
adaptation is built above the first level as a macro process to reconfigure the deployed safety
assessment processes upon the observed context. This reconfiguration operates according to
the context, the conflicts between constraints and the available resources. For example, the
minimum distance between a pedestrian and the vehicle shall be at 12 meters in urban areas at
50km/h, and 25 when the vehicle position becomes too uncertain (i.e. localization may not
work correctly). This orchestration results in structural adaptation of the deployed processes
to fit the actual context and ensure relevant and safe configurations.

d) Knowledge Models. The two presented levels of adaptations are designed as generic processes
that operates appropriately with their operative information. In our approach, we propose to
make the process agnostic. They can obtain the required knowledge from a shared knowledge
base. It will be only at run-time, when deployed, that they will may only acquire the knowledge
to operate. In this reference architecture, we explicitly store all required information regarding
the context, the deployment rules of constraints such as context-dependence and restrictions,
the configuration of the system, and process operations into models that are accessible through
a shared knowledge base.

4 Reference implementation
To achieve observability, traceability and flexibility of the reconfigurable architecture, this section

presents a requirement analysis for the architecture implementation motivated by the composition of
existing solutions for a flexible, composable and observable architectural approach.

First, we detail how the successive adoption of the Autonomic Computing paradigm, the
microservice architectural style and the knowledge representations based on semantic models may
contribute to design a self-managed system with the expected attributes. Next paragraphs present the
consecutive collection, composition, allocation and orchestration schemes based on the combination of
those structural and behavioural concepts. In our case, the methodology consists of decomposing the
safety constraints into structured and manageable safety assurance processes and their respective
functions. A more detailed implementation view of the architecture is also provided to illustrate the
results of the decomposition and application on safety in a MBSE tool. Finally, details how the
knowledge of the self-managed system should be structured and illustrates its applications to the AV.

The system’s attributes of observability, reconfigurability, traceability and flexibility have been
identified as required for our self-managed system to appropriately tackle the different challenges of
AV safety. This section identifies the potential solutions to satisfy these requirements based on
Autonomic Computing, microservices and semantic knowledge representation approaches.

4.1 Autonomic Computing
The Autonomic Computing paradigm proposed in [12] provides a hierarchical organization between

components to perform relevant adaptations via so-called MAPE-K autonomic loops. Those loops are
constituted by a chain of components providing the separated functions of Monitoring, Analysing,
Planning, and Executing (MAPE) operating around a shared knowledge base. Each of the MAPE-K
loops offers a specific reconfiguration that can be implemented within a discipline, i.e. coordinates the

same type of adaptation (e.g. self-configuring, self-healing, self-optimizing and self-protecting). It may
also address across different disciplines as they coordinate a mixture of the self-* capabilities. The
management of a MAPE-K loop by a higher-level loop is defined as autonomic orchestration. It
contributes to building hierarchical decisions that are made possible thanks to the genericity and
composition of the MAPE-K loops.

The Autonomic Computing paradigm is well-suited for self-managing architectures where
components or resources need to be reconfigured based on the monitored environment conditions and
guided by policies and goals. The adoption a hierarchical structure imposes the reconfigurability with
different levels of specialized decisions that can manage other components or be managed. AC provides
such decomposed structure for decisions (MAPE) and the possibility of orchestration to develop self-
adaptive systems.

The design of autonomic processes based on the four MAPE functions and the knowledge base
contributes to simplify the complexity by defining loops with a specific concern making it more
manageable over the time and easily observable. Besides, each MAPE function’s inputs and outputs
can be observed, logged and replayed if necessary.

We have seen that the four MAPE functions and the associated knowledge base compose the
decision process. Consequently, the chain of commands between the components is made explicit by
the respective definition of their roles, their specified I/O, their goals and policies that tune their
functions, and their operations that implement a specific set of techniques, methods, and algorithms.
The whole definition and structure of each function contribute to facilitating the traceability in the
system during design and run-time.

In addition, the MAPE functions may not have only one operation or implementation possible.
Trades off at a given time may have imposed specific definitions allowing only a certain spectrum of
mechanisms to be used. However, future design may replace how the function is operated by displacing
the component in the decision process. The replacement of the components of a MAPE-K loop or of
the whole loop is possible as long as the functions and roles are maintained, and I/O and knowledge are
appropriately updated. Having replaceable components for each function promotes maintainable and
appropriate evolutions of the architecture over the time in the development iterations or during its
operation with the selection of the appropriate process.

The hierarchical structure offered by the AC also complies with requirement extensions as we can
add new interfaced managed resources or new MAPE loops to perform a new specific process or
supervise existing ones.

The Autonomic Computing paradigm contributes to cover the structural range of our expected
attributes as it specifies a structure of decision for self-adaptive systems and also contributes to the
behaviour implementation, management and traceability (modelled and handled).

4.2 Microservices
The microservice architectural style [13] is applied in the IT domain to reduce coupling and break

down monoliths in web-service architectures improving thus their scalability. It enforces a different
approach to implement the capabilities, functions and features. Each component is designed to do only
one job; “Do one thing and do it well”. This type of usage on cyber-physical systems is reflected in
their structure and design enhancing the loose coupling and high cohesion of its services. Additional
knowledge is necessarily required to describe how components should connect, how the capabilities
and features are associated, how the microservices can be deployed (i.e. semantic of the applications
requirements), the properties we want to ensure (e.g. QoS, safety) and the manner how microservices
can be orchestrated (i.e. goals and policies). Microservices also claims to contribute to improve the
scalability of software architectures.

The adoption of microservice architectural style appears to be an appropriate solution to ease the
scaling and flexibility of the architecture of a self-adaptive system in AV with regard to the diversity of

functions involved and dynamic complex operating environment. The microservices contributes to
cover the structural range of our expected attributes as it specifies the structure of intercommunication
between components and allocation as microservices.

4.3 Knowledge Representation and Semantic Model
Model-Driven Engineering (MDE) have contributed to facilitate the development of architecture for

complex systems including self-adaptive systems by addressing their representation problems (i.e.
flexibility, scalability, and traceability) [15]. In MDE, the use of abstract models of the systems
separated from the systematic implementation are not only used for documentation but also as the vector
of the architecture refinement (e.g. understand, design, develop and maintain a system architecture).
Therefore, Model- Driven Architecture (MDA) approach insists on the separation between the system
and its implementation with the objectives to guarantee the evolutivity (i.e. being interoperable and
reusable), flexibility (i.e. being portable, extendable), and traceability (i.e. containing the system
specification and capabilities) of the resulting system architecture.

Ontology-Driven Architecture (ODA) promotes the use of semantic models or ontologies to
represent the abstract models of the system of MDA. They contribute to define domain vocabulary, the
specification and the capabilities of the represented system. Ontologies provide expression for
queryable semantic relationship between the different existing concepts and instances, and provide
consistency checking and validation capabilities for the model. The adoption of an ODA promotes a
higher level of observability and traceability in the system architecture with machine and human-
readable and queryable concepts.

In addition, the adoption of ODA in self-adaptive system contributes to represent and to make
accessible knowledge necessary for the system reconfigurability [16, 17]. In our perspectives, it
rigorously and consistently uses models for engineering feedback loops as it captures the adaptation
mechanisms and exchanged information.

The knowledge representation with semantic models contributes to cover the structural range of our
expected attributes regarding the capture of knowledge and how it can be documented and structured.

Figure 2 summarizes the step-by-step methodology followed to build our reference implementation

architecture, guided by the safety analysis constraints, controlled by autonomic and ontology-driven
processes loops based on composable and orchestrable microservices. Due to space limitations, in this
paper we will only present the ontology-driven knowledge based allowing to guarantee the safety
constraints.

Figure 2. Process of integration of the safety constraints in the system

5 Specification of the safety-oriented knowledge base
To clearly identify the scope for each source of knowledge required to implement to knowledge

based of our reference architecture, we adopt the abstraction of models proposed by Aßmann et al. [18]
in the model@run.time architecture. The following paragraphs present the particular purposes of those
models, and their coverage, and the identified operating knowledge in our approach.

5.1 Ontology representing the safety symptoms of the environment of
the vehicle and the ADS

The Ontology representing the safety symptoms of the environment of the vehicle is presented in
Figure 3. This ontology considers entities such as dynamic objects (e.g. pedestrian, car, bus), static
objects (e.g. stationary obstacles, traffic lights), the road geometry (e.g. lane, inter- section, crosswalk),
their interactions and also possible manoeuvres (e.g. crossing activity from the pedestrian. Current
perceived actions (i.e. manoeuvres) of the entities and their respective interrelations are described using
object properties. Additional information regarding the entities can be captured using the data properties
(e.g. position, speed, heading, id, age) to integrate some relevant readings or correlations from sensor.

Instead of allocating only one manoeuvre to a road user, we propose to extend the possible
cardinality of the relation. The understanding of the behaviours of the other road entity is a fundamental
key for automated driving. It is a matter of considering the actions (i.e. what it is currently performing),
the intentions (i.e. know what it will perform next) and the expectations (i.e. know what will be the next
actions) of each respective entity. They contribute semantically enhance the scene. We see the solution
for their representations as twofold.

Firstly, we satisfy the fact that manoeuvres are not all atomic, some can result from the composition
of others and some are interchangeable. Such claims can be identified to a commonly occurring problem
in software engineering that can be address by the Design Pattern Strategy firstly introduced by the
Gang-Of-Four [27]. As a way to configure a class with one of many behaviours, it aims to lets the
algorithm vary independently from clients that use it. Thus, the term Strategy in Manoeuvre Strategy
refers to the application of the Design Pattern and not robotic usage. In application, the Pedestrian
Strategy concept contributes to semantically identify and represent the main manoeuvres, moves or
interactions the pedestrian can perform. In our scope, we consider that the pedestrian can perform
Crossing, Crossing_Crosswalk, Jaywalking, Running, Standing_still, Stay- ing_waiting and Walking.

Secondly, the identification of the perceived maneuvers are subject to uncertainties due to
observability restriction raised in [28] for example. In fact, the uncertainty reflects the capacity of the
observation to be false or partial. Thus, methods as Dempster–Shafer theory and Bayesian method are
commonly used to perform the reasoning in an uncertain world for safety monitoring according [28].
The confidence is largely used to express a weighting on how much we are sure of a specific sampling.
In order to allow more than one cardinality for road-user/maneuvers relation, we choose to create a
Strategy instance for each manoeuvre and attach the confidence of the observed result as a data property.
The link between road user and possible manoeuvres are then represented by the has behaviour semantic
relation. The existence of Strategy individual associated to a specific road user or the value of the
confidence can be used in our framework to create symptoms of specific scenes or situations.

The idea behind this context ontology is to keep a representation of the world that is both human
and machine readable. Hence, we have the possibility to store all sort of observations and results
regarding the vehicle external context. However, only relevant symptoms from the monitoring (i.e.
aggregations and correlations from sensor information processing and ADS information) aims to be
stored within the ontology to serve as a base for inference. In fact, ontologies show limitations in
processing a large amount of information (e.g. number of axioms in the T-Box, A-Box for the types,
individuals, relations and equivalence rules) in a short time. Certain ontology features can also impact

the reasoner performances and might causing unexpected reasoning results according the analysis
presented in [29].

Figure 3. Ontology representation of the environment of the vehicle with road entities

5.2 Ontology for the representation of the current context of the vehicle
as symptoms

Context abstractions such as use cases or situations are also captured as concepts within the same
ontology. They aim to offer a higher-level representation of the context to facilitate scene
understanding, scene tagging and identification [19–21, 23–25]. We can envisage them as patterns that
match the different parts we intend to study like the concepts introduced in [22]. Figure 4 illustrates the
different forms of context abstractions we propose to capture based on the following specific
representation goals and prerequisites.

A Scene corresponds to a snapshot of the scenery and the self-representation of the dynamic
elements (i.e. it can encompass the state, intention or expectation of each of the road objects).

A Situation is an extended representation of the perceived scene where some information are
selected (i.e. only consider relevant entities for defined driving functions and subjective restricted
observation) and some are semantically enhanced (e.g. added information as relation or property) fitting
with the current objectives of the ego vehicle (e.g. goals and values for realizing Yielding to pedestrian
safety goal).

A Scenario corresponds to a sequence of scenes using Maneuvers (i.e. from actions or events) as
transitions with at least an initial scene. This concept helps representing context abstractions where
temporal development is needed.

A use case captures the guidance of one or several scenarios where a functional range (e.g. roadway)
is specified and a desired behaviour (e.g. yield to pedestrian) are involved. This concept helps covering
the definitions of use cases from ISO26262 [30].

Finally, we have included a last category for the gathering of the edge cases or threatening situations
in which the system needs to perform a specific strategy or meet specific objectives.

Figure 4 Ontology representation of the use cases for situations encounter using com- position of road entities

Figure 5 shows the classes of situations covering the Pedestrian crossing the road on crosswalk use
case within the black selection. The image is a screenshot of the class hierarchy of our ontology on the
Protégé tool. Each displayed PEDES_XX_XX_XX axiom captures the different entities and describes
the expected relations between the different road objects (e.g. EgoCar approaching crosswalk or a
Pedestrian crossing the road) that are involved. For example, the highlighted PEDES_02_01_01
situation aims to detect the pedestrian’s calculated trajectory will be in the crosswalk when EgoCar is
predicted to arrive to the crosswalk. An a-priori definition of the requirements to meet is described as
an Equivalent To relation. Figure 5 illustrates the relation of equivalence for the PEDES_02_01_01
situation at the bottom-right panel. The abstraction aims to detect a pedestrian that may cross or have
the intention to cross in the proximity of a crossroad but is currently not on the road.

Figure 5 Ontology representation of the use cases for situations encounter using com- position of road entities

Based on the descriptions of the context abstractions, the reasoner can actually perform scene
identification by inferring on the provided equivalence relations and observations. The context
identification fulfills the role of Monitor function in the OAM. The identified context abstraction
constitutes symptoms in the OAM adaptation loop.

We also associate this ontology with run-time representation that abstract our system’s configuration
and is operable by the OAM based on the SOSA/SSN ontology [26].

Other more complex contexts can be described using more extended equivalences or SWRL rules.
In our approach, we only capture high-level observations and do not store raw observations or raw data
to keep the ontology at a run-time manageable scale and the reasoning time efficient.

6 Conclusions and perspectives

In this article, we have presented an original architecture resulting from the extension of a real cyber-
physical autonomous architecture and implemented based on a microservice-oriented and knowledge-
based model-driven framework for designing autonomic and cognitive AV systems. Within this
framework, we combine a set of patterns to perform two levels of adaptations and their respective
knowledge. We define the different models and their use in the different functions of the autonomic
adaptation. The definition of such patterns and models has been motivated by the need of traceability,
flexibility and composability in AV systems. We have introduced the use of ontologies in order to
implement the knowledge base of our reference architecture. Regarding performance and scalability,
even in this article we have not presented the evaluation of these properties, since the architecture is
potentially distributable within internal or external vehicle infrastructure, dynamic and distributed
deployment of MAPE functions could considered for managing large number of processes. Likewise,
in this work we have considered basic situations where some can be considered as atomic. However, a
real-world scene would more result of the composition of different abstract contexts with their own
attributes variations. As an example, we can consider a perceived scene as a composition of situations
involving a pedestrian crossing the road and the EgoCar followed by vehicle. Future works will propose
an extension to this knowledge-based implementation in order to integrate this kind of scenarios.
Moreover, next works will address architecture verification as well as the evaluation of functional and
non-functional requirements satisfaction.

References
[1] N. G. Leveson, J. P. Thomas, and MIT, STPA Primer, Ed. MIT Partnership for a Systems Approach to
Safety (PSAS), 2015. [Online]. Available: sunnyday.mit.edu/STPA-Primer-v0.pdf
[2] N. G. Leveson and J. P. Thomas, STPA Handbook. MIT Partnership for a Systems Approach to Safety,
Mar. 2018. [Online]. Available: http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
[3] S. Lefèvre, “Risk estimation at road intersections for connected vehicle safety applications,” Ph.D.
dissertation, INRIA Grenoble, 2012.
[4] T. Raste, H. B. Ali, and A. Houry, “Fallback strategy for automated driving using stpa,” in 3rd
European STAMP Workshop, 2015.
[5] G. Bagschik, T. Stolte, and M. Maurer, “Safety analysis based on systems theory applied to an
unmanned protective vehicle,” Procedia Engineering, vol. 179, pp. 61 – 71, 2017, 4th European {STAMP}
Workshop 2016, {ESW} 2016, 13-15 September 2016, Zurich, Switzerland. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877705817312122
[6] S. A. Cook, H.-H. Fan, K. Pennar, and P. Sundaram, “Building behavioral competency into stpa process
models for automated driving systems,” Mar. 2018.
[7] S. M. Sulaman, A. Beer, M. Felderer, and M. Höst, “Comparison of the fmea and stpa safety analysis
methods–a case study,” Software Quality Journal, Dec 2017. [Online]. Available:
https://doi.org/10.1007/s11219-017-9396-0
[8] Ford, “A matter of trust fords approach to developing self-driving vehicles,” Ford, techreport, 2018.
[Online]. Available: https://media.ford.com/content/dam/ fordmedia/pdf/Ford_AV_LLC_FINAL_HR_2.pdf
[9] A. Abdulkhaleq, S. Wagner, D. Lammering, H. Boehmert, and P. Blueher, “Using STPA in compliance
with ISO 26262 for developing a safe architecture for fully automated vehicles,” CoRR, vol.
abs/1703.03657, 2017. [Online]. Available: http://arxiv.org/abs/1703.03657
[10] G. Sabaliauskaite, L. S. Liew, and J. Cui, “Integrating autonomous vehicle safety and security analysis
using stpa method and the six-step model,” International Journal on Advances in Security, vol. 11, pp. 160–
169, Jul. 2018
[11] M. A. Vernacchia, “Gm presentation for introducing stamp/stpa tools into standards,” Mar. 2018, mIT
STAMP Workshop. [Online]. Available: http://psas.scripts.mit.edu/home/wp-content/uploads/2018/04/
SAE-STPA-Recom-Pract-Task-Force-Overview-Mark-Vernacchia-GM-27mar18-Rev1. pdf
[12] J. Kephart, D. Chess, C. Boutilier, R. Das, and W. E. Walsh, “An architectural blueprint for autonomic
computing,” IBM White pa- per, Jun. 2006. [Online]. Available: https://pdfs.semanticscholar.org/0e99/
837d9b1e70bb35d516e32ecfc345cd30e795.pdf
[13] M. Fowler and J. Lewis, “Microservices: a definition of this new architectural term,” ThoughtWorks.
http://martinfowler.com/articles/microservices.html [last accessed on July 06, 2016], 2014. [Online].
Available: http://martinfowler.com/articles/ microservices.html
[14] M. T. F. Martin L. Abbott, The Art of Scalability. Addison Wesley, 2015. [Online]. Available:
https://www.ebook.de/de/product/23633910/martin_l_abbott_michael_ t_fisher_the_art_of_scalability.html
[15] R. Cuer, “Démarche de conception sûre de la supervision de la fonction de conduite autonome,” Ph.D.
dissertation, 2018, thèse de doctorat dirigée par Niel Eric, 2018. [Online]. Available: http://www.theses.fr/
2018LYSEI091
[16] C. Diop, G. Dugué, C. Chassot, E. Exposito, and J. Gomez, “QoS-aware and autonomic-oriented
multi-path TCP extensions for mobile and multimedia applica- tions,” International Journal of Pervasive
Computing and Communications, vol. 8, no. 4, pp. 306–328, nov 2012.
[17] R. Koh-Dzul, M. Vargas-Santiago, C. Diop, E. Exposito, and F. Moo-Mena, “A smart diagnostic
model for an autonomic service bus based on a probabilistic rea- soning approach,” in 2013 IEEE 10th
International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International
Conference on Autonomic and Trusted Computing, Dec 2013, pp. 416–421.
[18] U. Aßmann, S. Götz, J.-M. Jézéquel, B. Morin, and M. Trapp, “A Reference Architecture and
Roadmap for Models@run.time Systems¨ , pages 1–18. Springer International Publishing, 2014. [Online].
Available: https://.org/10.1007/978-3-319-08915-7_1.
[19] A. Armand, D. Filliat, and J. Ibañez-Guzmán, “Ontology-based context awareness for driving
assistance systems,” in 2014 IEEE Intelligent Vehicles Symposium Proceedings, June 2014, pp. 227–233.

[20] A. Armand, “Situation Understanding and Risk Assessment Framework for Preventive Driver
Assistance,” IV’14, no. 2016SACLY008, 2016. [Online]. Available: https://pastel.archives-ouvertes.fr/tel-
01421917
[21] G. Bagschik, T. Menzel, and M. Maurer, “Ontology based scene creation for the development of
automated vehicles,” CoRR, vol. abs/1704.01006, 2017. [Online]. Available:
http://arxiv.org/abs/1704.01006
[22] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defining and substantiating the terms
scene, situation, and scenario for automated driving,” in 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, Sept 2015, pp. 982–988.
[23] S. Geyer, M. Baltzer, B. Franz, S. Hakuli, M. Kauer, M. Kienle, S. Meier, T. Weissgerber, K. Bengler,
R. Bruder, F. Flemisch, and H. Winner, “Concept and development of a unified ontology for generating test
and use-case catalogues for assisted and automated vehicle guidance,” IET Intelligent Transport Systems,
vol. 8, no. 3, pp. 183–189, May 2014.
[24] L. Zhao, R. Ichise, T. Yoshikawa, T. Naito, T. Kakinami, and Y. Sasaki, “Ontology- based decision
making on uncontrolled intersections and narrow roads,” in 2015 IEEE Intelligent Vehicles Symposium (IV).
IEEE, June 2015, pp. 83–88.
[25] X. Geng, H. Liang, B. Yu, P. Zhao, L. He, and R. Huang, “A scenario- adaptive driving behavior
prediction approach to urban autonomous driving,” Applied Sciences, vol. 7, p. 426, 04 2017. [Online].
Available: http: //www.mdpi.com/2076-3417/7/4/426
[26] A. Haller, K. Janowicz, S. J. Cox, M. Lefrançois, K. Taylor, D. Le Phuoc, J. Lieber- man, R. García-
Castro, R. Atkinson, and C. Stadler, “The modular SSN ontology: A joint W3C and OGC standard
specifying the semantics of sensors, observations, sampling, and actuation,” Semantic Web, vol. Pre-press,
no. Pre-press, pp. 1–24, 2018.
[27] E. Gamma, Design patterns: elements of reusable object-oriented software. Pear- son Education India,
1995.
[28] M. Törngren, X. Zhang, N. Mohan, M. Becker, X. Tao, D. Chen, and J. Westman, “Architecting
safety supervisors for high levels of automated driving,” in the 21st IEEE Internal Conference on Intelligent
Transportation Systems, 2018.
[29] N. Alaya, S. B. Yahia, and M. Lamolle, “What makes ontology reasoning so arduous?: Unveiling the
key ontological features,” in Proceedings of the 5th International Conference on Web Intelligence, Mining
and Semantics, ser. WIMS ’15. New York, NY, USA: ACM, 2015, pp. 4:1–4:12. [Online]. Available:
http://doi.acm.org/10.1145/2797115.2797117
[30] ISO 26262 - Road vehicles – Functional safety, International Organization for Standardization Norm
ISO 26262, 2018. [Online]. Available: http:
//www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464
[31] Aaron Kane, Omar Chowdhury, Anupam Datta, and Philip Koopman. “A case study on runtime
monitoring of an autonomous research vehicle (arv) system”, Springer International Publishing, pages
102–117, 2015. ISBN 978-3-319-23820-3.
[32] Mario Trapp and Daniel Schneider. “Safety Assurance of Open Adaptive Systems – A Survey”, pages
279–318. Springer International Publishing, 2014. [Online]. Available: https://doi.org/10.1007/978-3-319-
08915-7_11.
[33] Betty H. C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi A. Müller,
Patrizio Pelliccione, Anna Perini, Nauman A. Qureshi, Bernhard Rumpe, Daniel Schneider, Frank
Trollmann, and Norha M. Villegas. “Using Models at Runtime to Address Assurance for Self-Adaptive
Systems”, pages 101– 136. Springer International Publishing, 2014. [Online]. Available:
https://doi.org/10.1007/978-3-319-08915-7_4.
[34] Tiago Amorim, Denise Ratasich, Georg Macher, Alejandra Ruiz, Daniel Schneider, Mario Driussi,
Radu Grosu, and Andrea Hoeller. “Runtime safety assurance for adaptive cyber-physical systems: ConSerts
M and ontology-based runtime reconfiguration applied to an automotive case study”. In Solutions for
CyberPhysical Systems Ubiquity, pages 137–168, 2018. [Online]. Available: https://doi.org/10.4018/ 978-1-
5225-2845-6.ch006
[35] Ion Stoica, Dawn Song, Raluca Ada Popa, David A. Patterson, Michael W. Mahoney, Randy H. Katz,
Anthony D. Joseph, Michael Jordan, Joseph M. Hellerstein, Joseph Gonzalez, Ken Goldberg, Ali Ghodsi,
David E. Culler, and Pieter Abbeel. A berkeley View of Systems Challenges for AI. Technical Report

UCB/EECS-2017-159, EECS Department, University of California, Berkeley, Oct 2017. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/ 2017/EECS-2017-159.html

