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Introduction

Let X n denote a stretch X 1 , . . . , X n from a stationary time series (X i ) i∈Z of d-dimensional random vectors. The distribution function (d.f.) of each X i is denoted by F and is assumed to have continuous univariate margins F 1 , . . . , F d . By Sklar's theorem [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF], it is then well-known that F can be expressed as

F(x) = C{F 1 (x 1 ), . . . , F d (x d )}, x ∈ R d , (1) 
where C is the unique copula (a d-dimensional d.f. with standard uniform margins) associated with F.

Eq. ( 1) is at the root of the so-called copula approach to the modeling of multivariate continuous distributions, which is increasingly applied in numerous fields such as quantitative risk management [START_REF] Mcneil | Quantitative Risk Management: Concepts, Techniques and Tools[END_REF], econometrics [START_REF] Patton | A review of copula models for economic time series[END_REF], or environmental modeling [START_REF] Salvadori | Extremes in Nature: An Approach Using Copulas[END_REF]. Indeed, in order to obtain a parametric estimate of F, the decomposition in [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF] suggests to model F 1 , . . . , F d by appropriate univariate parametric d.f.s and C by an adequate parametric copula family. The recent infatuation for such a two-step approach in the literature is mostly due to the fact that it has the potential of providing better estimates of the multivariate d.f. F than if a direct classical multivariate approach were used; see, for instance, [START_REF] Hofert | Elements of copula modeling with R[END_REF] and the references therein for more details.

The modeling of the univariate margins F 1 , . . . , F d of F can be based on classical statistical inference techniques. Inference on the unknown copula C is, however, typically carried out using specific methods exploiting the twostep nature of the underlying modeling. Among the latter methods, rank-based approaches display particularly good properties [see, e.g., [START_REF] Genest | Everything you always wanted to know about copula modeling but were afraid to ask[END_REF][START_REF] Hofert | Elements of copula modeling with R[END_REF]. One of their key ingredients is a nonparametric rank-based estimator of C called the empirical copula [see, e.g., [START_REF] Deheuvels | La fonction de dépendance empirique et ses propriétés: un test non paramétrique d'indépendance[END_REF][START_REF] Rüschendorf | Asymptotic distributions of multivariate rank order statistics[END_REF]. In the absence of ties in the component samples of the available data X n , it is natural to define the latter simply as the empirical d.f. of the multivariate ranks obtained from X n scaled by 1/n. Two smooth versions, with better small-sample properties, are the empirical checkerboard copula [see, e.g., [START_REF] Genest | Asymptotic behavior of the empirical multilinear copula process under broad conditions[END_REF], 23, and the references therein] and the empirical beta copula [START_REF] Segers | The empirical beta copula[END_REF].

Whatever type of empirical copula is used in inference procedures on the unknown copula C in [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF], it is almost always necessary to rely on resampling techniques to compute corresponding approximate confidence intervals or p-values. A frequently used approach is the so-called multiplier bootstrap [see, e.g., [START_REF] Rémillard | Testing for equality between two copulas[END_REF][START_REF] Scaillet | A Kolmogorov-Smirnov type test for positive quadrant dependence[END_REF]. When X n consists of n independent and identically distributed (i.i.d.) copies of X, Bücher and Dette [START_REF] Bücher | A note on bootstrap approximations for the empirical copula process[END_REF] empirically found the latter resampling scheme to have better finite-sample properties than approaches consisting of adapting the empirical (multinomial) bootstrap of Efron [START_REF] Efron | Bootstrap methods: Another look at the jackknife[END_REF]. Both the i.i.d. version of the multiplier bootstrap and its extension to time series investigated in [START_REF] Bücher | A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing[END_REF] are however characterized by a high implementation cost which may deter their use in copula inference procedures. The main aim of this work is to investigate the use of another resampling technique, known as subsampling [START_REF] Politis | Large sample confidence regions based on subsamples under minimal assumptions[END_REF][START_REF] Politis | Subsampling, Probability and its Applications[END_REF], to carry out inference on the unknown copula C in (1).

In the case of i.i.d. data, subsampling consists of taking subsamples of size b < n without replacement from the initial data. The statistic of interest is then recomputed for a large number of such subsamples and its sampling distribution is approximated by the empirical distribution of its subsample values. In the time series case, subsamples are restricted to consecutive observations to preserve serial dependence. Note in passing that, in the i.i.d. setting, subsampling is connected to the so-called delete-h jackknife [START_REF] Shao | A general theory for jackknife variance estimation[END_REF][START_REF] Wu | On the asymptotic properties of the jackknife histogram[END_REF]; see also Section 2.3 in [START_REF] Shao | The Jackknife and Bootstrap[END_REF] and, in particular, Remark 2.1 in [START_REF] Politis | Large sample confidence regions based on subsamples under minimal assumptions[END_REF].

A theoretical advantage of subsampling is its asymptotic validity under minimalistic assumptions, weaker than those of the empirical bootstrap for instance; see [START_REF] Politis | Large sample confidence regions based on subsamples under minimal assumptions[END_REF][START_REF] Politis | Subsampling, Probability and its Applications[END_REF][START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF] for details. From a practical perspective, subsampling is very simple to implement, its only drawback being the necessity of choosing the subsample size b. In the context of copula modeling based on ranks (and, more generally, in the context of rank-based statistics), it is particularly attractive because subsamples do not contain ties unlike, for instance, resamples of size n in the case of the empirical bootstrap. The latter cannot therefore be directly used for rank-based statistics as shall be discussed, for instance, in Section 5 for (certain functionals of) the empirical copula. For this reason, subsampling appears as a simple way to obtain approximations of the sampling distributions of the empirical checkerboard and empirical beta copulas, even in a time series context.

Notice that, in the case of i.i.d. observations, subsamples of size b could also be obtained by sampling with replacement from X n [see, e.g., [START_REF] Bickel | Resampling fewer than n observations: Gain, losses, and remedies for losses[END_REF][START_REF] Swanepoel | A note on proving that the (modified) bootstrap works[END_REF]. The resulting resampling technique, sometimes referred to as the b out of n bootstrap (and which coincides with the empirical bootstrap when b = n), thus forms subsamples with ties and therefore suffers from the same inconvenience as the empirical bootstrap in the rank-based context under consideration. For this reason, we shall not investigate it theoretically in this work. We shall however mention this alternative technique again when summarizing the results of our Monte Carlo experiments.

The rest of this article is organized as follows. In the second section, we introduce the main versions of the empirical copula appearing in the literature and define the corresponding empirical copula processes. The third section establishes the asymptotic validity of the subsampling methodology for the latter processes, while the fourth section states weighted versions of such results, thereby providing a first simple way to carry out inference on quantities which can be expressed as functionals of weighted empirical copula processes. The fifth section summarizes the results of Monte Carlo experiments in the i.i.d. and time series cases, and provides recommendations for the choice of the subsample size in the i.i.d. case. Finally, concluding remarks are gathered in Section 6.

All proofs are deferred to a sequence of appendices. Additional simulation results are provided in a supplement. The following notation is used in the sequel. The arrow ' ' denotes weak convergence in the sense of Definition 1.3.3 in [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF], and, given a set T , ∞ (T ) (resp. C(T )) represents the space of all bounded (resp. continuous) real-valued functions on T equipped with the uniform metric. All convergences are for n → ∞ if not mentioned otherwise.

Empirical copulas and empirical copula processes

It is well-known that the unique copula in (1) can be expressed [see, e.g., [START_REF] Rüschendorf | On the distributional transform, Sklar's Theorem, and the empirical copula process[END_REF][START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF] as

C(u) = F{F - 1 (u 1 ), . . . , F - d (u d )}, u ∈ [0, 1] d , (2) 
where, for any univariate d.f. H, H -denotes its associated quantile function (generalized inverse) defined by

H -(y) = inf{x ∈ R : H(x) ≥ y}, y ∈ [0, 1],
with the convention that inf ∅ = ∞.

A first natural definition of the empirical copula, due to Deheuvels [START_REF] Deheuvels | La fonction de dépendance empirique et ses propriétés: un test non paramétrique d'indépendance[END_REF][START_REF] Deheuvels | A non parametric test for independence[END_REF], stems from (2) and the plug-in principle. Let F n denote the empirical d.f. of X n and let F n1 , . . . , F nd be the corresponding univariate margins. The empirical copula of X n is then defined by

C n (u) = F n {F - n1 (u 1 ), . . . , F - nd (u d )}, u ∈ [0, 1] d . ( 3 
)
Another definition of the empirical copula frequently found in the literature [see, e.g., 21] is

Cn (u) = 1 n n i=1 d j=1 1{F n j (X i j ) ≤ u j }, u ∈ [0, 1] d . (4) 
When there are no ties in the components samples of X n , it is well-known that, for any i ∈ {1, . . . , n} and any j ∈ {1, . . . , d}, nF n j (X i j ) is nothing else then the rank R i j,n of X i j among X 1 j , . . . , X n j . In that case, Cn coincides with the version of the empirical copula appearing in Rüschendorf [START_REF] Rüschendorf | Asymptotic distributions of multivariate rank order statistics[END_REF] and given by

Ĉn (u) = 1 n n i=1 d j=1 1(R i j,n /n ≤ u j ), u ∈ [0, 1] d . ( 5 
)
The latter is merely the empirical d.f. of the sample (R i1,n , . . . , R id,n )/n, i ∈ {1, . . . , n}, of normalized multivariate ranks. Before proceeding further, let us formally introduce the no-ties condition.

Condition 1 (No ties). For any j ∈ {1, . . . , d}, the jth component sample X 1 j , . . . , X n j of X n does not contain ties.

Remark 1. When the available data X n consist of n i.i.d. copies of the random vector of interest X, continuity of the marginal d.f.s F 1 , . . . , F d implies that Condition 1 is satisfied. In a time series context, however, ties may occur with positive probability even if F 1 , . . . , F d are continuous: as suggested in [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF], take, for instance, a Markov chain where the current state is repeated with positive probability.

Under Condition 1, classical calculations [see, e.g., 1, proof of Lemma 4.7], imply that, almost surely,

sup u∈[0,1] d |C n (u) -Ĉn (u)| ≤ d n . (6) 
The relative simplicity, computation-wise, of Ĉn in (5) over C n in (3) makes it the natural definition in the absence of ties. In the presence of ties, however, Ĉn is not unambiguously defined but Cn in (4) could still be used as an alternative to C n in (3). Interestingly enough, C n and Cn can be shown to remain sufficiently close under a rather minimalistic condition that shall be stated towards the end of this section.

In the absence of ties, the empirical copula, whether it is defined by (3) or (5), is not, however, a genuine copula: it is for instance easy to verify that the univariate margins of C n and Ĉn are not standard uniform but only asymptotically standard uniform. In the absence of ties, two smoother alternatives to the empirical copula that are genuine copulas are the empirical checkerboard copula and the empirical beta copula. The empirical checkerboard copula is merely a multilinear extension of Ĉn and is defined by

C # n (u) = 1 n n i=1 d j=1 min{max{nu j -R i j,n + 1, 0}, 1}, u ∈ [0, 1] d , (7) 
see, e.g., [START_REF] Carley | A new proof of Sklar's Theorem[END_REF][START_REF] Segers | The empirical beta copula[END_REF], and the references therein. It is important to note that the empirical checkerboard copula can also be defined in the presence of ties and even for discontinuous margins F 1 , . . . , F d ; see, for instance, [START_REF] Genest | Asymptotic behavior of the empirical multilinear copula process under broad conditions[END_REF][START_REF] Genest | A primer on copulas for count data[END_REF][START_REF] Genest | On the empirical multilinear copula process for count data[END_REF]. Coming back to our context of continuous margins, it is easy to verify (see Lemma 1 in Appendix 7) that, under Condition 1, almost surely,

sup u∈[0,1] d |C # n (u) -Ĉn (u)| ≤ d n , (8) 
thereby indicating that the empirical checkerboard copula can be thought of as a smoothing of the empirical copula Ĉn at bandwidth O(1/n).

The empirical beta copula, proposed by Segers et al. [START_REF] Segers | The empirical beta copula[END_REF], is obtained by replacing indicator functions in (5) by d.f.s of particular beta distributions. Specifically, the empirical beta copula is defined by

C β n (u) = 1 n n i=1 d j=1 F n,R i j,n (u j ), u ∈ [0, 1] d , (9) 
where, for any r ∈ {1, . . . , n}, F n,r denotes the d.f. of the beta distribution with parameters r and n+1-r. The empirical beta copula is actually a particular case of the empirical Bernstein copula introduced in [START_REF] Sancetta | The Bernstein copula and its applications to modeling and approximations of multivariate distributions[END_REF] and further studied in [START_REF] Janssen | Large sample behavior of the Bernstein copula estimator[END_REF], when the degrees of all Bernstein polynomials are set equal to the sample size. Proposition 2.8 in [START_REF] Segers | The empirical beta copula[END_REF] shows that, under Condition 1, the uniform distance between the empirical beta copula and Ĉn is O(n -1/2 (ln n) 1/2 ), thereby suggesting to see the empirical beta copula as a smoothing of the empirical copula Ĉn at approximately bandwidth O(n -1/2 ); see also Corollary 3.7 in [START_REF] Segers | The empirical beta copula[END_REF].

The previous definitions give rise to up to five different empirical copula processes. The two most studied ones are

C n (u) = √ n{C n (u) -C(u)}, u ∈ [0, 1] d , (10) 
and its asymptotically equivalent version in the absence of ties given by

Ĉn (u) = √ n{ Ĉn (u) -C(u)}, u ∈ [0, 1] d . (11) 
In the case of i.i.d. observations, their weak convergence was investigated for instance in [START_REF] Fermanian | Weak convergence of empirical copula processes[END_REF][START_REF] Gänssler | Seminar on empirical processes[END_REF][START_REF] Segers | Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions[END_REF][START_REF] Tsukahara | Semiparametric estimation in copula models[END_REF][START_REF] Van Der Vaart | Empirical processes indexed by estimated functions[END_REF]. As we shall see below, the time series case can be elegantly handled using the work of Bücher and Volgushev [START_REF] Bücher | Empirical and sequential empirical copula processes under serial dependence[END_REF].

For the sake of completeness, we also define the process

Cn (u) = √ n{ Cn (u) -C(u)}, u ∈ [0, 1] d , (12) 
whose study becomes of interest only in a time series context in which ties may occur.

In the absence of ties, two smoother empirical copula processes are obtained from the empirical checkerboard copula and the empirical beta copula, namely

C # n (u) = √ n{C # n (u) -C(u)}, u ∈ [0, 1] d , (13) 
and

C β n (u) = √ n{C β n (u) -C(u)}, u ∈ [0, 1] d . ( 14 
)
The former was studied by Genest et al. [START_REF] Genest | Asymptotic behavior of the empirical multilinear copula process under broad conditions[END_REF] in a broader context than the one considered in this work, while the latter was investigated by Segers et al. [START_REF] Segers | The empirical beta copula[END_REF].

Under the assumption of continuity of the marginals d.f.s F 1 , . . . , F d made in this work, the weak convergence of the aforementioned empirical copula processes can be elegantly stated by invoking the two conditions considered in [START_REF] Bücher | Empirical and sequential empirical copula processes under serial dependence[END_REF]. The first condition concerns the weak convergence of the multivariate empirical process based on the (unobservable) sample U 1 , . . . , U n obtained from X n by (marginal) probability integral transformations, where

U i = (F 1 (X i1 ), . . . , F d (X id )), i ∈ Z. (15) 
Notice that U 1 , . . . , U n is a sample from C and let G n denote its empirical d.f. The multivariate empirical process based on U 1 , . . . , U n is then

G n (u) = √ n{G n (u) -C(u)}, u ∈ [0, 1] d . ( 16 
)
Condition 2 (Weak convergence of G n ). The multivariate empirical process G n in [START_REF] Dümbgen | From probability to statistics and back: High-dimensional models and processes[END_REF] converges weakly in ∞ ([0, 1] d ) to a tight, centered Gaussian process G C concentrated on

C 0 = { f ∈ C([0, 1] d ) : f (1, . . . , 1) = 0 and f (u) = 0 if some components of u are equal to 0}. ( 17 
)
The second condition was initially introduced by Segers [START_REF] Segers | Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions[END_REF] and is nonrestrictive in the sense that it is necessary for the candidate weak limit of the empirical copula processes under consideration to exist pointwise and have continuous sample paths.

Condition 3 (Continuous partial derivatives). For any j ∈ {1, . . . , d}, the jth partial derivative Ċ j (u) = ∂C(u)/∂u j of C exists and is continuous on the set

V j = {u ∈ [0, 1] d : u j ∈ (0, 1)}. ( 18 
)
From Corollary 2.5 in [START_REF] Bücher | Empirical and sequential empirical copula processes under serial dependence[END_REF], we then know that, under Conditions 2 and 3, the empirical copula process C n in (10) converges weakly in ∞ ([0, 1] d ) to a tight, centered Gaussian process C C which may be expressed in terms of G C as

C C (u) = G C (u) - d j=1 Ċ j (u)G C (u ( j) ), u ∈ [0, 1] d , (19) 
where, for any j ∈ {1, . . . , d} and u ∈ [0, 1] d , u ( j) is the vector of [0, 1] d whose components are all equal to 1 except the jth which is equal to u j , and with the convention that Ċ j (u) is equal to 0 if u j ∈ {0, 1}. Under Condition 2, proceeding as in the proof of Lemma 4.7 in [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF] and using the asymptotic uniform equicontinuity in probability of G n , we immediately obtain that sup

u∈[0,1] d |C n (u) -Cn (u)| = o Pr (n -1/2 ), (20) 
which, if Condition 3 also holds, is sufficient to conclude that Cn in [START_REF] Davison | Bootstrap Methods and Their Application[END_REF] converges weakly in ∞ ([0, 1] d ) to C C in [START_REF] Gänssler | Seminar on empirical processes[END_REF] as well. Assuming additionally Condition 1, that is, the absence of ties, the same holds for Ĉn (since, in that case, Ĉn = Cn ), as well as for C # n in (13) and C β n in ( 14) by [START_REF] Bücher | A note on conditional versus joint unconditional weak convergence in bootstrap consistency results[END_REF] and Corollary 3.7 in [START_REF] Segers | The empirical beta copula[END_REF], respectively. In other words, the empirical copula processes under consideration have the same weak limit under Conditions 1, 2 and 3.

Subsampling empirical copula processes

We start by describing the considered subsampling framework before stating a theorem establishing the asymptotic validity of the subsampling methodology for the empirical copula processes introduced in the previous section.

Because we shall in part rely on the very general results of Politis et al. [START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF], we assume that the available sample X n is a stretch from a strongly mixing stationary sequence (X i ) i∈Z . Denote by F k j the σ-field generated by (X i ) j≤i≤k , j, k ∈ Z ∪ {-∞, +∞}, and recall that the strong mixing coefficients corresponding to the stationary sequence (X i ) i∈Z are then defined by

α X 0 = 1/2, α X r = sup A∈F 0 -∞ ,B∈F +∞ r Pr(A ∩ B) -Pr(A)Pr(B) , r ∈ N, r > 0,
and that the sequence (X i ) i∈Z is said to be strongly mixing if α X r → 0 as r → ∞. We consider two settings for the sequence (X i ) i∈Z : i.i.d. The coefficients α X r , r ≥ 1, are all equal to zero implying that the stretch X n consists of i.i.d. random vectors.

s.m. The sequence (X i ) i∈Z is strongly mixing but not i.i.d. with α X r = O(r -a ) as r → ∞, for some a > 1.

Remark 2. The condition on the mixing coefficients stated in the s.m. setting is among the weakest possible ones and, from Theorem 1 of Bücher [START_REF] Bücher | A note on weak convergence of the sequential multivariate empirical process under strong mixing[END_REF], implies that Condition 2 is then satisfied. Note that Condition 2 also obviously holds under the i.i.d. setting as a consequence of Donsker's theorem.

Let b < n denote the size of subsamples that will be obtained from X n . Under the i.i.d. setting, subsamples can be formed simply by sampling without replacement from X n . The number of possible subsamples is thus N b,n = n b . Following Politis and Romano [START_REF] Politis | Large sample confidence regions based on subsamples under minimal assumptions[END_REF], the subsampling methodology, say for C n in [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF], consists of, first, evaluating a computable version of C n for a large number of the N b,n subsamples X [m] b , m ∈ {1, . . . , N b,n }, of size b obtained by sampling without replacement from X n (considering all of the N b,n subsamples is typically infeasible in practice), and, second, of carrying out the inference on C using these subsample replicates of C n . The latter are naturally formed as follows. For m ∈ {1, . . . , N b,n }, let F [m] b be the empirical d.f. of the sample

X [m] b , let F [m] b1 , . . . , F [m]
bd be the univariate margins of F [m] b , and let

C [m] b (u) = F [m] b {F [m],- b1 (u 1 ), . . . , F [m],- bd (u d )}, u ∈ [0, 1] d ,
be the empirical copula of X [m] b . The subsample replicates of the empirical copula process C n are then defined by

C [m] b (u) = √ b{C [m] b (u) -C n (u)}, u ∈ [0, 1] d , m ∈ {1, . . . , N b,n }. (21) 
Hence, a replicate of C n for a subsample

X [m] b coincides with C b on X [m]
b up to the centering term which is C n instead of the unknown copula C. Remark 3. Both for theoretical and practical reasons, it is often meaningful to correct subsample replicates by multiplying them by the finite population correction (1b/n) -1/2 ; see Politis et al. [START_REF] Politis | Subsampling, Probability and its Applications[END_REF]Section 10.3.1] and Shao and Tu [START_REF] Shao | The Jackknife and Bootstrap[END_REF]Section 2.3.1]. This factor arises from the analysis of subsampling for the mean: in the case of univariate i.i.d. observations X 1 , . . . , X n , the variance of uncorrected subsample replicates can be verified to be (1

-b/n) times the variance of √ n{ Xn -E(X)}, where Xn = n -1 n i=1 X i .
The discussion in Politis et al. [START_REF] Politis | Subsampling, Probability and its Applications[END_REF]Chapter 10] in the case of the mean suggests that the use of the finite population correction may always be beneficial in finite samples.

Coming back to our setting, given a subsample replicate C [m] b of C n , we define its corrected version to be

C [m] b,c = (1 -b/n) -1/2 C [m] b . (22) 
To fix ideas further, assume that we are interested in estimating a linear functional ψ(C) of the unknown copula C (such as Spearman's rho for instance). An approximate confidence interval of expected asymptotic level 1 -α for ψ(C) based on subsampling C n is then given by

I n,N b,n ,α = ψ(C n ) -n -1/2 F - N b,n (1 -α/2), ψ(C n ) -n -1/2 F - N b,n (α/2) , α ∈ (0, 1/2),
where

F N b,n is the empirical d.f. of the sample of the N b,n (corrected) subsample replicates ψ(C [m] b,c ), m ∈ {1, . . . , N b,n }, of ψ(C n ).
The interval I n,N b,n ,α is nothing else than the subsampling version of the so-called basic bootstrap confidence interval [see, e.g., 12, Chapter 5]. Since, as already mentioned, N b,n is typically too large for F N b,n to be evaluated, one generally needs to rely on a stochastic approximation. The latter typically consists of choosing independently M integers I 1,n , . . . , I M,n with replacement from {1, . . . , N b,n } and proceeding as previously using the subsample replicates ψ(C

[I m,n ] b,c ), m ∈ {1, . . . , M}.
Under the s.m. setting, the only difference is that the approach has to be restricted to subsamples of size b consisting of consecutive observations so that the serial dependence appearing in X n is partly preserved. Hence, in that case, the number of possible subsamples is N b,n = nb + 1 and a computable version of the empirical copula process of interest has to be evaluated on subsamples X [m] b of the form X m , . . . , X m+b-1 , m ∈ {1, . . . , N b,n }. The asymptotic validity of the subsampling methodology for the empirical copula processes introduced in the previous section is established under conditions which are very close to the weakest possible ones necessary for the weak convergence of these processes. These rather minimalistic conditions are not surprising as explained in Remark 5 below. For any m ∈ {1, . . . , 

N b,n }, let C[m] b , Ĉ[m] b , C #,[m]
(u) = √ b{ C[m] b (u) -Cn (u)}, (23) 
Ĉ[m] b (u) = √ b{ Ĉ[m] b (u) -Ĉn (u)}, (24) 
C #,[m] b (u) = √ b{C #,[m] b (u) -C # n (u)}, (25) 
C β,[m] b (u) = √ b{C β,[m] b (u) -C β n (u)}, (26) 
for u ∈ [0, 1] d and m ∈ {1, . . . , N b,n }, and their corrected versions

C[m] b,c , Ĉ[m] b,c , C #,[m] b,c and C β,[m] b,c
, respectively, are defined analogously to [START_REF] Genest | Asymptotic behavior of the empirical multilinear copula process under broad conditions[END_REF]. The following theorem is proven in Appendix 7.

Theorem 1 (Subsampling empirical copula processes). Assume that Condition 3 holds and that b = b n → ∞. Also, let I 1,n and I 2,n be independent random variables, independent of X n and uniformly distributed on the set {1, . . . , N b,n }.

(i) Under the i.i.d. setting, if b/n → α ∈ [0, 1), then (C n , C [I 1,n ] b,c , C [I 2,n ] b,c ) (C C , C [1] C , C [2] C ), ( 27 
) ( Ĉn , Ĉ[I 1,n ] b,c , Ĉ[I 2,n ] b,c ) (C C , C [1] C , C [2] C ), (28) 
(C # n , C #,[I 1,n ] b,c , C #,[I 2,n ] b,c ) (C C , C [1] C , C [2] C ), (29) 
(C β n , C β,[I 1,n ] b,c , C β,[I 2,n ] b,c ) (C C , C [1] C , C [2] C ), ( 30 
) in { ∞ ([0, 1] d )} 3
, where C [1] C and C [2] C are independent copies of

C C in (19). (ii) Under the s.m. setting, if b/n → 0, (C n , C [I 1,n ] b , C [I 2,n ] b ) (C C , C [1] C , C [2] C ), (31) 
( Cn , C[I 1,n ] b , C[I 2,n ] b ) (C C , C [1] C , C [2] C ), (32) 
in { ∞ ([0, 1] d )} 3 . If Condition 1 additionally holds, ( Ĉn , Ĉ[I 1,n ] b , Ĉ[I 2,n ] b ) (C C , C [1] C , C [2] C ), (33) 
(C # n , C #,[I 1,n ] b , C #,[I 2,n ] b ) (C C , C [1] C , C [2] C ), (34) 
(C β n , C β,[I 1,n ] b , C β,[I 2,n ] b ) (C C , C [1] C , C [2] C ), ( 35 
) in { ∞ ([0, 1] d )} 3 .
Remark 4. Choosing b such that b/n → 0 as in (ii) is the usual assumption found in asymptotic validity results for the subsampling methodology; see [START_REF] Politis | Large sample confidence regions based on subsamples under minimal assumptions[END_REF][START_REF] Politis | Subsampling, Probability and its Applications[END_REF][START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF]. Imposing that b/n → α ∈ (0, 1) seems only possible in the i.i.d. setting in "mean-like" situations such as those considered in [START_REF] Praestgaard | Exchangeably weighted bootstraps of the general empirical process[END_REF][START_REF] Wu | On the asymptotic properties of the jackknife histogram[END_REF]; see also Remark 2.2.3 in [START_REF] Politis | Subsampling, Probability and its Applications[END_REF]. In the case of serially dependent observations, Lahiri [START_REF] Lahiri | Effects of block lengths on the validity of block resampling methods[END_REF] showed that, in the case of the sample mean, the condition b/n → 0 is necessary; see also Remark 3.2.2 in [START_REF] Politis | Subsampling, Probability and its Applications[END_REF].

Remark 5. Apart from the assumptions related to the subsampling methodology, no additional conditions than those necessary for the weak convergence of the empirical copula processes are involved in the theorem. For b/n → 0, this is not surprising in view of the general results obtained in [START_REF] Politis | Large sample confidence regions based on subsamples under minimal assumptions[END_REF][START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF] which state that the subsampling methodology is asymptotically valid under minimalistic conditions, weaker than those necessary for the asymptotic validity of the empirical bootstrap, for example. As far as the empirical copula process Ĉn is concerned for instance, the assumptions of Theorem 1 are indeed weaker than, for example, those of Proposition 4.2 in [START_REF] Bücher | A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing[END_REF] on the dependent multiplier bootstrap for Ĉn .

Remark 6. The proof of (i) relies in part on the key results of Praestgaard and Wellner [START_REF] Praestgaard | Exchangeably weighted bootstraps of the general empirical process[END_REF] on the exchangeable bootstrap for the general empirical process; see also van der Vaart and Wellner [52, Section 3.6]. The latter are specialized therein to obtain the asymptotic validity of the delete-h jackknife [START_REF] Shao | A general theory for jackknife variance estimation[END_REF][START_REF] Wu | On the asymptotic properties of the jackknife histogram[END_REF] for the general empirical process. The proof of (ii) is essentially a consequence of the general result on subsampling stated in Theorem 3.1 in [START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF].

Remark 7. All the weak convergences stated in (i) involve corrected subsample replicates obtained, as explained in Remark 3, by multiplying the initial replicates by the finite population correction (1b/n) -1/2 ; see, for instance, [START_REF] Genest | Asymptotic behavior of the empirical multilinear copula process under broad conditions[END_REF]. The finite population correction is not needed in the weak convergences stated in (ii) because (1b/n) -1/2 tends to 1 under the assumption that b/n → 0. It cannot, however, be dispensed with under the i.i.d. setting if b/n → α ∈ (0, 1); see also Praestgaard and Wellner [37,Example 3.6]. From a practical perspective, as already mentioned in Remark 3, the discussion in Politis et al. [START_REF] Politis | Subsampling, Probability and its Applications[END_REF]Chapter 10] (in the case of the mean) suggests that the use of the finite population correction may always be beneficial in finite samples. Our Monte Carlo experiments for empirical copula processes, whose results are partly reported in Section 5, essentially corroborate that claim.

Remark 8. The convergence results stated in (i) and (ii) establish the asymptotic validity of the subsampling methodology for the empirical copula processes of interest by stating their weak convergence jointly with two subsample replicates. By Lemma 3.1 in [START_REF] Bücher | A note on conditional versus joint unconditional weak convergence in bootstrap consistency results[END_REF], these unconditional asymptotic validity results are equivalent to more classical conditional results which rely, however, on a more subtle mode of convergence. For instance, ( 27) can be equivalently informally stated as "C

[I 1,n ] b,c converges weakly to C C in ∞ ([0, 1] d
) conditionally on X n in probability"; see, e.g., [30, Section 2.2.3] or [START_REF] Bücher | A note on conditional versus joint unconditional weak convergence in bootstrap consistency results[END_REF] for a precise definition of that mode of convergence in terms of an appropriate version of the bounded Lipschitz metric.

Subsampling weighted empirical copula processes

Empirical copula processes were recently shown to converge weakly also with respect to stronger metrics than the supremum distance. A first seminal result in that direction is due to Berghaus et al. [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF] for the empirical copula processes C n and Cn . Berghaus and Segers [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF] have shown a similar result for the empirical beta copula process C β n . Because the latter involves the empirical beta copula C β n , which is a genuine copula, its statement is simpler and takes the form of a weighted weak convergence in ∞ ([0, 1] d ) (that is, with respect to the uniform metric). The weight function considered in the aforementioned references is

g(u) = d j=1            u j ∧ d k=1 k j (1 -u k )            , u ∈ [0, 1] d , (36) 
where ∧ and ∨ denote the minimum and maximum operators, respectively. The corresponding weighted weak convergence results were proven under the two following additional conditions.

Condition 4 (Exponential mixing). The sequence (X i ) i∈Z is strongly mixing with α X r = O(a r ) as r → ∞, for some a ∈ (0, 1).

Condition 5 (Smooth second-order partial derivatives). For any j 1 , j 2 ∈ {1, . . . , d}, the second-order partial derivative C j 1 j 2 (u) = ∂ 2 C(u)/∂u j 1 ∂u j 2 of C exists and is continuous on the set V j 1 ∩ V j 2 , where V j is defined by [START_REF] Fermanian | Weak convergence of empirical copula processes[END_REF]. Moreover, there exists a constant κ > 0 such that

| C j 1 j 2 (u)| ≤ κ min 1 u j 1 (1 -u j 1 ) , 1 u j 2 (1 -u j 2 ) , ∀ u ∈ V j 1 ∩ V j 2 .
Note that Condition 5 first appeared in [START_REF] Segers | Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions[END_REF] where it was used it to prove the almost sure representation for C n originally conjectured in [START_REF] Stute | The oscillation behavior of empirical processes: The multivariate case[END_REF]. As discussed in [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF], this condition is satisfied for several commonly occurring copulas.

Theorem 2 in [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF] then states that, under Conditions 1, 3, 4 and 5, for any ω ∈ [0, 1/2), the weighted empirical beta copula process C β n /g ω converges weakly in ∞ ([0, 1] d ) to C C /g ω , where C C and g are given in [START_REF] Gänssler | Seminar on empirical processes[END_REF] and [START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF], respectively. In the previous statement, since the zero-set of C β n includes the zero-set of g, C β n /g ω is taken to be zero as soon as g = 0 by convention. The previous result relies in part on Theorem 2.2 in [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF] which provides a similar weighted weak convergence for C n in [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF] and Cn in [START_REF] Davison | Bootstrap Methods and Their Application[END_REF], but only on the interior of the unit hypercube since C n /g ω and Cn /g ω are not bounded on the whole of [0, 1] d .

The aforementioned weighted weak convergence results allow us to prove the asymptotic validity of the subsampling methodology for the empirical copula processes considered in this work weighted by 1/g ω . To be able to state the results for the processes C n and Cn , we need to introduce some additional notation first. Let

Cn (u) = G n (u) - d j=1 Ċ j (u)G n (u ( j) ), u ∈ [0, 1] d , (37) 
where G n is defined in [START_REF] Dümbgen | From probability to statistics and back: High-dimensional models and processes[END_REF] and, for any m ∈ {1, . . . , N b,n }, let

C[m] b (u) = G [m] b (u) - d j=1 Ċ j (u)G [m] b (u ( j) ), u ∈ [0, 1] d ,
where

G [m] b = √ b(G [m] b -G n ), (38) 
and G [m] b is the empirical d.f. of the subsample of size b obtained from X [m] b by (marginal) probability integral transformations; see [START_REF] Dudley | Real analysis and probability[END_REF]. The two following theorems are proven in Appendix 7.

Theorem 2 (Subsampling the processes C n /g ω and Cn /g ω ). Assume that Conditions 3 and 5 hold, and that b = b n → ∞. Also, let I 1,n and I 2,n be independent random variables, independent of X n and uniformly distributed on the set {1, . . . , N b,n }.

(i) Under the i.i.d. setting, if b/n → α ∈ [0, 1), then, for any ω ∈ [0, 1/2), ( Cn /g ω , (1 -b/n) -1/2 C[I 1,n ] b /g ω , (1 -b/n) -1/2 C[I 2,n ] b /g ω ) (C C /g ω , C [1] C /g ω , C [2] C /g ω ), in { ∞ ([0, 1] d )} 3
, where C [1] C and C [2] C are independent copies of C C in [START_REF] Gänssler | Seminar on empirical processes[END_REF]. (ii) Under the s.m. setting and Condition 4, if b/n → 0, then, for any ω ∈ [0, 1/2),

( Cn /g ω , C[I 1,n ] b /g ω , C[I 2,n ] b /g ω ) (C C /g ω , C [1] C /g ω , C [2] C /g ω ), in { ∞ ([0, 1] d )} 3 .
Furthermore, under the assumptions in (i) or (ii), for any c ∈ (0, 1) and any ω ∈ [0, 1/2), sup

u∈[0,1] d g(u)≥c/n C n (u) {g(u)} ω - Cn (u) {g(u)} ω = o Pr (1), (39) 
sup

u∈[0,1] d g(u)≥c/b C [I m,n ] b (u) {g(u)} ω - C[I m,n ] b (u) {g(u)} ω = o Pr (1), m ∈ {1, 2}, (40) 
and

sup u∈[0,1] d g(u)≥c/n Cn (u) {g(u)} ω - Cn (u) {g(u)} ω = o Pr (1), (41) 
sup

u∈[0,1] d g(u)≥c/b C[I m,n ] b (u) {g(u)} ω - C[I m,n ] b (u) {g(u)} ω = o Pr (1), m ∈ {1, 2}, ( 42 
)
where

C n , Cn , C [m] b , C[m]
b , m ∈ {1, . . . , N b,n }, are defined in (10), ( 12), ( 21) and (23), respectively. Remark 9. The weak convergence Cn /g ω C C /g ω in ∞ ([0, 1] d ) for all ω ∈ [0, 1/2) combined with (39) (or its Cn version [START_REF] Salvadori | Extremes in Nature: An Approach Using Copulas[END_REF]) is the slight extension of Theorem 2.2 in [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF] used in the proof of Theorem 2 in [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF]. From the definition of g in [START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF], some thought reveals that, for any c ∈ (0, 1), the set {u ∈ [0, 1] d : g(u) ≥ c/n} contains the set [c/n, 1c/n] d . The asymptotic equivalence in [START_REF] Rüschendorf | Asymptotic distributions of multivariate rank order statistics[END_REF] (or in [START_REF] Salvadori | Extremes in Nature: An Approach Using Copulas[END_REF]) therefore holds on the set [c/n, 1c/n] d as stated in Theorem 2.2 in [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF].

Theorem 3 (Subsampling the processes C # n /g ω and C β n /g ω ). Assume that Conditions 3 and 5 hold and that b = b n → ∞. Also, let I 1,n and I 2,n be independent random variables, independent of X n and uniformly distributed on the set {1, . . . , N b,n }.

(i) Under the i.i.d. setting, if b/n → α ∈ [0, 1), then, for any ω ∈ [0, 1/2), (C # n /g ω , C #,[I 1,n ] b,c /g ω ,C #,[I 2,n ] b,c /g ω ) (C C /g ω , C [1] C /g ω , C [2] C /g ω ), (43) 
(C β n /g ω , C β,[I 1,n ] b,c /g ω ,C β,[I 2,n ] b,c /g ω ) (C C /g ω , C [1] C /g ω , C [2] C /g ω ), ( 44 
)
in { ∞ ([0, 1] d )} 3
, where C [1] C and C [2] C are independent copies of C C in [START_REF] Gänssler | Seminar on empirical processes[END_REF], and C #, 

(C # n /g ω , C #,[I 1,n ] b /g ω , C #,[I 2,n ] b /g ω ) (C C /g ω , C [1] C /g ω , C [2] C /g ω ), (C β n /g ω , C β,[I 1,n ] b /g ω , C β,[I 2,n ] b /g ω ) (C C /g ω , C [1] C /g ω , C [2] C /g ω ), in { ∞ ([0, 1] d )} 3 .
Remark 10. A by-product of practical interest of the proof of Theorem 3 is the weighted weak convergence of the empirical checkerboard copula process under the assumption of continuous marginal d.f.s F 1 , . . . , F d considered in this work; see also Lemma 3 in Appendix 7.

We end this section by giving an example of application of Theorem 3. Following again Berghaus and Segers [2, Section 4], we consider the issue of estimating an extreme-value copula and state a result that confirms that basing the related inference on subsampling is asymptotically valid under the assumptions of Theorem 3

Let

∆ d-1 = {(w 1 , . . . , w d-1 ) ∈ [0, 1] d-1 : w 1 + • • • + w d-1
≤ 1} be the unit simplex. A copula C is an extreme-value copula if and only if there exists a function A : 

∆ d-1 → [1/d, 1] such that, for any u ∈ (0, 1] d \ {(1, . . . , 1)}, C(u) = exp
A(w) = ν(C)(w), w ∈ ∆ d-1 , (45) 
where the map

ν from ∞ ([0, 1] d ) to ∞ (∆ d-1 ) is defined, for any f ∈ ∞ ([0, 1] d ) and w ∈ ∆ d-1 , by ν( f )(w) = exp -γ + 1 0 { f (u w 1 , . . . , u w d ) -1(u ∈ [e -1 , 1])} du u ln u , (46) 
with γ = 0.5572 . . . the Euler-Mascheroni constant.

Starting from [START_REF] Segers | The empirical beta copula[END_REF], a natural approach to obtain an estimator of A consists of using the plug-in principle. Instead of replacing C by the empirical copula Ĉn in (5) (and thus obtaining the rank-based version of the Capéraà-Fougères-Genest estimator of A; see [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF][START_REF] Genest | Rank-based inference for bivariate extreme-value copulas[END_REF][START_REF] Gudendorf | Nonparametric estimation of multivariate extreme-value copulas[END_REF]), Berghaus and Segers [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF] proposed to use the empirical beta copula C β n in [START_REF] Bücher | Empirical and sequential empirical copula processes under serial dependence[END_REF], which leads to the estimator

A β n (w) = ν(C β n )(w), w ∈ ∆ d-1 .
One could also consider the analogue estimator of A based on the empirical checkerboard copula C # n in [START_REF] Bücher | A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing[END_REF], namely

A # n (w) = ν(C # n )(w), w ∈ ∆ d-1 . Let A # n = √ n(A # n -A) and A β n = √ n(A β n -A)
, and define their corresponding (corrected) subsample replicates by

A #,[m] b,c = (1 -b/n) -1/2 √ b{ν(C #,[m] b ) -ν(C # n )} and A β,[m] b,c = (1 -b/n) -1/2 √ b{ν(C β,[m] b ) -ν(C β n )}, m ∈ {1, .
. . , N b,n }, respectively. The following result, proven in Appendix 7, is then a consequence of Theorem 3.

Corollary 1 (Subsampling the processes A #

n and A β n ). Let C be an extreme-value copula with Pickands dependence function A. Under the assumptions of Theorem 3,

(A # n , A #,[I 1,n ] b,c ,A #,[I 2,n ] b,c ) (A C , A [1] C , A [2] C ), (47) 
(A β n , A β,[I 1,n ] b,c ,A β,[I 2,n ] b,c ) (A C , A [1] C , A [2] C ), (48) 
in { ∞ (∆ d-1 )} 3 , where I 1,n and I 2,n are independent random variables, independent of X n and uniformly distributed on the set {1, . . . , N b,n }, and A [1] C and A [2] C are independent copies of A C defined by

A C (w) = A(w) 1 0 C C (u w 1 , . . . , u w d ) du u ln u , w ∈ ∆ d-1 .
The previous corollary can be used, for example, to obtain an asymptotically valid symmetric 1 -α confidence band (see, e.g., [START_REF] Kosorok | Introduction to empirical processes and semiparametric inference[END_REF], Chapter 2) for A. Relying for instance on A # n , such a confidence band is given by

A # n ± F #,- M (1 -α)/ √ n, α ∈ (0, 1/2), where F # M is the empirical d.f. of a sample of M (corrected) subsample repli- cates sup w∈∆ d-1 |A #,[I m,n ] b,c (w)|, m ∈ {1, . . . , M}, of sup w∈∆ d-1 ] |A # n (w)|
, where I 1,n , . . . , I M,n are chosen independently with replacement from {1, . . . , N b,n }.

Monte Carlo experiments

The theoretical results provided in the preceding sections state conditions under which the subsampling methodology can be used to obtain asymptotically valid approximations of various (smooth, weighted) empirical copula processes. The results cover two types of subsampling: in the case of i.i.d. observations, subsamples of size b < n are taken without replacement from the available data X n ; in the time series case, subsamples are restricted to consecutive observations to preserve serial dependence. In both cases, a crucial step prior to applying subsampling is the choice of the subsample size b.

Subsampling for i.i.d. observations

To investigate the influence of b on the finite-sample performance of the subsampling methodology for the studied empirical copula processes in the case of i.i.d. observations, we considered an experimental setting similar to the one used in [START_REF] Bücher | A note on bootstrap approximations for the empirical copula process[END_REF]. Since all the empirical copula processes under consideration are rank-based, samples X n were generated directly from a d-dimensional copula C chosen so that its bivariate margins have a Kendall's tau of τ. For the ddimensional copula C, we considered either a Clayton copula (which is lower-tail dependent) or a Gumbel-Hougaard copula (which is upper-tail dependent). The values of n, d and τ were taken to vary in the sets {25, 50, 100, 200, 400}, {2, 4} and {0.33, 0.66}, respectively. The experiments that were carried out are presented in detail hereafter along with a subset of representative results. More comprehensive results are available in the supplementary material.

Subsampling approximation of the covariance of Ĉn and choice of b. Following [START_REF] Bücher | A note on bootstrap approximations for the empirical copula process[END_REF], our first experiment, restricted to d = 2, consisted of measuring how well the subsampling methodology can approximate the covariance of the empirical copula process Ĉn in [START_REF] Carley | A new proof of Sklar's Theorem[END_REF] at the points P = {(i/3, j/3) : i, j = 1, 2}. We began by precisely estimating the covariance of Ĉn at the points in P from 100, 000 samples X n . For n = 100, C a bivariate Clayton copula and τ = 0.33, these covariance values are given in the first horizontal block of Table 1. Next, for a given value of b and each combination of C, n and τ, we generated 1000 samples X n , and, for each sample, we computed M = 1000 (corrected) subsample replicates

Ĉ[I 1,n ] b,c , . . . , Ĉ[I M,n ] b,c
defined analogously to ( 22) from [START_REF] Genest | On the empirical multilinear copula process for count data[END_REF], and where I 1,n , . . . , I M,n are independent random variables uniformly distributed on {1, . . . , N b,n }. These M = 1000 subsample replicates of Ĉn were used to estimate the covariance of Ĉn at the points in P. For n = 100, C a bivariate Clayton copula, τ = 0.33 and b = 0.28n , the means over the samples X n of the 1000 covariance estimates are given in the second horizontal block of Table 1, while the corresponding (empirical) mean squared errors (MSEs) (with respect to the target values reported in the first horizontal block of Table 1) multiplied by 10 4 are given in the first horizontal block of Table 2. To investigate the influence of b on such MSEs, a grid of b values was considered. We added to the grid the value b = 0.28n suggested by Wu [54,Section 4] in the context of the delete-h jackknife for the mean following an analysis Table 1: First horizontal block: (accurately estimated) covariance of Ĉn at the points P = {(i/3, j/3) : i, j = 1, 2}, for n = 100, C a bivariate Clayton copula and τ = 0.33. Remaining horizontal blocks: averages of 1000 covariance estimates based on subsampling (sub), empirical bootstrap (boot) and multiplier bootstrap (mult) approximations of Ĉn .

(1/3, 1/3) (1/3, 2/3) (2/3, 1/3) (2/3, 2/3) in such a way is completely compatible with the theoretical results stated in Theorems 1 (i), 2 (i) and 3 (i). Finally, it is important to mention that similar simulations (partly reported in the supplement) were carried using uncorrected subsample replicates and confirm that, overall, the finite population correction seems beneficial also in the context under consideration.

(1/3,
Comparison with the empirical bootstrap and multiplier bootstrap approximations. In a second step, we carried out the same experiment using the classical empirical bootstrap and the multiplier bootstrap. The former consisted, for For n = 100, C a bivariate Clayton copula and τ = 0.33, the averages of these estimates are given in the third horizontal block of Table 1, while the corresponding empirical MSEs are given in the second horizontal block of Table 2. The multiplier bootstrap [see, e.g., [START_REF] Rémillard | Testing for equality between two copulas[END_REF][START_REF] Scaillet | A Kolmogorov-Smirnov type test for positive quadrant dependence[END_REF] was implemented as in [START_REF] Bücher | A note on bootstrap approximations for the empirical copula process[END_REF] and the corresponding results are reported in the last horizontal blocks of Tables 1 and2 for n = 100, C a bivariate Clayton copula and τ = 0.33. Note that these two tables are directly comparable with the similar tables reported in [START_REF] Bücher | A note on bootstrap approximations for the empirical copula process[END_REF]. For all C and τ, the average of the 10 empirical MSEs is plotted against the sample size n in Fig. 1.

As one can see from Table 2 and Fig. 1, the finite-sample performance of the subsampling approximation appears comparable to the one of the multiplier bootstrap and is substantially better than the one of the empirical bootstrap.

Similar simulations were also carried out for the b out of n bootstrap (see the supplementary material) which generalizes the empirical bootstrap. The smallest empirical MSEs, obtained when b is "small" compared to n, were still higher, overall, than the corresponding empirical MSEs obtained using subsampling or the multiplier bootstrap. The latter should not come as a surprise, since, as already mentioned in the introduction, the b out of n bootstrap forms subsamples with ties, making it a biased resampling technique in the rank-based context under consideration.

Estimation of quantiles of Kolmogorov-Smirnov and Cramér-von Mises functionals. Following again [START_REF] Bücher | A note on bootstrap approximations for the empirical copula process[END_REF], we focused next on subsampling, empirical bootstrap and multiplier bootstrap approximations of high quantiles of

KS ( f n ) = sup u∈[0,1] d | f n (u)| and CvM( f n ) = [0,1] d { f n (u)} 2 du ( 49 
)
for f n = Ĉn . From a practical perspective, the supremum and the integral in [START_REF] Stute | The oscillation behavior of empirical processes: The multivariate case[END_REF] were approximated by a maximum and a mean, respectively, using a uniform grid on (0, 1) d of size 9 2 when d = 2 and 4 4 when d = 4. For every d, C, τ and n, the 90% and 95%-quantiles of KS ( Ĉn ) and CvM( Ĉn ) were first estimated precisely from 100, 000 samples X n .

For n ∈ {100, 200}, C a bivariate Clayton copula and τ = 0.33, these are given in the first lines of each horizontal block of Table 3. Then, for each n, 1000 samples X n were generated and, for each X n , one estimate of each quantile was computed from M = 1000 subsampling, empirical bootstrap and multiplier bootstrap replicates of the considered functional. These estimations were also carried out using centered replicates of Ĉn . In the case of subsampling, this consists of using, for any u ∈ [0, 1] d and m ∈ {1, . . . , M},

Ĉ[I m,n ] b,c (u) - 1 M M m=1 Ĉ[I m,n ] b,c (u), ( 50 
) instead of Ĉ[I m,n ] b,c (u).
The centered versions of the empirical bootstrap and multiplier bootstrap replicates are defined analogously. The rationale behind centering is that the replicates, whatever their type, converge weakly to copies of the centered Gaussian process C C in [START_REF] Gänssler | Seminar on empirical processes[END_REF]. As the use of centered replicates always led to better finite-sample performance, it was adopted in all subsequent experiments. Notice that the use of centering is irrelevant in the previous covariance estimation experiment given the formula of the empirical covariance.

For each quantile and each type of approximation, the means of the 1000 estimates are reported in Table 3, while the corresponding MSEs are given in Table 4. These two tables are again directly comparable with a similar table reported in [START_REF] Bücher | A note on bootstrap approximations for the empirical copula process[END_REF]. For d = 4, C a Gumbel-Hougaard copula and τ = 0.66, for instance, the empirical MSEs of the quantile estimators are plotted against the sample size n in Fig. 2. Graphs for other d, C and τ are not qualitatively different.

As one can see from Table 4 and Fig. 2, the quantile approximations based on subsampling are always better in terms of MSE than those based on the empirical bootstrap. They are similar (resp. slightly worse) than those based on the multliplier bootstrap for the Cramér-von Mises (resp. Kolmogorov-Smirnov) functional.

An inspection of the more comprehensive simulation results presented in the supplementary material reveals that the subsampling approximations of the high quantiles of the Kolmogorov-Smirnov functional generally improve if b is chosen smaller than 0.28n . For b = 0.1n for instance, the approximations based on subsampling turn out to be comparable, overall, to those obtained using the multiplier bootstrap.

Subsampling approximations of the smooth empirical copula processes. To investigate the finite-sample performance of subsampling approximations of C # n in (13) and C β n in ( 14), we considered the same setting as in the first experiment. The goal was thus to estimate the covariances of C # n and C β n at the points in P. Because these empirical copula processes should be closer and closer to Ĉn in [START_REF] Carley | A new proof of Sklar's Theorem[END_REF] as n increases and given the high evaluation cost of the empirical beta copula C β n defined in ( 9), the experiment was restricted to n ∈ {25, 50, 100}. For all bivariate C and τ, the average of the 10 MSEs is plotted against the sample size n in Fig. 3 for each of the three target processes Ĉn , C # n and C β n . As one can see, as n increases, the three mean MSEs decrease and become closer and closer, as expected.

Subsampling for time series

To investigate the finite-sample performance of subsampling for approximating the studied empirical copula processes in a time series context, we considered a simple autoregressive model. Samples X n were generated as follows: Given a random sample U i , i ∈ {-100, . . . , 0, . . . , n}, from a d-dimensional copula C, we formed the sample i = (Φ -1 (U i1 ), . . . , Φ -1 (U id )), where Φ is the d.f. of the standard normal distribution, and set X -100 = -100 . Next, given an autoregressive coefficient β ∈ [0, 1), we computed recursively

X i j = βX i-1, j + i j ,
i ∈ {-99, . . . , 0, . . . , n}, j ∈ {1, . . . , d}, and returned X 1 , . . . , X n . Recall that, given such stretches X n from stationary time series and a subsample size b < n, subsamples X [m] b , m ∈ {1, . . . , N b,n }, N b,n = nb + 1, are restricted to consecutive observations to preserve serial dependence: they are of the form X m , . . . , X m+b-1 .

Our experiments consisted of investigating the influence of the subsample size b on the empirical MSEs of subsampling estimators of the 90% and 95%-quantiles of KS ( Ĉn ) and CvM( Ĉn ). Fig. 4 displays such emiprical MSEs against b for C a bivariate Gumbel-Hougaard copula, τ = 0.33, β ∈ {0, 0.33, 0.66} and n ∈ {50, 100, 200}. An inspection of the y-axes of the graphs reveals that the MSEs increase with β for b and n fixed, thereby empirically confirming that the stronger the serial dependence in the observations, the harder the estimation of the quantiles. In a related way, focusing on the curves for n = 200, one can further notice that they are overall u-shaped and that their minima appear to shift to the right as β increases, thereby empirically confirming the fact that, for fixed n, the "optimal" b is expected to increase as the strength of the serial dependence increases.

As the setting β = 0 amounts to generating i.i.d. samples X n , we finally aimed at empirically verifying that the aforementioned MSEs should be larger, overall, than if subsamples were formed by simply sampling without replacement from X n as in the case of i.i.d. observations. This is confirmed by Fig. 5 which reports the empirical MSEs against n, for C a bivariate Gumbel-Hougaard copula, τ = 0.33 and b ∈ {3, 7, 11, 15, 19, 23, 27}. The solid lines give the empirical MSEs obtained when the subsampling is not restricted to consecutive observations. The results are not qualitatively different for other bivariate C and τ.

Concluding remarks

Relying on key results of Praestgaard and Wellner [START_REF] Praestgaard | Exchangeably weighted bootstraps of the general empirical process[END_REF] in the i.i.d. case and Politis et al. [START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF] in the time series case (under short range dependence), the asymptotic validity of subsampling was shown for various (weighted, smooth) empirical copula processes under minimalistic conditions. The results for the weighted empirical checkerboard and beta copula processes build up on the seminal work of Berghaus et al. [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF] and Berghaus and Segers [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF], and seem to constitute first asymptotic validity results for bootstrapping these processes. From a practical perspective, based on our numerous Monte Carlo experiments, we recommend to always use centered corrected subsample replicates as in (50), and, in the i.i.d. case, to consider the value 0.28n as a starting choice for the subsample size b, as suggested by Wu [54,Section 4] in the case of the delete-h jackknife for the mean. We were actually rather surprised not to find any mention of this proposal in the literature as it appears to be a rather natural initial choice when subsampling statistics or empirical processes converging weakly to Gaussian limits. Specifically, in our Monte Carlo experiments, the setting b = 0.28n frequently lead to the best estimations of high quantiles of Cramér-von Mises functionals of the (standard) empirical copula process, while the setting b = 0.1n was found to be better for Kolmogorov-Smirnov functionals. Overall, with b ∈ { 0.1n , 0.28n }, we observed the subsampling approximation of the (standard) empirical copula process to behave substantially better than its empirical bootstrap approximation, and to be roughly equivalent to its multiplier bootstrap approximation. As a consequence, subsampling appears as a natural, easier-to-implement alternative to the multiplier bootstrap in copula inference procedures in the i.i.d. case. Furthermore, as subsamples do not contain ties, it is of particular interest when dealing with statistics that can be expressed as functionals of (weighted) smooth empirical copula processes, given that the computation of such statistics is not fully meaningful in the presence of ties.

In the time series case, the choice of b remains an open problem in the subsampling literature. Several practical solutions, of a more or less heuristic nature, are discussed in [START_REF] Politis | Subsampling, Probability and its Applications[END_REF]Chapter 9] and [START_REF] Gluhovsky | Subsampling confidence intervals for parameters of atmospheric time series: Bloc size choice and calibration[END_REF], and could be adapted to the copula inference setting under consideration. Once an efficient rule is found, it will be of practical interest to compare the resulting subsampling approximation of the empirical copula process Ĉn in [START_REF] Carley | A new proof of Sklar's Theorem[END_REF] with its dependent multiplier approximation as proposed in [START_REF] Bücher | A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing[END_REF]. 

|C # n (u) -Ĉn (u)| ≤ 1 n n i=1 d j=1 sup u j ∈[0,1] |1(R i j,n /n ≤ u j ) -H n,R i j,n (u j )| ≤ 1 n n i=1 d j=1 sup u j ∈[0,1] |1(R i j,n /n ≤ u j ) -H n,R i j,n (u j )| = 1 n d j=1 n i=1 sup u∈[0,1] |1(i/n ≤ u) -H n,i (u)| = d n n i=1 sup u∈[0,1] |1(i/n ≤ u) -H n,i (u)| ≤ d n .
Proof of Theorem 1. Recall that G n is the empirical d.f. of the unobservable sample U 1 , . . . , U n obtained from X n by [START_REF] Dudley | Real analysis and probability[END_REF]. For m ∈ {1, . . . , N b,n }, let U [m] b be the subsample of U 1 , . . . , U n of size b obtained from X [m] b by the same marginal probability integral transformations. Furthermore, let G n1 , . . . , G nd denote the univariate margins of G n . It is well-known [see, e.g., 44] that the empirical copula of X n can then be equivalently written as

C n (u) = G n {G - n1 (u 1 ), . . . , G - nd (u d )}, u ∈ [0, 1] d , where G - n j (v) = inf{u ∈ [0, 1] : G n j (u) ≥ v}, v ∈ [0, 1], j ∈ {1, . . . , d}. For m ∈ {1, . . . , N b,n }, let G [m]
b be the empirical d.f. of U [m] b and let

C [m] b (u) = G [m] b {G [m],- b1 (u 1 ), . . . , G [m],- bd (u d )}, u ∈ [0, 1] d ,
be the empirical copula of X [m] b . Furthermore, recall the definition of G [m] b in [START_REF] Rémillard | Testing for equality between two copulas[END_REF] and that Condition 2 is assumed to hold.

Proof of (27): From Theorem 2.2 and Example 3.6 in [START_REF] Praestgaard | Exchangeably weighted bootstraps of the general empirical process[END_REF] [see also 52, Example 3.6.14], we have that, informally,

"(1 -b/n) -1/2 G [I 1,n ] b converges weakly to G C in ∞ ([0, 1] d )
conditionally on X n in probability"; as mentioned earlier, see, e.g., Section 2.2.3 in [START_REF] Kosorok | Introduction to empirical processes and semiparametric inference[END_REF] for a precise definition of that mode of convergence. From Lemma 3.1 in [START_REF] Bücher | A note on conditional versus joint unconditional weak convergence in bootstrap consistency results[END_REF], the latter is equivalent to

(G n , (1 -b/n) -1/2 G [I 1,n ] b , (1 -b/n) -1/2 G [I 2,n ] b ) (G C , G [1] C , G [2] C ), (51) 
in { ∞ ([0, 1] d )} 3 , where G [1] C and G [2] C are independent copies of G C . Let D ⊂ ∞ ([0, 1] d ) be the set of all d.f.s H on [0, 1] d whose univariate margins H j , j ∈ {1, . . . , d}, satisfy H j (0) = 0. Then, let Φ be the map from D to ∞ ([0, 1] d ) defined by

Φ(H)(u) = H{H - 1 (u 1 ), . . . , H - d (u d )}, u ∈ [0, 1] d , (52) 
where

H - j (v) = inf{u ∈ [0, 1] : H j (u) ≥ v}, v ∈ [0, 1], j ∈ {1, .
. . , d}. Since Condition 3 is assumed to hold, we have, from Theorem 2.4 of [START_REF] Bücher | Empirical and sequential empirical copula processes under serial dependence[END_REF], that Φ is Hadamard-differentiable at C tangentially to C 0 given in [START_REF] Efron | Bootstrap methods: Another look at the jackknife[END_REF] with derivative

Φ C ( f )(u) = f (u) - d j=1 Ċ j (u) f (u ( j) ), u ∈ [0, 1] d , f ∈ ∞ ([0, 1] d ). ( 53 
)
Notice that Φ C is actually continuous on the whole of

∞ ([0, 1] d ) since 0 ≤ Ċ j (u) ≤ 1, u ∈ [0, 1] d , j ∈ {1, . . . , d}.
Starting from (51) and using the continuous mapping theorem, we obtain that

Φ C (G n ), Φ C ((1 -b/n) -1/2 G [I 1,n ] b ), Φ C ((1 -b/n) -1/2 G [I 2,n ] b ) Φ C (G C ), Φ C (G [1] C ), Φ C (G [2] C ) = (C C , C [1] C , C [2] C ), in { ∞ ([0, 1] d )} 3 .
To prove [START_REF] Gudendorf | Nonparametric estimation of multivariate extreme-value copulas[END_REF], it thus remains to show that sup

u∈[0,1] d |C n (u) -Φ C (G n )(u)| Pr → 0, (54) 
sup

u∈[0,1] d |(1 -b/n) -1/2 C [I m,n ] b (u) -Φ C (1 -b/n) -1/2 G [I m,n ] b (u)| Pr → 0, m ∈ {1, 2}. ( 55 
)
Starting from Condition 2 and applying the delta method [see 52, Theorem 3.9.4] with the map Φ in [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF], we obtain that sup

u∈[0,1] d | √ n{Φ(G n )(u) -Φ(C)(u)} -Φ C (G n )(u)| Pr → 0, (56) 
which is exactly [START_REF] Wu | On the asymptotic properties of the jackknife histogram[END_REF]. Since Φ C is linear, by the triangle inequality, (55) is proven if

sup u∈[0,1] d | √ b{Φ(G [I m,n ] b )(u) -Φ(C)(u)} -Φ C √ b(G [I m,n ] b -C) (u)| Pr → 0, m ∈ {1, 2}, (57) 
sup

u∈[0,1] d | √ b{Φ(G n )(u) -Φ(C)(u)} -Φ C √ b(G n -C) (u)| Pr → 0. ( 58 
)
The convergence in (58) then immediately follows from (56). To show (57), we start from [START_REF] Tsukahara | Semiparametric estimation in copula models[END_REF] and use the continuous mapping theorem to obtain that √ b(G

[I m,n ] b -C) = G [I m,n ] b + b/n G n √ 1 -α G [m] C + √ α G C (59) in ∞ ([0, 1] d ), for m ∈ {1, 2}. Note in passing that √ b(G [I m,n ] b -C) and G b = √ b(G b -C)
are equal in distribution and so are their weak limits: the limiting process [START_REF] Efron | Bootstrap methods: Another look at the jackknife[END_REF] whose covariance can be verified to be the same as the one of G C . The weak convergence in (59) can thus be combined with the delta method based on the map Φ in (52) to obtain (57), which completes the proof of (i).

√ 1 -α G [m] C + √ α G C is a tight, centered Gaussian process concentrated on C 0 in
Proof of (31): We thus assume the s.m. setting and that b/n → 0. In essence, the asymptotic validity of the subsampling methodology in this case is merely a consequence of Theorem 3.1 in [START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF]. The proof below uses Theorem 4.1 in [START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF] instead (a corollary of the aforementioned theorem), which will eventually allow us to conveniently apply Lemma 2.2 in [START_REF] Bücher | A note on conditional versus joint unconditional weak convergence in bootstrap consistency results[END_REF] to state the asymptotic validity under the form of a joint weak convergence with two subsample replicates.

Let 

d BL (P, Q) = sup f ∈BL 1 (D([0,1] d )) f dP -f dQ , where BL 1 (D([0, 1] d )) denotes the set of functions h : D([0, 1] d ) → [-1, 1] such that |h(x) -h(y)| ≤ d S (x, y) for all x, y ∈ D([0, 1] d ).
Hence, denoting by P G n and P G C the probability measures of G n and G C , respectively, the weak convergence of G n to G C in D([0, 1] d ) can be equivalently expressed as

d BL (P G n , P G C ) → 0. ( 60 
) Let P G n N b,n = 1 N b,n N b,n m=1 δ G [m]
b be the empirical measure of the N b,n subsample replicates G [1] b , . . . , G are conditionally independent given X n , we have

Pr f d PG n M - f dP G n N b,n > ε = Pr        1 M M m=1 f (G [I m,n ] b ) - 1 N b,n N b,n m=1 f (G [m] b ) > ε        = E        Pr        1 M M m=1 f (G [I m,n ] b ) -E{ f (G [I 1,n ] b )} > ε X n               ≤ E[Var{ f (G [I 1,n ] b ) | X n }] ε 2 M ≤ K ε 2 M
, by Chebychev's inequality and where K is a bound on f . As a consequence,

f d PG n M - f dP G n N b,n Pr → 0 as n, M → ∞. (61) 
Since Condition 2 is assumed to hold, from Theorem 4.1 of [START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF], we have that d BL (P G n N b,n , P G n ) → 0, which, by the triangle inequality and (60) implies that d BL (P G n N b,n , P G C ) → 0. The latter convergence further implies, for instance, by Lemma 2.4 in [START_REF] Bücher | A note on conditional versus joint unconditional weak convergence in bootstrap consistency results[END_REF], that f dP G n N b,nf dP G C → 0, which, combined with (61), gives that f d PG n Mf dP G C Pr → 0 as n, M → 0. Since f was arbitrary, using, for instance, Lemma 2.5 in [START_REF] Bücher | A note on conditional versus joint unconditional weak convergence in bootstrap consistency results[END_REF], the previous convergence is equivalent to

d BL ( PG n M , P G C )
Pr → 0 as n, M → 0, which can be combined with (60) to obtain that

d BL ( PG n M , P G n ) Pr → 0 as n, M → ∞. (62) 
By Lemma 2.2 in [START_REF] Bücher | A note on conditional versus joint unconditional weak convergence in bootstrap consistency results[END_REF], the convergence in (62) is equivalent to the weak convergence of (G n , G 3 , where G [1] C and G [2] C are independent copies of G C . Since the sample paths of the weak limit are (uniformly) continuous almost surely, the previous weak convergence occurs also in { ∞ ([0, 1] d )} 3 ; see, e.g., Billingsley [4,Chapter 3] for the case d = 1. The convergence in [START_REF] Lahiri | Effects of block lengths on the validity of block resampling methods[END_REF] then follows from the delta method based on the map Φ as in the proof of ( 27) but with b/n → α = 0.

[I 1,n ] b , G [I 2,n ] b ) to (G C , G [1] C , G [2] C ) in {D([0, 1] d )}
Proof of (32): The result is a straightforward consequence of [START_REF] Genest | Everything you always wanted to know about copula modeling but were afraid to ask[END_REF]. Indeed, from the latter asymptotic equivalence, we have that sup ), m ∈ {1, 2}, are equal in distribution, we obtain that sup

u∈[0,1] d √ b|C [I m,n ] b (u) - C[I m,n ] b (u)| Pr → 0, m ∈ {1, 2}.
The desired result then follows from [START_REF] Lahiri | Effects of block lengths on the validity of block resampling methods[END_REF], [START_REF] Genest | Everything you always wanted to know about copula modeling but were afraid to ask[END_REF] and the previous display.

Proofs of (28) and (33): The results immediately follow from (6) using similar arguments. Proofs of (29) and (34): The results are direct consequences of Lemma 1, again, using similar arguments. Proofs of (30) and (35): We only prove [START_REF] Kosorok | Introduction to empirical processes and semiparametric inference[END_REF], the proof of (35) being simpler. We combine (57) and (59) to obtain that, for m ∈ {1, 2},

β,[I m,n ] b -C) = √ b( Ĉ[I m,n ] b -C) + o Pr (1), m ∈ {1, 2}. (63) 
From ( 28), we can apply the same corollary to obtain that

C β n = Ĉn + o Pr (1), ( 64 
) which implies that √ b(C β n -C) = √ b( Ĉn -C) + o Pr (1). (65) 
Combining ( 63) and (65), we obtain that

C β,[I m,n ] b = Ĉ[I m,n ] b + o Pr (1), m ∈ {1, 2}. (66) 
The weak convergence in [START_REF] Kosorok | Introduction to empirical processes and semiparametric inference[END_REF] is then an immediate consequence of ( 28), ( 64) and (66). 

√ 1 -α C [1] C /g ω + √ α C C /g ω , √ 1 -α C [2] C /g ω + √ α G C /g ω ) (67) in { ∞ ([0, 1] d )} 3
, where Φ C is defined by (53), G n is defined by (16), g is defined by [START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF], and C [1] C and C [2] C are independent copies of C C in [START_REF] Gänssler | Seminar on empirical processes[END_REF].

Proof of Lemma 2. We only provide the proof under the i.i.d. setting with b/n → α ∈ [0, 1), the proof being simpler when b/n → 0. Since the assumptions are a superset of those of Theorem 1 (i), we can start from [START_REF] Tsukahara | Semiparametric estimation in copula models[END_REF] and apply the continuous mapping theorem to obtain that

(G n , √ b(G [I 1,n ] b -C), √ b(G [I 2,n ] b -C)) (G C , √ 1 -α G [1] C + √ α G C , √ 1 -α G [2] C + √ α G C ) in { ∞ ([0, 1] d )} 3 .
Applying further the continuous mapping theorem with the linear map Φ C in [START_REF] Van Der Vaart | Empirical processes indexed by estimated functions[END_REF], we obtain that

Φ C (G n ), Φ C ( √ b(G [I 1,n ] b -C)), Φ C ( √ b(G [I 2,n ] b -C)) (C C , √ 1 -α C [1] C + √ α C C , √ 1 -α C [2] C + √ α C C ) (68)
in { ∞ ([0, 1] d )} 3 . The convergence of the finite-dimensional distributions in (67) is then a consequence of (68) and the continuous mapping theorem. To show (67), it remains to prove marginal asymptotic tightness since the latter implies joint asymptotic tightness. From Theorem 2.2 in [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF] (see also Lemma 4.9 in that reference and the discussion at the end of the proof of Theorem 2 in [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF]), we have that, under the considered assumptions, where Φ C is defined by [START_REF] Van Der Vaart | Empirical processes indexed by estimated functions[END_REF]. Combining the previous statement with (41) and using the triangle inequality, we obtain [START_REF] Sancetta | The Bernstein copula and its applications to modeling and approximations of multivariate distributions[END_REF]. Similarly, the asymptotic equivalences in [START_REF] Rüschendorf | Asymptotic distributions of multivariate rank order statistics[END_REF] and ( 40) are essentially a consequence of Lemma 4.7 in [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF], the discussion at the end of the proof of Theorem 2 in [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF] and Section 6.5 in the same reference. 16), ( 19) and (37), respectively.

Φ C (G n )/g ω Φ C (G C )/g ω = C C /g ω ( 
Proof of Lemma 3. The proof closely follows the proof of Theorem 2 in [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF]. Fix γ ∈ R such that 1/{2(1-ω)} < γ < 1 and consider the abbreviation {g ≥ n -γ } = {u ∈ [0, 1] d : g(u) ≥ n -γ }, and similarly for {g < n -γ }. Then, write

C # n /g ω = 1 {g≥n -γ } C # n /g ω + 1 {g<n -γ } C # n /g ω .
Using the fact that C # n is a copula almost surely, we can proceed exactly as in the proof of Lemma 8 in [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF] to show that, almost surely, sup From Lemma 4.10 in [START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF], the indicator function on the right-hand side can be omitted and the desired result follows from Theorem 2.2 in the same reference.

Proof of Theorem 3. We only prove [START_REF] Scaillet | A Kolmogorov-Smirnov type test for positive quadrant dependence[END_REF] and [START_REF] Segers | Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions[END_REF], the proofs of the other claims being simpler. Let us start with [START_REF] Segers | Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions[END_REF].

From the last equation in the proof of Theorem 2 in [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF], we have that, under the considered assumptions, 

-C)/g ω ) (C C /g ω , √ 1 -α C [1] C /g ω + √ α C C /g ω , √ 1 -α C [2] C /g ω + √ α C C /g ω )
in { ∞ ([0, 1] d )} 3 . The weak convergence in [START_REF] Segers | Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions[END_REF] is finally mostly a consequence of the continuous mapping theorem.

For the proof of [START_REF] Scaillet | A Kolmogorov-Smirnov type test for positive quadrant dependence[END_REF], it suffices to start from Lemma 3 instead of (71).

Proof of Corollary 1. We only prove [START_REF] Shao | A general theory for jackknife variance estimation[END_REF] as the proof of ( 48) is similar. Let ω ∈ (0, 1/2) and let µ ω be the map from 

b

  and Ĉβ,[m] b be the versions of Cn in (4), Ĉn in (5), C # n in (7) and C β n in (9), respectively, computed from the subsample X [m] b . The subsamples replicates of Cn , Ĉn , C # n and C β n are then respectively defined by C[m] b

  [m] b,c and C β,[m] b,c , m ∈ {1, . . . , N b,n }, are the corrected versions of the subsample replicates defined in[START_REF] Genest | Rank-based inference for bivariate extreme-value copulas[END_REF] and (26), respectively. (ii) Under the s.m. setting and Conditions 1 and 4, if b/n → 0, then, for any ω ∈ [0, 1/2),

.

  The function A is called the Pickands dependence function associated with C. As explained, for instance, in [2, Section 4], it can be expressed as a functional of C through

Fig. 1 :

 1 Fig.1: Averages of the empirical MSEs (×10 4 ) of covariance estimators at the points P = {(i/3, j/3) : i, j = 1, 2} based on subsampling (sub), the empirical bootstrap (boot) and the multiplier bootstrap (mult) against the sample size n, for C a bivariate Clayton or Gumbel-Hougaard copula and τ ∈ {0.33, 0.66}.

Fig. 2 :

 2 Fig. 2: Empirical MSEs (×10 4 ) of estimators of the 90% and 95%-quantiles of KS ( Ĉn ) and CvM( Ĉn ) based on subsampling (sub), empirical bootstrap (boot) and multiplier bootstrap (mult) approximations of Ĉn against the sample size n, for d = 4, C a Gumbel-Hougaard copula and τ = 0.66.

Fig. 3 :

 3 Fig. 3: Averages of the empirical MSEs (×10 4 ) of subsampling-based estimators of the covariances of Ĉn , C # n and C β n at the points P = {(i/3, j/3) : i, j = 1, 2} against the sample size n for C a Clayton or Gumbel-Hougaard copula and τ ∈ {0.33, 0.66}.

Fig. 4 :

 4 Fig. 4: Empirical MSEs (×10 4 ) of subsampling-based estimators of the 90% and 95%-quantiles of KS ( Ĉn ) and CvM( Ĉn ) against b, for C a bivariate Gumbel-Hougaard copula, τ = 0.33, n ∈ {50, 100, 200} and β ∈ {0, 0.33, 0.66}.

Fig. 5 :

 5 Fig. 5: Empirical MSEs (×10 4 ) of subsampling-based estimators of the 90% and 95%-quantiles of KS ( Ĉn ) and CvM( Ĉn ) against n, for C a bivariate Gumbel-Hougaard copula, τ = 0.33, β = 0 and b ∈ {3, 7, 11, 15, 19, 23, 27}. The solid lines give the empirical MSEs obtained in the case of subsampling for i.i.d. observations.
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 1 Assume that Condition 1 holds. Then, almost surely,sup u∈[0,1] d |C # n (u) -Ĉn (u)| ≤ d n . Proof of Lemma 1. Let H n,r (u) = min{max{nur + 1, 0}, 1}, u ∈ [0, 1], r ∈ {1, . . . ,n}. By the triangle inequality, we have that, almost surely, sup u∈[0,1] d

[

  N b,n ] b of G n . Furthermore, let M ∈ N and let I 1,n , . . . , I M,n be independent random variables, independent of X n and uniformly distributed on the set {1, . . . , N b,n }. Then, let PG n M = 1 M M m=1 δ G [Im,n] b be the empirical measure of the M subsample replicates G [I 1,n ] b , . . . , G [I M,n ] b , and note that PG n M is a random probability measure on D([0, 1] d ) [see, e.g., 16, Section 2]. Next, let f be a bounded and continuous function on D([0, 1] d ). For any n ∈ N and ε > 0, since G [I 1,n ] b , . . . , G [I M,n ] b

  u∈[0,1] d √ b|C b (u) -Cb (u)| converges in probability to zero. Since (C b , Cb ) and (C [I m,n ] b , C[I m,n ] b

Lemma 2 .

 2 Assume that Conditions 3 and 5 hold and that b = b n → ∞. Also, let I 1,n and I 2,n be independent random variables, independent of X n and uniformly distributed on the set {1, . . . , N b,n }. Then, under the i.i.d. setting with b/n → α ∈ [0, 1), or the s.m. setting and Condition 4 with b/n → 0, there holds, for any ω ∈ [0, 1/2),Φ C (G n )/g ω , Φ C (

  69) in ∞ ([0, 1] d ). Using the fact that √ b(G [I m,n ] b -C) and G b = √ b(G b -C) are equal in distribution, (69), implies thatΦ C ( √ b(G [I m,n ] b -C))/g ω Φ C (G C )/g ω = C C /g ω ,(70)in ∞ ([0, 1] d ) for m ∈ {1, 2}. Note in passing that, since, as already discussed in the proof of (27),√ 1 -α G [m] C + √ α G C and G C are equal in distribution, Φ C ( √ 1 -αG [m] C + √ αG C ) = √ 1 -αC [m] C + √ αC C and Φ C (G C ) = C C are also equal in distribution.The weak convergences in (69) and (70) imply marginal asymptotic tightness of the process on the left-hand side of (67) and thus the desired result.Proof of Theorem 2. The claims in (i) and (ii) are a consequence of Lemma 2 and the continuous mapping theorem. The asymptotic equivalence in[START_REF] Salvadori | Extremes in Nature: An Approach Using Copulas[END_REF] follows from Theorem 2.2 in[START_REF] Berghaus | Weak convergence of the empirical copula process with respect to weighted metrics[END_REF], as well as from the discussion at the end of the proof of Theorem 2 in[START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF]. From the same result, using the fact that √ b -C), Cb = √ b( Cb -C) are equal in distribution for m ∈ {1, 2}, we can also write sup

Lemma 3 .

 3 Assume that Conditions 1, 3, 4 and 5 hold. Then, for any ω ∈ [0, 1/2),C # n /g ω = Cn /g ω + o Pr (1) C C /g ω in ∞ ([0, 1] d ),where C C , g and Cn are defined by (

u∈[ 0

 0 ,1] d g(u)≤n -γ |C # n (u)/g ω (u)| = o(1). Furthermore, from Lemma 1, sup u∈[0,1] d g(u)≥n -γ Ĉn (u) {g(u)} ω -C # n (u) {g(u)} ω ≤ sup u∈[0,1] d g(u)≥n -γ {g(u)} -ω × √ n sup u∈[0,1] d | Ĉn (u) -C # n (u)| ≤ dn γω-1/2 = o(1),almost surely. Combining the three previous displays, we obtain thatC # n /g ω = 1 {g≥n -γ } Ĉn /g ω + o(1),almost surely, which, from[START_REF] Salvadori | Extremes in Nature: An Approach Using Copulas[END_REF] and the fact that Cn = Ĉn under Condition 1, gives C # n /g ω = 1 {g≥n -γ } Cn /g ω + o Pr (1).

  C β n /g ω = Φ C (G n )/g ω + o Pr (1I m,n ] b -C) and G b = √ b(G b -C), C β b = √ b(C β b -C) are equal in distribution for m ∈ {1, 2}, some thought reveals that (71) also implies that √ b(C β,[I m,n ] b -C)/g ω = Φ C ( √ b(G [I m,n ] b -C))/g ω + o Pr (1), m ∈ {1, 2}.
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 1 ∞ ([0, 1] d ) to ∞ (∆ d-1 ) defined, for any f ∈ ∞ ([0, 1] d ) and w ∈ ∆ d-1 , by µ ω ( f )(w) = (u w 1 , . . . , u w d ){g(u w 1 , . . . , u w d )} ω du u ln u ,

Table 2 :

 2 For The latter value was observed to give close to the lowest empirical MSEs across all our experiments in the i.i.d. setting (see the supplementary material for more details), which is why we chose to report results for this setting for b in all subsequent experiments in the i.i.d. case. Note that choosing b proportional to n

		1/3) 0.0488	0.0198	0.0200	0.0100
	Ĉn	(1/3, 2/3) (2/3, 1/3)	0.0337	0.0091 0.0338	0.0185 0.0185
		(2/3, 2/3)			0.0513
		(1/3, 1/3) 0.0562	0.0205	0.0207	0.0089
	Ĉsub 0.28n	(1/3, 2/3) (2/3, 1/3)	0.0371	0.0084 0.0375	0.0182 0.0183
		(2/3, 2/3)			0.0583
		(1/3, 1/3) 0.0619	0.0241	0.0244	0.0096
	Ĉboot n	(1/3, 2/3) (2/3, 1/3)	0.0452	0.0094 0.0458	0.0209 0.0211
		(2/3, 2/3)			0.0690
		(1/3, 1/3) 0.0511	0.0199	0.0203	0.0092
	Ĉmult n	(1/3, 2/3) (2/3, 1/3)	0.0350	0.0091 0.0356	0.0181 0.0185
		(2/3, 2/3)			0.0536
		(1/3, 1/3) (1/3, 2/3) (2/3, 1/3) (2/3, 2/3)
		(1/3, 1/3) 0.9006	0.3521	0.3389	0.1907
	Ĉsub 0.28n	(1/3, 2/3) (2/3, 1/3)	0.8323	0.1147 0.8250	0.1785 0.1680
		(2/3, 2/3)			0.7330
		(1/3, 1/3) 2.2250	0.6925	0.6632	0.3199
	Ĉboot n	(1/3, 2/3) (2/3, 1/3)	2.2307	0.1995 2.3528	0.3687 0.3640
		(2/3, 2/3)			3.5708
		(1/3, 1/3) 0.6331	0.4966	0.4547	0.3144
	Ĉmult n	(1/3, 2/3) (2/3, 1/3)	0.9287	0.1811 0.9084	0.2648 0.2502
		(2/3, 2/3)			0.4086
	based on Edgeworth expansions.				

n = 100, C a bivariate Clayton copula and τ = 0.33, empirical MSEs (×10 4 ) of estimators of the covariance of Ĉn at the points P = {(i/3, j/3) : i, j = 1, 2} based on subsampling (sub), the empirical bootstrap (boot) and the multiplier bootstrap (mult).

Table 3 :

 3 First line of each horizontal block: (accurately estimated) 90% and 95%-quantiles of KS ( Ĉn ) and CvM( Ĉn ) for C a bivariate Clayton copula and τ = 0.33. Remaining lines of each horizontal block: averages of 1000 estimates of the same quantiles based on subsampling (sub), empirical bootstrap (boot) and multiplier bootstrap (mult) approximations of Ĉn .

		f n	90%(KS ) 95%(KS ) 90%(CvM) 95%(CvM)
		Ĉn	0.5664	0.6437	0.0464	0.0580
	n = 100	Ĉsub 0.28n Ĉboot n Ĉmult n	0.6209 0.6880 0.5964	0.6798 0.7526 0.6561	0.0465 0.0613 0.0478	0.0573 0.0743 0.0591
		Ĉn	0.5770	0.6368	0.0463	0.0576
	n = 200	Ĉsub 0.28n Ĉboot n Ĉmult n	0.6148 0.6549 0.5982	0.6744 0.7172 0.6576	0.0490 0.0555 0.0476	0.0605 0.0676 0.0590

Table 4 :

 4 For C a bivariate Clayton copula and τ = 0.33, empirical MSEs (×10 4 ) of estimators of the 90% and 95%-quantiles of KS ( Ĉn ) and CvM( Ĉn ) based on subsampling (sub), empirical bootstrap (boot) and multiplier bootstrap (mult) approximations of Ĉn .

		f n	90%(KS ) 95%(KS ) 90%(CvM) 95%(CvM)
	n = 100	Ĉsub 0.28n Ĉboot n Ĉmult n	34.7486 151.8726 124.1483 19.9671 13.8527 8.5551	0.2659 2.5361 0.3347	0.4342 3.1865 0.5792
	n = 200	Ĉsub 0.28n Ĉboot n Ĉmult n	17.1279 63.5901 7.3044	17.9681 68.6258 8.4616	0.2344 1.0172 0.1850	0.3720 1.3002 0.3308

  D([0, 1] d ) be the space of càdlàg functions on [0, 1] d equipped with the Skorohod metric d S that makes (D([0, 1] d ), d S ) separable and complete [see, e.g., 4, Chapter 3 for the case d = 1]. Since d S is a weaker metric than the uniform metric, by the continuous mapping theorem, Condition 2 implies that G n converges weakly to G C in D([0, 1] d ) as well. Recall next that weak convergence in separable metric spaces can be metrized using the bounded Lipschitz metric; see, e.g., Dudley [15, Theorem 11.3.3], Dümbgen and Del Conte-Zerial [16, Section 2] or Bücher and Kojadinovic [8, Lemma 2.4]. The bounded Lipschitz metric d BL between probability measures P, Q on D([0, 1] d ) equipped with the Borel sigma field is defined by

β,[I m,n ] b
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where g is defined in [START_REF] Politis | Weak convergence of dependent empirical measures with application to subsampling in function spaces[END_REF]. As observed in [START_REF] Berghaus | Weak convergence of the weighted empirical beta copula process[END_REF], since sup

the map µ ω is continuous. Hence, from Theorem 3 and the continuous mapping theorem,

Furthermore, it can be verified that

where ν is defined in [START_REF] Shao | The Jackknife and Bootstrap[END_REF], and that, for any m ∈ {1, . . . , N b,n },

The desired result finally follows from (73) and the delta method [see 52, Theorem 3.9.4] by proceeding, for instance, as in the proof of Theorem 1 (i) for [START_REF] Gudendorf | Nonparametric estimation of multivariate extreme-value copulas[END_REF].