
HAL Id: hal-02410350
https://univ-pau.hal.science/hal-02410350

Submitted on 21 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-construction of Computer Science
Knowledge-to-be-taught in a French Context

Vanea Chiprianov, Laurent Gallon, Timothée Duron

To cite this version:
Vanea Chiprianov, Laurent Gallon, Timothée Duron. Co-construction of Computer
Science Knowledge-to-be-taught in a French Context. 15th Int’l Conf on Fron-
tiers in Education : Computer Science and Computer Engineering (FECS 2019),
https://csce.ucmss.com/cr/books/2019/ConferenceReport?ConferenceKey=FEC, Jul 2019, Las
Végas, United States. �hal-02410350�

https://univ-pau.hal.science/hal-02410350
https://hal.archives-ouvertes.fr


Co-construction of Computer Science knowledge-to-be-taught in a
French context

T. Duron1, V. Chiprianov2 and L. Gallon1,
1LIUPPA, University of Pau and Pays de l’Adour, Pau, France

2IRISA, University of South Britain, Rennes, France

Abstract— The French national curricula for elementary
and secondary schools introduced teaching Computer Sci-
ence (CS) concepts as mandatory, beginning the 2016-2017
school year. This also raised questions related to specifically
what CS concepts should be taught and how. Several pro-
posals of textbooks, pedagogical kits and other knowledge-
to-be-taught have been made; some of them contain ap-
parently surprising and even what seems, at a first glance,
scientifically incorrect knowledge, which could prove to be
obstacles in pupils’ learning. In this paper we analyze such
proposals, and advance explanations based on the Theory
of the Didactic Transposition of Knowledge (TDTK). The
TDTK considers that the knowledge-to-be-taught is the result
of a complex process of various interactions and negotiations
between the numerous actors of the educational system. We
identify such interactions, which explain the existence of
didactic obstacles. Being aware of such caveats may reduce
the apparition of this type of obstacles in future construction
of similar CS bodies of knowledge-to-be-taught.

Keywords: K-12, Computational Thinking, Didactics, curricula
design and analysis

1. Introduction
The mandatory introduction of Computer Science (CS)

concepts in the French elementary (6-10 years old) and
middle (11-14 years old) school national curricula, beginning
the school year of 2016-2017 [1], has had profound impacts
on what and how CS is taught in France. However surprising
may this have been for some, it was not totally without
precedent: in the 1980s there was a movement of teaching
CS concepts (and training teachers accordingly), which was
replaced in the 1990s with teaching Digital Literacy; for
details on the history of teaching CS in France cf. [2].

Following the international trend on Computational
Thinking [3], and reports, such as that of the Academy
of Sciences [4], pinpointing France’s lateness in adopting
proper CS teaching in elementary and middle school, the
political decision was taken to introduce CS concepts in the
national curricula for these levels. It should be noted that,
due to historical decisions [2], at this point France did not
have any primary or middle school teachers that had been
formally trained in CS, only in Digital Literacy.

Fig. 1: Excerpt from Mission 3, IniRobot [5]

As a consequence of this introduction, a number of
resources, in the form of textbooks, (robot) pedagogical
kits, recommendation documents, etc. have been proposed.
Designing such proposals is important, however, it is only
part of the continuous improvement education process. To
evaluate the potential of such resources, questions need to
be answered, such as: What is the knowledge such resources
aim to teach? How is this knowledge actually taught by
teachers and learned by pupils? Moreover, some of these
resources contain a number of "features" that could, at first
glance, be classified as errors, and which could become
obstacles in pupils’ learning. How were such "features"
introduced and possible in the first place?

One such example concerns the IniRobot [5][6] pedagog-
ical kit, using the Thymio1 robot for introducing robotics
and programming, especially in elementary2, but also middle
school. IniRobot is distributed under a CC-BY license and
has engendered several developments and versions. We focus
here on the 2014 version [5].

IniRobot proposes a sequence of 14 missions; of which
mission 3 If ... then ... (fr. "Si ... alors ...") introduces, in
its own terminology, the concepts of event and action, from
event-driven programming. Thymio has 6 preprogrammed
behaviors, of which, mission 3 proposes exercises, to dis-
cover 4. The connect-the-dots exercise for the behavior
called The explorer (yellow) (fr. "L’explorateur (jaune)") -
is presented in Fig. 1. The "events" (or rather, as we will
see below, the conditions on which the events are filtered)
are introduced by the word IF (fr. "SI"), and the actions are
introduced by the word THEN (fr. "ALORS"). The expected
result is the discovery of the explorer behavior (using the
IniRobot terminology): "IF Thymio detects an object in front

1https://www.thymio.org/en:thymio
2https://dm1r.inria.fr/t/inirobot-descriptif-des-activites-autour-de-la-

robotique-a-lecole-primaire/23



Fig. 2: The didactic transposition process, from [7]

of it, THEN it goes back"; "IF Thymio detects an object
at its right, THEN it turns left"; "IF Thymio doesn’t detect
anything, THEN it advances"; "IF Thymio detects an objects
at its left, THEN it turns right". The use of the word IF
may come as a surprise, and rightly so, as the concept it
introduces is related to an event. The Aseba textual editor
for programming Thymio even uses the keyword WHEN,
but the Aseba Visual Programming Language (VPL) uses
the keyword IF. One would expect the use of the same word
in the graphical editor as in the textual one - WHEN (fr.
"QUAND"). While this may seem insignificant, there are
cases in which pupils are disturbed (c.f. Fig. 3).

In what follows we argue that such "features" are not
simple "errors", but the result of a complex process of
transformation of the scholarly knowledge into knowledge-
to-be-taught. In this process, many actors are involved, with
different concerns, numerous constraints, whose solutions
are sometimes surprising ...

2. Didactic Transposition of Knowledge
Knowledge, as it is taught in the School, is not immutable.

It is a human construct, so as to fulfill a particular goal. As
goals evolve through time and to follow changes in society,
the knowledge taught in the School evolves as well. As
some of the main goals are related to teaching beginners, the
knowledge taught in school differs from the knowledge as it
was first created by researchers: it is "simplified", differently
structured, overlaps and contradictions have been limited -
the scholarly, scientific knowledge has been subject to a
series of transformations, for it to become knowledge to
be taught in School. It has been argued that "[b]odies of
knowledge are, with a few exceptions, not designed to be
taught, but to be used. To teach a body of knowledge is thus
a highly artificial enterprise." [8].

In this paper we investigate how such transformations
are happening in the CS curricula that is being defined
currently in France. The decisions of which subjects, from
the broad CS scientific knowledge, to choose for teaching is
influenced by various actors, from high political levels such
as ministers and academicians to actors closer to the terrain
such as teachers, researchers as collaborators of teachers and
as analysts of the system. To analyze this system and how
it influences the transformations on the CS knowledge to
be taught, we adopt a theoretical background based on the
Theory of the Didactic Transposition of Knowledge (TDTK).

Didactics is the science of the diffusion of knowledge in
any institution (e.g. class of pupils, society at large). More
particularly, it is the scientific study (and the knowledge

resulting thereof) of the innumerable actions taken to cause
(or impede) the diffusion of such and such a body of
knowledge in such and such an institution [9]. The TDTK
has originally been proposed in French, in the 1980s, and
has achieved a wide spread and acceptance in the French-
speaking communities, also in the Spanish-speaking, but
much less so in the English-speaking communities, no doubt
also because of relatively few and late translations (of which
we selected a few in the bibliography of this paper, cf. infra).
It is a theory initially proposed in the context of mathematics
teaching, but has since evolved to encompass teaching of
other science subjects, such as biology and geography.

The Theory of the Didactic Transposition of Knowledge
(TDTK) [8], [9], [10], studies the "transition from knowledge
as a tool to be put to use, to knowledge as something to be
taught and learned". Let us note that for us, in this paper,
the concept of knowledge, in all of its further declinations,
comprises both skills, know-how (fr. savoir faire), as well
as "theoretical" knowledge (fr. savoir).

The TDTK distinguishes thus several types of knowledge.
The scholarly (bodies of) knowledge (fr. savoir savant)
denotes "an organized and more or less integrated whole"
[8]. It is produced by researchers and scholars, usually
integrated in theories, to be found in research articles and
scientific books. Taking this type of knowledge as start-
ing point, the TDTK studies how it is transformed into
knowledge-to-be-taught (fr. savoir à enseigner), which is
the "scholarly knowledge that exists only in contexts than
cannot be faithfully replicated within school" [8], usually as
it appears in curricula, textbooks and other similar resources.
This is further transformed into taught knowledge (fr. savoir
enseigné) - "the knowledge which becomes visible, so to
speak, in the classroom" [10], as it is presented in the
particular context of a class, by a particular teacher, to
a particular group of pupils etc. Of course, there is a
further difference between the taught knowledge and what is
actually learned by pupils, the learned knowledge (fr. savoir
appris, connaissances). A synthetic view of the TDTK is
presented in Fig. 2.

These transformations are the result of interactions be-
tween actors of the educational system. The totality of
these actors form what is called, in the TDTK, the didactic
noosphere - the "sphere" of those who "think" about teaching
[10], all those who share an interest in the teaching system.
It consists of the agents - those actors who are in charge
of knowledge (e.g. teachers), but also of the laity - those
standing outside the teaching sphere. Obviously, different
people have different positions in respect to education.



Therefore, "it is the task of the noosphere to cope with
the demands made by society on the teaching system, by
transmuting them into conditions acceptable to both parties
- society and its teaching system" [10]. Consequently, the
central function of the noosphere is the negotiation with the
society, taking into account different conditions, constraints,
resulting in compromises.

We focus in this paper on analyzing the didactic transpo-
sition of CS knowledge related to the introduction of event
programming based on IniRobot, as it happens in the context
of a research and training project - PERSEVERONS3. We
do emphasize that other actions, knowledge and research
are happening in PERSEVERONS, which are out of the
scope of this paper. In this context, we have identified as
agents of the educational system: the Curricula Superior
Council (fr. Conseil supérieur des programmes) - the body
which defines the national French CS curricula, CS and
Learning Sciences researchers, CS pedagogical counselors
(fr. Enseignants référents pour les usages du numérique),
primary and secondary school teachers. In the next sections,
we analyze how these agents are interacting in a process
of negotiation and co-construction - a process of defining
together, through interactions more or less direct - of a CS
curricula.

3. The co-construction process
In the context of our case study based on IniRobot, it

seems as a fair assumption that the knowledge-to-be-taught
should revolve around robots and their programming. We
investigate in this section the transposition of such knowl-
edge, from the definition of scholarly knowledge of what is
called event-driven programming (one of the main paradigms
used for programming robots), to its transformation into
knowledge-to-be-taught, as found in the French national
curricula and in the IniRobot pedagogical kit (and one of
its declinations, the IniRobot for School), and further into
taught and learned knowledge, as observed in regular French
schools, while emphasizing the actions of different actors
involved in each phase.
3.1 Defining the scholarly knowledge

Providing a complete historical and epistemological study
on the CS concepts attached to event-driven programming is
out of the scope of this paper. However, we do indicate that
the concepts usually considered as in relation with the so-
called event-driven paradigm have been defined in several
places, in different manners, with different names, and
although there are commonalities among these definitions,
there are also numerous and important differences.

For example, [11] defines a computational event as "any-
thing that happens in the course of a computation [...] both
occurrences in the program itself [...] as well as occurrences
outside the computation proper". A similar and more precise

3http://perseverons.espe-aquitaine.fr/

definition is that of [12], for which events are "the transi-
tions between states that may appear in a system or in its
environment". Please notice that these definitions consider
both the external and the internal nature of events.

Other authors, like for example Turing-award winner L.
Lamport [13], offer a more complete picture, speaking of
several concepts: events (which are not formally defined),
processes, messages (defined as the means of communication
among spatially distinct processes - distributed systems - and
whose sending or receiving are considered an event), partial
ordering (of the sending and reception of messages), logical
and physical clocks (for synchronization), etc.

[14] speaks about waiting for an event - in which case the
program cannot complete an operation immediately and thus
it registers a callback - a function that will be invoked when
the event occurs. This waiting is typically done in a loop
that polls for events and executes the appropriate callback
when the event occurs. To differentiate between events,
mechanisms of "filtering [...] by a condition" [12], which
provide an event every time a condition is true, are needed.
A concept similar to the callback is the event handler - a
method "able to respond to one kind of external action (or
event)" [15]. An event is defined as an external action.

Other researchers make a difference between what it is
called threaded (or procedure-oriented) and event-driven (or
message-oriented) programming models/systems [14], trying
either to show their duality e.g. [16], or the precedence of
one over the other (at least in some contexts) e.g. [14][17].

Defining the concepts related to the so called "event-
driven programming paradigm" has therefore been a long
process, in which several CS researchers (the only type of
actors - and more precisely laity in TDTK terminology - in
this phase) have built on or against the work of previous
researchers. The resulting scholarly knowledge may have
attributes that enable construction of real-world applications
(use of knowledge), but it is in itself a rather difficult and
specialized body to understand, sort and classify.

3.2 Defining the knowledge-to-be-taught : the
curricula

In France, a distinction is usually made between 2 types of
knowledge-to-be-taught: the national curricula, resulted from
the external transposition process of scholarly knowledge,
and which serves as a reference document for the second
type of knowledge-to-be-taught, which comprise textbooks,
teacher training documents and other similar documents. The
curricula is itself the result of a negotiation process between
several organizations and councils. The Curricula Superior
Council is the body which defines the national French
curricula for elementary and middle schools. However, it
does not work in isolation, and an analysis of its CS 2016
curricula [1] shows a number of influences, from a report of
the Academy of Sciences [4], to other organizations such as



EPI4 and ATIEF5.
Regarding knowledge related to robots and event-driven

programming, the French national curricula for middle
school for example [1, pp. 365, 380], includes requirements
such as: "write a program in which actions are triggered
by exterior events", or "triggering of an action by an
event". It is important to note that the CS concepts are
mentioned in the curricula in 2 distinct parts: Mathematics
and Technology. While the requirements evoked above are
common to both parts, there are CS concepts specific to
only one of them. As such, the Mathematics part also
includes: "pupils are introduced to event programming (fr.
programmation événementielle)", "programming actions in
parallel", "control structures related to events", while the
Technology part includes: "sensor, actuator, interface". One
can see that the Mathematics part is more focused on the
programming side, while the Technology part also includes
more pronounced engineering and mechanical elements.

One can identify, in the curricula, CS concepts that have
been selected from the scholarly knowledge, such as event
(which in the curricula seem to concern mainly external
events - so messages?), action (probably similar to the
concepts of callback/handler), triggering and control struc-
tures related to events (probably related to waiting and loop
polling), actions in parallel (related to processes? or another
name for events?). Why and how have been these concepts
selected? A possible answer may come from what seems
to be a major source of inspiration for the CS part of the
curricula, a report of the Academy of Science [4, pp. 23, 25],
which indicates, in relation to event-driven programming,
concepts such as: "notion of parallel algorithm", "sensors and
actuators", "algorithms [...] control the system by acting on
actuators depending on the sensed values", "the retroactive
command in a closed loop".

However, one can notice that, while the Academy report
presents together more mechanical (sensors, actuators) and
more programmatic (algorithm, loop) concepts, the curricula
segregates them into a Mathematics and a Technology part.
How could this be explained? As mentioned in the introduc-
tion on the history of teaching CS in France, starting from
the 1990s, teachers were trained mainly to Digital Literacy,
but not to CS (programming). Therefore, in the 2010s, when
the (political) decision to introduce CS teaching was taken,
the Curricula Superior Council found itself confronted with
the reality of having no teachers properly trained. It seems
the retained solution was to separate the CS concepts into 2
subjects and assign their teaching to teachers which were the
most likely to have connections to (and hopefully interest in)
these concepts. The French national curricula is therefore a
good example of how different actors, from political decision
makers, the Academy of Science and the Curricula Superior

4https://www.epi.asso.fr/
5http://atief.fr/

Council negotiated (indirectly), according to their purposes
and with real-world constraints.

One can also notice that the curricula identifies CS
concepts to be taught, but does not enter into details. For
example, triggering is mentioned, but not filtering by a
condition; the concept of event appears, but no discussion
of the time implications, on questions related to the partial
ordering of sending and/or reception of events. As we
shall see, this may have had implications on the further
transposition of the knowledge-to-be-taught.

3.3 Defining the knowledge-to-be-taught: the
case of pedagogical kits

If a number of decisions regarding choices among schol-
arly knowledge, such as focusing on certain concepts of
event-driven programming, as well as a separation, at middle
school, into Mathematics and Technology, were taken, as
a result of an external transposition process between laity
of the educational system such as the Academy of Science
and political decision makers, on the one hand, and agents
such as the Curricula Superior Council, on the other hand,
the identified concepts remain described rather vaguely and
a number of choices still need to be made. One such
more detailed specification is provided by the IniRobot [6]
pedagogical kit. With a version made available in 2014 [5],
so somehow in parallel with the development of the curricula
itself, mainly by actors which seem to be primarily CS
researchers or school teachers, with interests in Education
Sciences research, IniRobot has several declared objectives,
among which "the acquisition and practical use of a number
of fundamental concepts", such as, for example: "sensors",
"actuators", "instruction", "algorithm" and "how to use basic
concepts of event-based programming", by elementary and
middle school pupils [6]. It seems therefore safe to assume
the authors of IniRobot followed the principle of the low-
floor (easy to get started) [18], and tried to avoid as much
as possible known difficulties.

"Programming in explicitly event-driven models is very
difficult" [19]. Several causes have been identified for this,
among which we find particularly relevant for our discus-
sion the fact that the interactive logic of a program is
fragmented across multiple event handlers [14][19]. While
sequential programming is structured as a single flow of
control, with control structures such as branching (i.e. IF)
and loops, event-driven programming requires a series of
small callbacks/handlers. The control flow among these
handlers is not obvious, because of the inversion of the
control [19]: a program merely registers with the execution
environment its interest to be resumed on certain events; it
is the execution environment which dispatches the events
to the event handlers; it is not the program which calls the
handlers. Thus, the control flow among handlers is expressed
only implicitly, through manipulation of shared state [15].



It is maybe to avoid such difficulties related to under-
standing the fragmented and inverted control flow that the
authors of IniRobot proposed the use of the word "IF" to
introduce what they call an "event", as we have seen in Fig.
1. This may help "lowering the floor" [18], the entry point for
pupils, when first encountering event-driven programming,
by approaching the fragmented event-driven control flow to
a sequential one. This seems the more likely as, in special
(simple) cases, the control flow of an event-driven program
may actually be sequential. Therefore, as long as the situ-
ations/exercises only require sequential code, pupils having
a sequential representation of the event-driven programming
does not show to be problematic. However, are they, in this
case, really taught event-driven programming? Moreover, the
similarity of using logical conditions: from the filtering of
an event by conditions when triggering/waiting/loop polling,
and, respectively, of the branch condition, increases the
similarity between the 2 concepts.

Nonetheless, the semantics of filtering of events by con-
ditions (let’s denote it by the keyword WHEN) is different
from that of a branch (IF). A filter has to be unique in a
program, while branching conditions may appear multiple
times. This becomes visible in some cases, such as that
presented by the situation introduced by IniRobot in Mission
10, analyzed in more detail in Fig. 3.

The 2014 version of IniRobot has evolved, engendering
several branches and multiple versions. We focus here on a
2016 version, IniRobot for School [20], the basis chosen for
activities in PERSEVERONS. First change to notice is the
dimension of the document: from 24 pages for IniRobot, to
80 pages for IniRobot for School. The authors of IniRobot
for School are CS pedagogical counselors, whose declared
objectives comprise, among others: "working numerous
competencies related to mastering the language (oral and
writing), mastering mathematical languages and mastering
scientific languages" [20, p. 2]. While there still are im-
portant objectives related mainly to teaching CS concepts,
IniRobot for School uses the activities with Thymio "to
practice languages", "to practice scientific and technological
procedures" and "to organize the personal work" [20, p.3]
as well, in relation with other objectives of the French
national curricula (defined for all school subjects) [1]. While
IniRobot consists of 6 sessions containing a total of 14
missions, with a total estimated completion time of about
6 hours (possibly longer, depending on audience), IniRobot
for School consists of 12 sessions, during which contents
from IniRobot missions 1, 2, 3, 4, 5, 6, 7, 8, 10 are partially
reused, reordered, developed and enriched, for a total of an
estimated completion time of about 12 hours.

The authors of IniRobot for School have thus selected,
according to their objectives, from IniRobot, contents related
to CS concepts found in the curricula, excluded others (e.g.
missions 11, 12, 13 from IniRobot) and added other knowl-
edge (e.g. mission 1 on drawing Thymio), not necessarily re-

lated to CS, in order to augment the interdisciplinary content
of their kit. Let’s also note that, in IniRobot for School, while
concepts such as event and action are mentioned several
times and exemplified, no mention is made to conditions or
filtering/waiting; which is, as we have seen, in accordance
with their lack of mention in the curricula.

3.4 Defining the taught knowledge
At this phase in the transposition, it is the teachers’ turn to

intervene in the process. Based on the curricula, textbooks,
pedagogical kits, other resources and the training they (are
supposed to) have received, the French educational system
expects teachers to define situations to be taught in the
classroom, that introduce and argue the need of CS concepts.
These are high expectations, difficult to meet, especially by
teachers with no initial training in CS.

To support the teachers in this rather daunting task, the
decision makers, most notably the Prime Minister and the
Ministry of Education, have intervened through the e-FRAN6

Spaces for training, research and digital organization call
for projects. It has selected 22 projects, for a total of 19.5
Million Euros. The successful projects demonstrated that
they federate schools, county local authorities, companies,
research laboratories, and other actors, around an innovative
project with objectives regarding digital objects - whether to
use them as a pedagogical resource, or in relation to new
skills to be acquired, or as a research object -, taking place
on diverse territories which enable a precise monitoring and
evaluation (especially of pupils involved in experiments).

As part of one such project, PERSEVERONS, we have the
opportunity of observing and analyzing interactions between
the numerous actors involved. These interactions have driven
the transposition of CS knowledge-to-be-taught, as defined
by the curricula, textbooks and pedagogical kits. We have
observed several teachers and classrooms, keeping records
in the form of notes, videos and photos, following an
observation-based, case study, document and artifact-driven
content analysis, qualitative research method7 [21].

It should come as no surprise that, even though the
teachers used the same main pedagogical kit, IniRobot for
School, there were differences in the way the class time was
organized, the emphasis on some explanations or situations,
the general and CS-specific teacher experience etc. However,
some conditions were fairly common, such as pupils working
in groups of 2 or 3, with 1 computer and 1 Thymio, in half-
classrooms of similar sizes, between around 10 and 15, for
about 1 hour, in 1-2 sessions per week, for 4 - 10 weeks.
This allowed observing some recurring phenomena across

6http://www.education.gouv.fr/cid94346/appel-a-projet-e-fran.html
7With its characteristic concern for context and meaning, of experiments

in naturalistic occurring settings, in which the human investigator is the
primary instrument for the gathering and analyzing of data, which is mainly
descriptive, data obtained as a result of an emergent study design, and on
which inductive analysis is applied.



Fig. 3: Expected solution to programming Thymio’s explorer
behavior, from [5]

the different classes, among which the one related to the
use of the IF keyword, described in more detail hereafter.

3.5 Defining the learned knowledge
One phenomenon, a recurrent pupils’ "mistake" observed

in several contexts and situations, can be exemplified by
Mission 10 from IniRobot, optionally part of Session 10 of
IniRobot for School. It asks pupils to program Thymio so that
it moves about freely, avoiding all obstacles (corresponding
to its explorer behavior, cf. Fig. 1); optionally, it asks to
add instructions so that Thymio changes its color to red if
it detects an obstacle, and to green if not. The expected
solution (cf. Fig. 3 [5, p. 23]) consists of 4 instructions
(grey blocks), each corresponding to an event (at the left of
the ":" sign), and 2 actions (at the right ":"). In IniRobot’s
terminology, their respective semantics would be [5, p. 14]:
if Thymio does not detect anything with its front sensors,
advance and change color to green; if Thymio detects
something at its left, turn right and change color to red;
if Thymio detects something in front of it, back away while
turning a little and change color to red; if Thymio detects
something at its right, turn left and change color to red.

One "mistake" pupils make (cf. Fig. 4) is that, instead of
adding a second action to the right of the ":" sign, for the
same "event", they add a second instruction, with the same
"event". This is signaled by the compiler as an error (in red
at the top of Fig. 3) of the type: the events are the same;
of course, for the program to be deterministic, the event
callback/trigger has to be unique. While there may be several
explanations for this "mistake", such as understanding that
each "event" has only one corresponding action/instruction
(while actually, at the right of the ":" sign, there is a block
of instructions, which may contain an action of each type).

However, one possible explanation, on which we focus
here, is that the pupils constructed a representation of the
event concept which is close to a sequential one, and
which therefore allows them to verify the same condition
(if all of Thymio’s frontal sensors do not detect anything,
in the example of Fig. 3) several times. It would seem
that constructing a representation of the event concept that
includes time aspects (with a semantics of when (each and
every time) all of Thymio’s frontal sensors do not detect
anything, in the given example), would help in understanding

the uniqueness of the type of event and of its attached
actions. While approaching the event-driven control flow to
a sequential one may "lower the floor", a more appropriate
representation needs to replace it as soon as possible, if
"real" event-driven programming is to be taught.

While this is a fairly straightforward example, its anal-
ysis helps understanding difficulties encountered at each
phase of the didactic transposition co-construction process,
from (1) the esoterism of the scholarly knowledge on
event-driven programming (in which time considerations
are made using concepts such as partial ordering, and
conditions are defined as part of a filtering of events, in
a waiting/triggering/loop polling mechanism), defined by
sometimes competing, sometimes continuing CS researches,
passing through (2) the selection of concepts to-be-taught,
selection influenced by political decision makers, academic
institutions (laity in the sense of TDTK), national curricula
definition bodies (which in our case study seem to leave out
these time and conditions considerations), (3) the redefini-
tion and reorganization into textbooks, pedagogical kits, or
similar resources, by researchers, teachers and pedagogical
counselors mainly concerned with education issues, with
easing their understanding by pupils (and thus, in our case,
seemingly approaching the event-driven flow of control to
a sequential one by using keywords like "IF" instead of
"WHEN"), (4) the development of classroom lessons by
teachers and finally (5) the continuous evolution of pupils’
representation of the taught concepts, who by "mistakes"
experiment/test and construct this representation (in our case,
e.g. assuming that conditions/events are not unique).

4. Conclusion
While most current research related to Computational

Thinking (CT), especially in a K-12 context, has focused
mainly on designing activities for teaching CT concepts,
such pedagogical documents need to be analyzed and ex-
perimented in classrooms, so that they can be validated and
improved. In this paper we adopted a qualitative approach, as
a first step to identifying phenomena that appear recursively
in classrooms. This allowed us to identify didactic obstacles
to the learning of pupils. Further social and epistemological-
driven analysis revealed causes of such didactic obstacles in

Fig. 4: Typical pupils’ mistake



the complexity of the didactic transposition process involv-
ing numerous actors, with various constraints and objectives.

More specifically, we focused on event-driven program-
ming, observing and analyzing during 4 years, how the
IniRobot for School pedagogical kit using the Thymio robot,
was used to teach and learn concepts related to the event-
driven paradigm. We thus pinpointed that concepts of event-
driven programming form the main focus of CS knowledge-
to-be-taught in elementary and middle school (other fully
arguable choices include robotics, intelligent (cooperative)
(autonomous) agents, ethics etc). In an epistemological ap-
proach, we reviewed scholarly, research-introduced defini-
tions of concepts that currently are considered to be related
to what is called event-driven programming, showing their
relations and underlining their complexity (e.g. external vs.
internal events, messages vs. processes). We analyzed how
some of these concepts were selected and partially redefined
(e.g. event, action) in the French national curricula and
identified how the lack of mention of certain concepts (e.g.
filtering on conditions), may contribute to further difficul-
ties. We found that these selections are indeed reflected
in the pedagogical kits that implement the curricula, and
are compounded with didactic and pedagogical concerns
of "simplifying" the taught concepts (e.g. presenting the
fragmented event control flow as a sequential one). This
analysis (in particular the review of the scholarly knowledge)
may serve as a basis in future designs of event-driven
programming pedagogical proposals.

In this work, we mainly focus on didactic obstacles.
While, for example, the difficulty of understanding the
fragmented control flow of event-driven programming is an
epistemological obstacle, the didactic choice of the "IF"
keyword (while intended precisely to reduce this episte-
mological obstacle), with its unforeseen side effects, intro-
ducing didactic obstacles (sequential representation of the
occurrence of events), created by the very redefinition (out
of didactic concerns) of some event-driven concepts. While
they are probably unavoidable in any didactic transposition
process, it is important to recognize such obstacles, be aware
of them, and try to address them further along the line.

This analysis can therefore be used to draw the atten-
tion, in particular, to curricula and pedagogical documents
(textbooks, kits, etc.) designers, to pay singular attention to
how they redefine scholarly concepts, as these "new" rep-
resentations - the knowledge-to-be-taught, may introduce its
own obstacles. Moreover, this analysis may serve researchers
and analysts of the knowledge-to-be-taught (be it curricula,
textbooks, pedagogical kits) as caution to drawing conclu-
sions too hastily, and instead exercise a deeper consideration
of the wider context and the complex interactions between
the involved actors (be they agents of the education system
or laity), which may influence decisions seeming, at a first
glance, "weird" or simply "erroneous". It thus enlightens
the fact that the "final" result of the taught knowledge is

the product of a process of co-construction, in which many
actors intervene at different stages.

References
[1] M. de l’Éducation Nationale de l’Enseignement Supérieur et de la

Recherche MENSR, “Programmes d’enseignement du cycle des ap-
prentissages fondamentaux (cycle 2), du cycle de consolidation (cycle
3) et du cycle des approfondissements (cycle 4),” Bulletin Officiel no
11 du 26 novembre, 2015.

[2] G.-L. Baron, B. Drot-Delange, M. Grandbastien, and F. Tort, “Com-
puter science education in french secondary schools: Historical and
didactical perspectives,” ACM Transactions on Computing Education
(TOCE), vol. 14, no. 2, p. 11, 2014.

[3] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no. 3,
pp. 33–35, Mar. 2006.

[4] A. de Sciences AdS, “L’enseignement de l’informatique en france. il
est urgent de ne plus attendre,” 2013.

[5] T. Guitard, D. Roy, P.-Y. Oudeyer, and M. Chevalier,
“IniRobot. Activités robotiques avec Thymio II pour l’initiation
a l’informatique et a la robotique,” 2014. [Online]. Available:
https://dm1r.inria.fr/t/inirobot-les-documents-a-telecharger/141

[6] D. Roy, G. Gerber, S. Magnenat, F. Riedo, M. Chevalier, P.-Y.
Oudeyer, and F. Mondada, “IniRobot : a pedagogical kit to initiate
children to concepts of robotics and computer science,” in RIE 2015,
Yverdon-Les-Bains, Switzerland, May 2015.

[7] M. Bosch and J. Gascón, “Twenty-five years of the didactic transpo-
sition,” ICMI Bulletin, vol. 58, pp. 51–65, 2006.

[8] Y. Chevallard, “On didactic transposition theory: Some introductory
notes,” in International Symposium on Research and Development in
Mathematics, Bratislava, Czechoslavakia, 1988.

[9] ——, “Readjusting didactics to a changing epistemology,” European
Educational Research Journal, vol. 6, no. 2, pp. 131–134, 2007.

[10] ——, “A theoretical approach to curricula,” Journal fuer Mathematik-
didaktik, vol. 13, no. 2-3, pp. 215–230, 1992.

[11] D. Jusak and J. Hearne, “Language and runtime support for event
programming in a distributed system,” in [1990] Proceedings. Second
IEEE Workshop on Future Trends of Distributed Computing Systems,
Sep 1990, pp. 514–519.

[12] P.Caspi and N.Halbwachs, “An approach to real-time systems model-
ing,” in Int. Conference on Distributed Computing Systems, 1982.

[13] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, July 1978.

[14] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières, and R. Morris,
“Event-driven programming for robust software,” in Proceedings of
the 10th Workshop on ACM SIGOPS European Workshop, ser. EW
10. ACM, 2002, pp. 186–189.

[15] B. Chin and T. Millstein, “Responders: Language support for interac-
tive applications,” in Proceedings of the 20th European Conference on
Object-Oriented Programming, ser. ECOOP’06. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 255–278.

[16] H. C. Lauer and R. M. Needham, “On the duality of operating system
structures,” SIGOPS Oper. Syst. Rev., vol. 13, no. 2, pp. 3–19, 1979.

[17] R. von Behren, J. Condit, and E. Brewer, “Why events are a bad idea
(for high-concurrency servers),” in Proceedings of the 9th Conference
on Hot Topics in Operating Systems - Volume 9, ser. HOTOS’03.
Berkeley, CA, USA: USENIX Association, 2003, pp. 4–4.

[18] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. East-
mond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol. 52,
no. 11, pp. 60–67, Nov. 2009.

[19] P. Haller and M. Odersky, “Event-based programming without in-
version of control,” in Proceedings of the 7th Joint Conference on
Modular Programming Languages, ser. JMLC’06. Springer-Verlag,
2006, pp. 4–22.

[20] J. Sagné, E. Page, and C. Lefrais, “Séquence IniRobot scolaire.
«langages et robotique »,” 2016. [Online]. Available: http://tice33.ac-
bordeaux.fr/Ecolien/Langagesetrobotique/tabid/5953/language/fr-
FR/Default.aspx

[21] D. Ary, L. C. Jacobs, C. K. S. Irvine, and D. Walker, Introduction to
research in education. Cengage Learning, 2018.


