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Abstract

An inertia term is introduced in the AUSMup scheme. The resulting scheme, called
AUSM-IT (IT for Inertia Tern), is designed as an extension of the AUSMp scheme
allowing for full Mach number range calculations of unsteéfldws including acoustic fea-
tures. In line with the continuous asymptotic analysis, ARSM-IT scheme satisfies the
conservation of the discrete linear acoustic energy atdnd¢r in the low Mach number
limit. Its capability to properly handle low Mach number teedy flows, that may include
acoustic waves or discontinuities, is numerically illastd. The approach for building the
AUSM-IT scheme from the AUSM-up scheme is applicable to any other Godunov-type
scheme.

Key words: All Mach number schemes, AUSM schemes, Godunov-type schdmey
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1 Introduction

Convective and acoustic waves may propagate together ipressible flows, at
time and space scales that may be very different, and withilplesinteractions.
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Design of numerical methods able to handle properly thesagqinena remains a
challenging task, even if viscous effects are neglecteth W/co-located arrange-
ment of the unknowns, accuracy and robustness of the numhenethod depend
on the way of interpolation on the cell or element faces. Twaal categories of
methods can be identified, according to the equations theylarnved from:(1)
Methods solving a Riemann problem at each face by using ctestistic equations
(these methods are referred to as Godunov-type schemess pnebent study)(2)
Momentum interpolation methods, derived from the momenaguation. In our
opinion, the relations between these two approaches meesiigation in order to
improve their respective capabilities.

The difficulties arising at low Mach number when Godunovetgghemes are used
have been widely studied, mainly for steady calculatioas€¢sy.[1-3,11]). Denot-
ing by M, a reference Mach number in the flow, it has been recognizeédvbaling
the checkerboard decoupling problem needgM?—scaling of the pressure gra-
dient term in the face velocity or the face mass flux. Thid1?—scaling implies
that the thermodynamic and the acoustic pressures areatbinsspace at the con-
vective scale, which conforms to the continuous asympéotadysis, provided that
suitable boundary conditions are adopted sgd3,6]). For AUSM-type schemes,
it was shown by Dellacherie [1] that th¢M? —scaling is also necessary for avoid-
ing spurious acoustic waves when starting from so-calldtpvepared initial con-
ditions. However, there is experimental evidence thatghoperty does not guaran-
tee accurate calculation of acoustic propagation in lowMaember flows. In our
earlier work [15], it was thus observed that for unsteadgwations of low Mach
number flows, the presence of the time-step in the pressloeity coupling co-
efficient of the face velocity, as for momentum interpolatis beneficial. Based
on this observation, an improvement of the AUSMp scheme was then proposed
in [14], by mimicking the pressure-velocity coupling of tmentum interpola-
tion. However, we noted that the quality of the momentumrjpua&tion, if prop-
erly defined for unsteady calculations in a Rhie-Chow-likenmer (see [15-17]),
was not reached for some tests at low Mach number. Improveofigmedictions
for unsteady low Mach number flows by the AUSMIp scheme and the related
SLAU scheme (Simple Low Dissipative AUSM) by introductiohSirouhal num-
ber dependence in the coefficient of the pressure dissipeia in the mass flux
expression was also obtained by Sachekal. [19]. These authors demonstrated
that the scaling of the coupling coefficient has to be quitiedint for steady low
Mach number problems and for unsteady low Mach number pnehl8y chang-
ing the scaling, they proved significant improvement with 8&USM*-up scheme
for unsteady low Mach number problems with hydrodynamicptiog between
velocity and pressure (vortex propagation) and with acoustupling (propaga-
tion of a pressure oscillation and propagation of weak skackl expansion fans).
They also illustrated oscillatory behavior of the SLAU nedtior steady low Mach
number flows. However, it remains unclear how to combine ifferdnt scaling
factors and, for instance, to ensure that the correct steealyng is obtained for
the solution of a steady low Mach number problem calculatét an unsteady



method. A similar remark holds for our own work [14]. A pattiar problem with
the AUSM"-up method is that the damping by the pressure differenoe irethe
mass flux expression which is appropriate for steady low Maamber flow is
too high for propagation of smooth acoustic signals in uaygdow Mach num-
ber flows. On the other hand, as observed by Sacktey. [19], the dissipation
is too low for propagation of acoustic discontinuities (IMach number Riemann
problems). So, it becomes very delicate to tune the presissgation such that
it functions properly for the different types of low Mach nber flows. Too low
pressure dissipation in the mass flux definition of the SLAUWhue for simulation
of propagation of discontinuities in low Mach number flowssvedso remarked by
Shima [20]. He proved that it is possible to eliminate oatitins by increasing the
coefficient of the pressure dissipation term in the mass fefindion by a sensor
for wiggles. Of course, the larger dissipation smears sdmagtie discontinuities.
The conclusion is that methods that rely on tuning of thefaoeht of the pressure
dissipation term in the mass flux definition in AUSM-type detizations are very
delicate and certainly have not reached maturity yet.

Observing that an inertia term is present in the face vel@ipression by the mo-
mentum interpolation, and missing in the face velocity esgron by the scheme
proposed in [14], we propose in the present study to intredhis inertia term in
the face velocity of Godunov-type schemes. The momentuenpotation is used
as a guideline to accommodate this term. The resulting presslocity coupling
exhibits then the suitable/M?—scaling for low Mach number steady calculations.
In the unsteady case, the pressure-velocity coupling é@slalso the proper Mach
number scaling and time-step dependence, identified i1$l4Moreover, the in-
ertia term is introduced such that the steady state, if gtexdoes not depend on
the time-step.

As pointed out in [1,2], an asymptotic property providingights for the design
of Godunov-type schemes that remain accurate at low Mactbaum the linear
acoustic energy conservation in the low Mach number regimnéch holds if pe-
riodic boundary conditions are adopted. This property edus the present study
as a guideline to assess the proper way of inertia term iofisipn, as well as
the proper way of pressure interpolation, in order to erddhe acoustic energy
conservation at the discrete level.

The key point is that, if the acoustic component of the presssi centrally in-
terpolated in the low Mach number limit, the presence of tiertia term in the
face velocity enforces acoustic energy conservation aligwete level. More pre-
cisely, thel/M,—scaling of the numerical dissipation that arises from tregiap
discretization of the linear acoustic wave equation, istbounterbalanced. Con-
servation of acoustic energy is clearly a prerequisite fmueate calculation of
unsteady low Mach number flows including acoustic features.



2 Foundation of Godunov-type schemes on characteristic eqtions

In this section, the Mach number scaling of the pressureigmaterm in the face
velocity expression of Godunov-type schemes is examingéukitight of the char-
acteristic equations from which these schemes are drawn.

Reference pressureg, densityp, and velocityv, thought of as a convective quantity,
are introduced. A reference Mach number is then defineNas= v./\/p./ o
Reference lengtlh. and duratiory,, thought of as a convective quantity, are also
considered, as well as a reference Strouhal nuntber= (I,/v,)/t.. Notice that

it is possible to choose the reference lengthst,/p,/o., Which is an acoustic
length. Then, the reference Strouhal and Mach numberslateddySt, = 1/M.,.
Here however, the possibility is left open for another ce@€reference duration,
so that we will work with the reference Strouhal numBer. Associated with the
Euler equations in dimensional form,

dio+V - (ov) =0, (1a)
O(ov)+ V- (pv®v)+ Vp =0, (1b)
O (0E) +V - (¢Hv) =0, (1c)
1

E=e+ QIIUIIQ, (1d)
oH = oF + p, (le)
oo = ——. (19

fy J—

the dimensionless 1-D characteristic equations read as

1 dp c
_ -y — — 2
dv M. o 0 on St,dix=w N (2)

1
do——dp=0 on Stdx =,
c

1d c
dv+EQ—JZ =0 on St =0+ 51 3)
A prototypical AUSM-type interpolation, which can be thdugf as a common
starting point for the different variants presented by Léiual. [10-12], can be
derived from the characteristic equations (2) and (3) dsia. From Eq. (3), where
the inertia term is omitted,

O,pt =0. (4)

81‘ + X
vt M, oc

I To ease the reading of the following derivations, we keepstimae notations for dimen-
sional and non-dimensional quantities.



The superscript- indicates here the propagating direction. With = z;.; — x;,
Eq. (4) is discretized on the control volume, z;,4] into

U;-_i-l_v;—+ 1 pl—:—l_pl—'i_zo
Az M, (0¢)it12 Az ’

from which we obtain

v ‘|“Ui—:-1 + 1 1 + +

ST g (i1 — 1)

2 2 MT(QC)iJrl/Q
Let
Lo tuly

Vit1/2 = 5
Then,

U;Sr1/2 = v — ! ! (pztrl — ;). (5)

2 Mr(QC)i-‘,—l/Q

Similarly, setting

- Vi Ui

Vit1/2 = 5 ’
one has from Eq. (2), where the inertia term is omitted,
1 1

Vir1/2 = Vig1 — 2 ML

= (pT ., —p7). 6
gc)i+1/2(pz+1 p;) (6)

Then, setting

+ - + -
Di tDp; Diy1 + D
pi = T Pit1 = s 5 =
and
U;:L1/2 tVit0
Vit1/2 = - 9

one obtains from Egs. (5)-(6):

o vl tvgy 1 1
e 2 2 M, (0c)it12

(Pit1 — pi)- (7)

In the derivation of the face velocity (7), inertia terms araitted in the acous-
tic characteristic equations (2) and (3). As a consequehdki® omission and
of the acoustic origin of expression (7), the Mach numbelirsgaf the pressure



gradient term isl /M,. Thus, the pressure gradient term can be thought of as an
acoustic quantity that operates, in the low Mach numbentegat the large acous-
tic length scale solely. However, to fix the checkerboardbdpting at low Mach
number, which is a problem that may appear at the small ctimedength scale

if a co-located arrangement is used, the low Mach numbeingcalf the pres-
sure gradient term should bgM? at the small convective length scale. This is
the reason of the introduction of a scaling function whiclobgs toO(),), and
modifies thel /M, —scaling of the pressure gradient term into th&1%—scaling

at low Mach number, as in [3,8,11,18,21] for example. Howewe observe that
the 1/M?—scaling of the pressure gradient term in the face velocipression is
obvious from the momentum equation (1b). Following furttieés approach, the
inertia term is introduced in the face velocity expressiocoading to its relation to
the pressure gradient term in the momentum equation (1g.ylé¢lds:

v; + Vit1 1 ( ) StrAZC
Vs = - i+1 — Pi) —
+1/2 5 2(QC)Z_+1/2M% Piy1 — P

————— 010 8
2ci+1/2Mr tVi+1/2 (8)

For the pressure at the face, the central interpolation ase in the low Mach
number regime:

Di + Dit1
Pit1/2 = TJF 9

Arguments for the choice of the scheme by Eqgs. (8)-(9) is th&en of the next
section.

3 Role of inertia term in acoustic energy conservation at lowMach number

In this section, we concentrate on the benefits, at low Machbau, of the pres-
ence of an inertia term in the scheme expressed by Egs. (8j9%ndhe linear
acoustic energy behavior obtained when this scheme is issedamined through
asymptotic expansions and modified equations.

3.1 Basics of two-scale low Mach number continuous asyigptot

The flow is considered in any dimensidn= 1,2 or 3. In the low Mach number
regime, a variable relevant to reveal the behavior of the Howhe large acoustic
length scale is introduced as

& =Mz



Then, we assume that the pressure can be expanded as

N
p(, t,M,) = Y Mp™(z,&,t) +o(MY) , N=0,1,2,

n=0

with similar expansions for density and velocityv. After substitution of these
expansions into the Euler equations (1) non-dimensioe@dlizith the reference
guantities introduced in Sec. 2, one obtdins

— 1
Str&g’u(o) + :Vgp(l) = 0, (10a)
0©
St 0,pM) 4+ OV, - 0© = 0. (10b)

At the acoustic length scale, Eqgs. (10a) and (10b) can bepheted as momentum
and energy equations, respectively. These equationsiteshe first-order wave
equation, as evidenced by deriving from them a non-lineaatgn for acoustic

wave propagation,

attp(l) -V (cgvgp(l)) =0,

wherecy = ¢y(€,t) = \/yp(m(t)/;(ov)(g). Thus, considered at the acoustic length
scale,w(©® andp? are identified as acoustic variables.

3.2 First-order modified equations at the acoustic scale

How the scheme by Eqgs. (8) and (9) operates on the acousi@bies identified in

Sec. 3.1 is studied in this section. Considering first the daBe, velocity;f(ﬁ) and
pressure!) are inserted into Eq. (8), as

© , (0
0) v Ui 1 M @, StAwz B)

v; = - = Pii—pi)——5——— 8tvl' ., (11)
+1/2 9 20O ), M2 200, )M, +1/2

where it is supposed thadté = M, Az, which means that the grid sizZer is of the
order of the small convective length scale. From Eq. (9)ireémterpolation of the
acoustic pressure is adopted:

(1) (1)

1 D D
pz(—i—)l/QZ 5 . (12)

2 ~denotes the large scale averaige the average ofiz € R? | |z| < 1/M,} asM, — 0.
This average operation allows to separate features at thusteclength scale from those at
the convective length scale through the so-called subligeavth lemma ; see.g.Klein
[6] or Meister [13] for details.



Suppose that® andc® are constant in space. With the central interpolation (12),
at the first order, the modified equation of Eq. (10a) on a Geamegrid is identical

to the original equation. 1Az is equal in each dimension, the same result is ob-
tained for dimensiod higher thanl. Similarly, with the obvious multi-dimensional
extension of interpolation (11), the first-order modifiedigion of Eq. (10b) is ob-
tained for dimensioa = 1, 2 or 3 on a uniform Cartesian grid, as

— O Az
St,0,pY Oy, . 0 = €
,p +p Ve v N

(Ve Vep™ + 00860,V - v®) . (13)

With Eq. (10a), the right-hand side of Eq. (13) is zero, s tha first-order modi-
fied equations of Egs. (10) are identical to the initial fostler wave equation. The
role of the inertia term regarding this property is examimeithe following section.
Note that the coefficient® Az /(2M,) in Eq. (13) is equivalent, in the asymptotic
framework adopted here, to the numerical viscosity coefficof Godunov-type
schemes for the linear wave equation identified by Dellaeljéf.

3.3 Inertia term requirement for acoustic energy conseorat

In this section,g;@ and ¢®) are assumed to be constant in space and time. The
linear acoustic energy on the unit torlis= (R/(27Z))* (d = 1,2 or 3) at low
Mach number is

1 — 1 (pW)?
B = [ |30 + =0
T |2 2 p(0) (¢(0))2

Note that
— L — 1 .
4,E, = (0>/ v(e).av(owwi/ Mg, p0) 14
t % T t 20 (c0))2 Tp tP (14)

Then, on the one hand, with Eqgs. (10a) and (10b),
d.E, = 0. (15)

On the other hand, with first-order modified equations (18d)@3), Eq. (15) holds
too, so that the conservation of acoustic energy for th&lrontinuous system of
equations is retrieved at the first order.

Moreover, one obtains from Eq. (14) and from the first-ordedified equations
associated with Eqgs. (10a)-(10b) that, without an inedrant acoustic energy is
dissipated with the following decrease rate:

Az
By = ——————— [ [V <.
2 St 0@ cOM, /T




Therefore, as included in Eq. (8), the inertia term compiassthe acoustic energy
dissipation at the acoustic length scale and at the firstrofidhee conservation of
acoustic energy at low Mach number, which is satisfied by trgicuous system
of equations (10a)-(10b), is thus ensured at the discreét le

Note that when third-order modified equations associatéukgs. (10a)-(10b) are
derived instead of first-order equations, one readily oistai

M, (Az)3
d,E, = _Mi(Az)” /(vg - VepM)2,
48 St 00 (0) JT

Even if this quantity belongs t@(M?) if the Strouhal number is defined with an
acoustic reference length (see Sec. 2), some risk, in pkatitor high-order com-
putations, arises from its positivity. It is thus advisatdeintroduce some Mach
number-dependent upwinding in the interpolation of thevegtive terms in Eq.
(11). In the present study, this is carried out through therface Mach number
suggested by Liou [10], as presented in the next section.

4 The AUSM-IT scheme

In this section, we present a Godunov-type scheme with arianeerm, called
the AUSM-IT scheme (IT folnertia Tern). It is designed such as to satisfy the
following properties:

(1) If the local Mach number exceeds unity, the AUSMp scheme by Liou [11]
is retrieved ; this allows to inherit from all the abilitiettbis well-established
scheme in supersonic regirhe

(2) WhenM, goes to zero, the face velocity and face pressure tend txgres
sions given in Egs. (8) and (9) ; this allows to satisfy thepemty of acoustic
energy conservation at the first order, presented in thequsgection.

The AUSM-IT scheme is defined by the following face velocityldace pressure
expressions.

e Face velocity:

3 The reader interested by a recent development of the At)GpIscheme to avoid diffi-
culties related to the global cut-off problem is referred.itand Gu [9].



K

2
v12 = c1ja Mija — . max{1l — oM ,0}Ap

oc1 2 fe(My)
K] =2
_ Y nax{1— oM, 0YAz vy e (16
Cl/ch(Mo) { } v ( )
Myjo = fi (ML) + far(Mg)
5(m=£|m|) Im| > 1
fiim) = {il(mi 12+ 1m2—1?2, |m <1
4 8 9
—_ o + or
e 2

Fo(Mo) = Mo(2 — M), M = min {1, max{3T", M2 }}
MQ (Vn+)2 + (Vn_>2

20%/2
cij2 = min{é, ér} , ¢ = (c*)Q/maX{c*, VY, r= (c*)Q/ max{c*, =V, "}
2(v — 1
(C*)Q — (7 )H
v+1

0<K,<1,0<K;<1l,0<1; typically: K, =K; =025, o0=1

e Face pressure:

prj2 = ffa(Mu)pL + f5o(Mgr)pr (17)
where
s () = (1 £ sign(m)) , ml >1
P TmE1)*2Fm) tam(m? —1)? | |m| <1
@ = -4+ 5(7. (M)’

e Convected quantities; ov, oH, upwinded as proposed for the AUSMIp scheme
by Liou [11],e.g,

0= oL, if M1/2 — W max{l — gH{O}Ap Z 0
or, e€lse

Remark 1In Eq. (16), the exact form of the terév,,,/,, depends on the time
integration method and is not a specific feature of the AUSMdheme.
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Remark 2 The proposed AUSM-IT scheme is an extension of the AUSM
scheme such that the AUSMup scheme is retrieved when the face pressure is
expressed with, = 0 and when the inertia term is excluded by takiiig = 0 in

Eqg. (16).

Remark 3Using the AUSM-IT scheme for steady computations is shiéagward,
since in this case the inertia teiyw; /, in Eq. (16) vanishes. The scheme then re-
duces to the AUSM-up scheme. Notice that the AUSM-IT scheme ensures time-
step independence of the steady state. As shown in [15ti$§ptoperty is benefi-
cial for steady as well as unsteady computations.

5 Numerical experiments

The presented test cases are chosen in order to illustegfi@tMach number range
capability of the proposed AUSM-IT scheme. The tests allowadsess the role of
the inertia term in the face velocity definition, and to comgpthe performance with
other schemes: AUSM[10], AUSM*-up [11], SLAU [4,21], 'JCAM 2013’ [14],
and the momentum interpolation [15,16] (these schemesamaitbed in Appendix
A).

In all the test cases considered in the following, the fluidirswith specific heat
ratioy = 1.4.

Dissipation and dispersion errors are used to evaluateuhbty of the solution
when a reference solution is available. The methodologpgsed by Takacs [22]
(see also [15]) is employed. Say thatandg,. are exact and computed values of a
guantityq under consideration. At a given tintethe mean square error can then
be defined as

2 2
S (g — 1
8 N (qe QC) Y ( 8)
where the sum extends over thhenodes of the grid. Further, denoting mean values

and variances of the exact and computed quantitieg by. andc?, o2, the mean
square error can be written as

82 = 0-3 + 062 + (qe - QC)Q -2 COV(Q& QC)a

wherecov(q., q.) is the covariance of the two signals. With the correlatioaffio
cient between the two signals,

COV({e, 4c
R(Qea QC) = ¥7

Oe0c

11



the error (18) can further be written as
& = (qe — qC>2 + (0e — ‘76>2 + 20.0.[1 — R(ge, qc))-

Non-dimensional measures of dissipation and dispersronsemay then be defined
(see [15]) by

Oc — O¢

5 gdispersion =4/1- R(Qeu QC> (19)

gdissipation =
Oe

Another quantity of interest for assessing the accuracyhefacoustic waves cal-
culations, is the total acoustic energy. Under the lineausatics assumption, it is
defined as

L1 1 (dp)®
Ea :/ - 2 -
0 [QQ(](&}) + 2 0oc3

: (20)

wherecy = /vpo/ 00, Op = p — po anddv = v — vy. Here, gy, vy andp, designate
the constant density, velocity and pressure of the unifoiinidackground flow in
which the acoustic waves propagate.

5.1 Low Mach number flows

5.1.1 Low Mach number Riemann problem with nearly inconginés initial
conditions

A 1-D Riemann problem with initial conditions given in Taldles first considered.
The reference Mach numbai, is about10~2. The computational domain is the
interval [0, 1] divided into100 cells of equal length. The time integration is carried
out by the first-order explicit forward Euler scheme. Theditization of the inertia
termo,v, s, in Eq. (16) is first-order backward Euler. The numerical roeltls first-
order accurate in time and space. The convedctivé number is chosen &s009,

so that the acousti€FL number is abou0.9. Thus, fluctuations at the acoustic
scale can be accurately calculated.tAt 0, the pressure jump between the right
and left states is of ordéii?, the velocity jump is of ordek, and the density jump
is zero, so that it belongs t0(M?) asM, — 0. With such initial conditions, which
are often referred to as 'well-prepared’ and correspondriealy incompressible
flow [5], two rarefaction waves propagate in opposite digetd as soon as > 0
(see Guillard and Murrone [2]).

To examine the role of the pressure gradient term in the fatacity expression
when the inertia term is present, the AUSM-IT scheme is a@red without pres-
sure dissipation termi(, = 0 and K; = 0.25), and withK,, = K; = 0.25. We

12



setM,, = 0.01 (see Eq. (24) in Appendix A), noticing that the exact valu¢hid
parameter, if sufficiently small, does not influence sigaifity the results.

The results of density, velocity, pressure and energy ®AIHSM-IT scheme with
K, = K; = 0.25, compared to the exact solution, are shown in Fig. 1. Thdtsesu
for K, = 0 and K; = 0.25 are shown in Fig. 2. The results for the AUSM
scheme [, = 0, K; = 0) are shown in Fig. 3. It is suggested by Liou [11] that
shock-tube-type problems in which the pressure distloLs not spatially uniform
should be resolved witlf, = 1 when using the AUSM-up scheme (see Egs.
(23) and (25) in Appendix A). For the Riemann problem undersoderation, with
nearly incompressible initial conditions, we observed teaults by the AUSM-

up scheme withf, given by Eq. (24) (see Appendix A) anfl = 1 are quasi-
identical. Thus, only results by the latter choice are showig. 4.

Comparison of the figures reveals that the AUSM-IT schemé it = 0 and
K; = 0.25, and the AUSM scheme produce nearly the same results /o« 0,
the quality of the AUSM-IT solution clearly deterioratesice the solution exhibits
oscillations near the discontinuities (see Fig. 2) thabasent wherk, = 0.25 (see
Fig. 1). We conclude that, in all cases (inertia term presemiot), it is beneficial
to take K, = 0.25, thus including the pressure gradient term into the facecist
expression.

The solution calculated by momentum interpolation, shawiig. 5, is of bad qual-
ity compared to the other schemes. The conclusion is th&®iamann problems at
low Mach number, momentum interpolation may fail.

13



oL (kg/m?) | vy (M/s)| pp(Pa) | or (kg/m?) | vr (M/S)| pr (Pa)
25 0.200 | 10 000.00 25 0.202 | 10 000.85

Table 1
Settings for the low Mach number Riemann problem of Sec15.1.

Density (kg/m3) Velocity (m/s)
25 { ' 0.202} ' ' '
24,9995} S ] 0.2015 § 4
24.999 | 0.201} ]
S 0.2005 ]
24.9985} j ]
0.2 ]
24.998 . ! . - .
0 02 04 06 08 1 08 1
10001 . 1000.1 . .
10000.8- 1000.08}
10000.6}
1000.06|
10000.4} ]
10000.2} g 4 1000.04} 4
o
10000; 8 1000.02} ]
9999.8 ] 1000 i
1 1

9999.6 L L L L
0 02 04 06 038 1 0 02 04 06 038 1

Fig. 1. Low Mach number Riemann problem of Sec. 5.1.1. AUSMstheme with
K, = K1 = 0.25 (o) and exact (solid line) solutions at tinde= 0.01 s.
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Fig. 2. Low Mach number Riemann problem of Sec. 5.1.1. AUSMdheme withi, = 0
and K; = 0.25 (o) and exact (solid line) solutions at time= 0.01 s.
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Fig. 3. Low Mach number Riemann problem of Sec. 5.1.1. AUS$¢heme ¢) and exact
(solid line) solutions at timeé = 0.01 s.
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5.1.2 Downstream propagation of an acoustic wave forceth@tioundary of a
1-D pipe

At the left side of a one-meter long pipe, the inlet velocgyspecified to oscillate
around a mean valug, as

vl (t) = V[1 + Asin(27 f1)],

whereV = 0.30886 m/s, f = 2 10° Hz andA = 10~2. A downstream propagating
acoustic wave is thus generated and superimposed onto aflowamith constant
density1.2046 kg/m3, velocity V' = 0.30886 m/s and pressuré01 300 Pa. The
amplitudeA is sufficiently small so that an exact solution can be derfxv@ah linear
acoustics.

The Mach number of the background flowlis3. For the calculation of acoustic
waves propagation in such a low Mach number flow, we showet4rip] that the
pressure correction algorithm presented in Appendix B i#-steted. Therefore,
this algorithm is used for the present test case. The cameeCt'L number is
chosen a$’FL, = 5 x 107%, the acousti©FL number being thus approximately
equal to0.5. Acoustic waves can then be calculated with accuracy, onifaram
grid of 500 cells.

To allow for the assessment of the applicability and sigarfie of the numerical
results, non-dimensional lengitf and durationt* are introduced. The reference
length is defined as the wavelength of the acoustic wave getkat the left of the
computational domain, and the reference duration is defisetie time needed for
an acoustic wave to travel over the computational domain.

In Fig. 6-(a) is shown the progressive degradation of thetswl obtained at time

t* = 0.7 when the AUSM -up scheme is used. The same observation holds for the
SLAU scheme, to a lesser extent however (see Fig. 6-(b)pritrast, one observes

in Fig. 7 that results by the 'JCAM 2013’ scheme (Fig. 7-(&)® momentum inter-
polation (Fig. 7-(b)) and the AUSM-IT scheme (Fig. 7-(c))ftwK, = K; = 0.25
ando = 1, are in good agreement with the exact solution, and are gdestical.

The visible difference between the schemes for which presgelocity coupling is
time-step dependent (JCAM 2013’, momentum interpolaaod AUSM-IT) and
the other schemes (AUSMup and SLAU) is confirmed by the dissipation and dis-
persion errors for the pressure field, shown in Figs. 8 andrdy e AUSM-IT
scheme and the momentum interpolation give good resulisfwvane very close to
each other. In contrast, as already noted, results by theVRUGp scheme are of
bad quality from the early stage of the calculation, bothdigsipation and disper-
sion. The SLAU scheme produces results that mainly exhibitrgoortant level of
dissipation error, while the dispersion error remains aaeseptable level. This is
also the case for the dispersion error obtained by the 'JCAMB2scheme. It is
interesting to note in Fig. 8 that the dissipation error by ‘tHCAM 2013’ scheme
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follows the dissipation errors by the AUSM-IT scheme and gy tnomentum in-
terpolation in the early stage of the calculation. The fieakl of the dissipation
error by the 'TJCAM 2013’ scheme is almost two orders of magitetlower than
that of the SLAU scheme.

The sensitivity of the total acoustic energy to the cell giz¢éhe grid is shown in
Fig. 10. The convective’ FL. number, the frequency of the acoustic wave and the
Mach number of the background flow are the same as in the p®calculations,
and results are shown#t= 0.7 in order to avoid effects of wave reflection. In Fig.
10, the total acoustic energy is non-dimensionalized bgxet analytical value at
t* = 0.7. According to the theoretical considerations in Sec. 38 presence of an
inertia term allows to weaken the cell size dependence oadbestic energy time
evolution, in particular for the smallest values of the ste. Indeed, this can be
observed in Fig. 10 for the AUSM-IT and the momentum inteagioh schemes.
Note that both schemes give quasi-identical values of thed swoustic energy,
which are distinctly higher than the values obtained wighakther schemes.
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5.1.3 One-dimensional acoustic pulse propagation

A downstream propagating Gaussian acoustic pulse in a fetemhong pipe is
generated through a superimposition onto a mean flow, witistemt density, =
1.2046 kg/m?, velocity vy = 0.030886 m/s and pressurg, = 101 300 Pa, of
a perturbation of pressud®, densitydo = dp/cz, and velocitydv = dp/(goco),

wherecy = /vpo/00- Att =0,

(x —0.2)?

5p:200exp[— 52
o

] (Pa), where ¢ =210 m. (21)

In this test case, the Mach number of the background flowi$. The time-step is
chosen so that the acoustid'L. number is abous, which is allowed by the semi-
implicit algorithm used, see Appendix B. The grid is unifomth 2 500 cells.

The results are shown with a non-dimensional lengthobtained by taking as
reference length (see Eq. (21)), and a non-dimensionatidoréa’, with as refer-
ence the time needed for an acoustic wave to travel over thegtational domain.

It is shown in Fig. 11 that the AUSMup scheme and the SLAU scheme do not
reproduce correctly the propagation of the pdisEor both schemes, the level of
dissipation is excessive. The location of the pulse is ewas with the AUSM-up
scheme. It is much better with the SLAU scheme. The 'JCAM 28tBeme, the
momentum interpolation scheme and the AUSM-IT scheme (Wjth= K; = 0.25
ando = 1) reproduce the correct position of the pulse (see Fig. 1#}.dispersion
error of the momentum interpolation scheme and the AUSMelese is small.

The previous observations are confirmed by studying disipand dispersion
errors for the pressure field. Two categories of schemesedisbnguished: In the
first category (AUSM-up and SLAU schemes), the time-step independence of the
pressure-velocity coupling leads rapidly to unsatisfactevels of dissipation and
dispersion errors (not shown). In the second category (MC813’, momentum
interpolation and AUSM-IT), the unsteadiness of the catad waves is taken into
account in the pressure-velocity coupling, thanks to theetstep in the pressure

4 The small difference between the results shown in Fig. 1hfd)the results shown in
Fig. 3 of our previous work [14], where the same test caserisidered with the AUSM-

up scheme too, is due to the choice of the interpolation ofptlessure corrections; see
Eq. (31). In [14], interpolation polynomials are definedwihe scaling functiory, of the
AUSMT-up scheme proposed in [11]. Hed. (Eq. (31)), interpolation polynomials of the
AUSM™ scheme, without the scaling functigi, are used for the pressure corrections. This
results for the present test case in a smaller dissipatian ith the computations shown
in [14]. The modification of the definition of the interpolati polynomials also has as a
consequence to reduce the dispersion error for the 'JCANS'2heme ¢f. Fig. 12 (c)),

if compared to results shown in Fig. 3 of [14].
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gradient coefficient of the face velocity expression. Asvaim@ Figs. 13 and 14,
this time-step dependence is necessary for obtaining acguor both dissipation
and dispersion features. Moreover, it is clear, in paricfiom Fig. 13, that, due
to the presence of inertia term in the face velocity expoesef the AUSM-IT and

the momentum interpolation schemes, both schemes outpettie 'JCAM 2013’

scheme, for which the true inertia term is not included.

The same conclusion holds by considering the time evolutifoine total acous-
tic energy (see Eg. (20)). Presented in Fig. 15, the totalstamenergy is non-
dimensionalized with its exact valuetdt = 0. Note that results by the AUSMup
and SLAU schemes are useless (not shown). In Fig. 15, thislef/eotal acoustic
energy given by the '’JCAM 2013’ scheme, the AUSM-IT schemethe momen-
tum interpolation, are identical in the early stage of thewation. The calculated
value is slightly lower than the exact value, which is consgand equal td. Among
the three schemes under consideration, the conservatithre @coustic energy in
the computational domain is best ensured by the momentusrpiation. With
the AUSM-IT scheme, the energy increases slightly (by leasa1%), and with the
'JCAM 2013’ scheme, it decreases by abbgits.

The sensitivity of the total acoustic energy to the cell ©iz¢éhe grid is shown in
Fig. 16. The convectiv€’FL. number, the frequencies of the acoustic waves and
the Mach number of the background flow are the same as in th@psecalcula-
tions. Results are shown &t = 0.8 in order to avoid effects by wave reflection.
The total acoustic energy is non-dimensionalized by itceaaalytical value at
tt = 0. As already observed in Sec. 5.1.2, the presence of andrtertn allows
to weaken the cell size dependence of the acoustic energyavwoiution. When
the AUSM-IT scheme is used, the level of the total acoustazgnfor the smallest
values of(Az)™ in Fig. 16 is slightly higher than. The level of dissipation of the
scheme does not guarantee exactly the conservation of tddeattbustic energy.
The level of dissipation of the AUSM-IT scheme is linked witie upwinding of
the convective terme, M, ), in the face velocity expression (16). This upwind-
ing is a consequence of the choice of the AUSpblynomials in the definition of
M, /2, which were not designed to ensure the property of the tokigy conserva-
tion. However, this property is approximately satisfiedjolhs quite satisfactory
by comparison with the other schemes under consideration.
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Fig. 11. Downstream propagation of an acoustic pulse in anfigeer long pipecf. Sec.
5.1.3. Pressure distribution &it = 0, tT = 0.2, t" = 0.5 andt™ = 0.8. Exact solution
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Fig. 13. Downstream propagation of an acoustic pulse in anfigéer long pipecf. Sec.
5.1.3. Non-dimensional time evolution of the non-dimenaialissipation error on pressure
perturbationcf. Egs. (19).
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Fig. 14. Downstream propagation of an acoustic pulse in anfigéer long pipecf. Sec.
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5.1.4 Two-dimensional acoustic pulse propagation

The computational domain is the squérgl] x [0, 1] (m?), divided into500 x 500
cells forming a regular Cartesian grid. With

00 = 1.2046 kg/m?, uy = vy = 0.30886 1072 m/s, py = 101 300 Pa,

a Gaussian acoustic pulse is givert at 0 by

0= Vo, pO = Po + (5p)07

0 = 00+ (60)°, u® =g, v
where

(x —0.5)*+ (y — 0.5)*
(0.05)2

(6p)° = 200 exp l— ] (Pa), (22)

(60)" = (dp)°/c; and co = \/vpo/ 0.
The value of the mean flow Mach numberdsi0—¢. Fort > 0, the speed of

the acoustic wave generated by the initial pulse is the vectm of the low Mach
number mean flow velocity and the propagation sound speéa iradial direction.

The numerical method is the 2-D direct extension of the neethetailed in Ap-
pendix B. The energy equation used in the correction steplge(30) for the 1-D
case) results in a pentadiagonal system solved with amateedirection proce-
dure. The acousti€FL number is20. The AUSM-IT scheme is used witR,, =
K;=0.25ando = 1.

At t = 0.1 ms, the maximum of the pressure forms a circle (see Fig. 18) whos
radius is approximatel§.048 m (see Fig. 19). At = 1 ms, the radius is approxi-
mately0.358 m (see Figs. 20 and 21). The radial speed of the acoustic walvess
around344.44 m/s. This is close to the value calculated with the backgrouna flo
values,cy = \/vpo/0o = 343.12 m/s. As for the 1-D test of Gaussian pulse propa-
gation considered in Sec. 5.1.3, results by the AUSM-IT sthare quasi-identical
to those by the momentum interpolation method (see Figsnd2a).
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Fig. 17. Two-dimensional acoustic pulse propagaticih Sec. 5.1.4. Distribution of the
pressure perturbatiofp att = 0 (cf. Eq. (22)).

Fig. 18. Two-dimensional acoustic pulse propagaticih Sec. 5.1.4. Distribution of the
pressure perturbation at= 0.1 ms by the AUSM-IT scheme. The black circle indicates
the maximum value of the pressure perturbation. The prdfile-a 0.5 m (white line) is

shown in Fig. 19.
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Fig. 19. Two-dimensional acoustic pulse propagaticih Sec. 5.1.4. Distribution of the
pressure perturbation profilestat= 0.1 ms for y = 0.5 m (white line in Fig. 18) by the
AUSM-IT scheme (solid line) and the momentum interpolatioethod é).

Fig. 20. Two-dimensional acoustic pulse propagaticih Sec. 5.1.4. Distribution of the
pressure perturbation at= 1 ms by the AUSM-IT scheme. The black circle indicates the
maximum value of the pressure perturbation. The profile-at0.5 m (white line) is shown

in Fig. 21.
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Fig. 21. Two-dimensional acoustic pulse propagaticih Sec. 5.1.4. Distribution of the
pressure perturbation profilesfat= 1 ms for y = 0.5 m (white line in Fig. 20) by the
AUSM-IT scheme (solid line) and the momentum interpolatiogthod ¢).
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5.2 Riemann problems with shock waves

In this section, the Godunov-type and momentum interpmtesichemes are eval-
uated on a series of Riemann problems where shock waves. dtoreover, the
Mach number is not necessarily small compared to unigy ¢f the order of 0!

or smaller), as it is in Sec. 5.1.1. The settings for the thesés considered are
given in Table 2. The computational domain and its discatitin are the same as
in Sec. 5.1.1. The Euler explicit scheme is used, with therective CFL number
equal to0.9. The numerical method is first-order accurate in time andepAs

in Sec. 5.1.1, we set/,, = 0.01 for all the calculations presented in this section
(see Appendix A), noticing as in Sec. 5.1.1 that the exactevaf this parameter, if
sufficiently small, does not influence significantly the tesu

Test 1 is the modified Sod problem proposed in [24], to asbesifillment of the
entropy property. The solution consists of a right sonicckheave, a right travel-
ing contact wave, and a left sonic rarefaction wave. Alspsed in [24], Test 2 is
used to assess the robustness of the scheme, and its abdapture slowly mov-
ing contact discontinuities. The exact solution consi$ta [eft rarefaction wave,
a right-traveling shock wave and a stationary contact aiSoaity. Note that the
SLAU scheme and the momentum interpolation schemeifaildo not allow con-
vergence to a solution) in this test. Test 3, proposed in4é¢ (also [18]), allows
primarily to assess the accuracy of the scheme. In Test J|alweremains sub-
sonic. The solution contains a contact discontinuity aneéakishock that are close
to each other, so that the contact discontinuity may be ssddar the flux scheme,
in particular when it is first-order accurate, which is theehere.

We will focus the discussion of the results on the followiray keatures(1) shock
resolution, in particular in presence of a close contactafitinuity;(2) capture of
stationary contact discontinuity(3) sonic glitch (see [23]).

In Figs. 22 to 28, for test 1, where the right shock wave issahie AUSM-type
schemes give a good resolution of the shock, compared toltAe) Scheme (see
Fig. 29) and the momentum interpolation (see Fig. 30). Qlesérat this latter
leads to results of very bad quality, whatever the Riemawoblpm considered in
the present section. Between the AUSM-type schemes, sdfeeedices can be ob-
served in the quality of the shock representation. The AUSM scheme (see Figs.
25-27) smears the shocks more than the other AUSM-type sshefhe AUSM-
IT scheme slightly overestimates the maximum value of tHeciy at the sonic
point. However, the differences between results by AUSpetgchemes remain
small, and we conclude that the presence of an inertia tegs Kot alter the ability
of AUSM-IT to properly capture sonic shocks.

A sonic glitch appears in the rarefaction fan of the solutaahculated by the
AUSM-IT scheme, the AUSM-up scheme and the 'JCAM 2013’ scheme (see
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Figs. 22, 25-28). Note that this occurs faf, = 0 as well as forK, = 0.75
with the AUSM"-up scheme. In contrast, only a very light glitch occurs with
AUSMT scheme (see Fig. 24), using the interface sound speed ofUS&/A-up
scheme (see Appendix A). We conclude that, when AUSM-typerses are used,
a sonic glitch may be formed in a sonic rarefaction fan if thespure gradient term
is present in the mass flux expression. Of course, the saiteth ghay be removed
by including some numerical dissipation in the mass flux egpion. Note how-
ever that no sonic glitch appears in Fig. 29, with the SLAU=suh, even if its mass
flux expression contains a pressure gradient term (see ER. This indicates that
the sonic glitch does not always result from the presence masure gradient
term in the mass flux expression. Concerning the sonic ghtehconclude that it
is independent of the presence of an inertia term, as intelin the AUSM-IT
scheme.

For test 2 (see Figs. 31-36), conclusions are that the AUgM-schemes perform
well, provided that some pressure dissipation is include¢dde mass flux expression
(K, > 0) and that no velocity diffusion is included in the face pregsexpression
(K, = 0 for AUSM*-up). For this test case, the standard AUSNp scheme
(K, = 0.25 and K, = 0.75), the SLAU scheme and the momentum interpolation
scheme fail.

For test 3 (see Figs. 37-46), all schemes studied produdatzoso For the AUSM-
type schemes, it is again necessary to add pressure dissipatthe mass flux
(K, > 0) and to remove velocity diffusion in the face pressure dgdini(4, = 0
for AUSM*-up ; compare Figs. 40-41 and Figs. 42-43). The presenceadafiétia
term in the mass flux definition of the AUSM-IT scheme is ndutsathe quality
of the solution. The quality of the AUSM-IT scheme is comjmdeao that of the
AUSMT-up scheme with<,, = 0.
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Test| o, (kg/m?) | v, (m/s) | pr(Pa)| ¢r (kg/m?) | vr (M/S) | pr (Pa)

1 1 0.75 1 0.125 0 0.1

2 1 —19.59745 | 1 000.0 1 —19.59745 0.01

3 0.445 0.698 3.528 0.5 0 0.571
Table 2

Settings for the Riemann problems of Sec. 5.2.

Density (kg/m3) Velocity (m/s)

3.6 T T T T
3.4
3.2

3
2.8
2.6
2.4
2.2

2

18 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

[

Fig. 22. Test 1 of Sec. 5.2. AUSM-IT scheme with), = K7 = 0.25 (o) and exact (solid
line) solutions at time = 0.2 s.
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Density (kg/ms) Velocity (m/s)

1.2 3.6 T T T T
3.4
! 3.2
0.8 3
2.8
0.6 26
0.4 2.4
2.2
0.2 5
0 1.8

0 0.2 0.4 0.6 0.8 1

Fig. 23. Test 1 of Sec. 5.2. AUSM-IT scheme wif), = 0 and K; = 0.25 (o) and exact
(solid line) solutions at time = 0.2 s.

Density (kg/m3) Velocity (m/s)

Pressure (Pa) Energy (J)

12 T T T T 36 T T T T
3.4
3.2

3
2.8
2.6
2.4
2.2

2

18 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 24. Test 1 of Sec. 5.2. AUSMscheme ¢) and exact (solid line) solutions at time
t=0.2s.
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Density (kg/ms) Velocity (m/s)

1.2 3.6 T T T T

1
0.8
0.6
0.4
0.2

0 I I I I
0 0.2 0.4 0.6 0.8 1

Fig. 25. Test 1 of Sec. 5.2. AUSMup scheme withk), = 0.25, K, = 0.75 and f. given
by Eq. (24) (see Appendix Ap], and exact (solid line) solutions at time= 0.2 s.

Density (kg/m3) Velocity (m/s)

Pressure (Pa) Energy (J)
12 T T T T 36 T T T T

1
0.8
0.6
0.4
0.2

O 1 1 1 1 18 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 26. Test 1 of Sec. 5.2. AUSMup scheme withk,, = 0.25, K, = 0 and f. given by
Eq. (24) (see Appendix A}, and exact (solid line) solutions at time= 0.2 s.
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Density (kg/ms) Velocity (m/s)

0 0.2 0.4 0.6 0.8 1

Pressure (Pa) Energy (J)
3.8 T T T T

0 0.2 0.4 0.6 0.8 1

Fig. 27. Test 1 of Sec. 5.2. AUSMup scheme withk,, = 0.25, K, = 0.75 and f. = 1
(o), and exact (solid line) solutions at time= 0.2 s.

Density (kg/ms) Velocity (m/s)

3.6 T T T T

0 0.2 0.4 0.6 0.8 1

Fig. 28. Test 1 of Sec. 5.2. 'JCAM 2013’ schem#g ith 5 = 1 (see Eq. (26)) and exact
(solid line) solutions at timeé = 0.2 s.
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Density (kg/m3) Velocity (m/s)

Pressure (Pa) Energy (J)

12 T T T T 36 T T T
3.4
3.2
3
2.8
2.6
2.4
2.2
18 1 1 1 1

Fig. 29. Test 1 of Sec. 5.2. SLAU schem®& @nd exact (solid line) solutions at time
t=0.2s.

Density (kg/ms) Velocity (m/s)

3.8 T T T S

Fig. 30. Test 1 of Sec. 5.2. Momentum interpolation schemidésee Eq. (29)) and exact
(solid line) solutions at time = 0.2 s.
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Density (kg/m3) Velocity (m/s)
T T T T 5 T T T T

O R, N WM OO O N

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Pressure (Pa)

1000 ' ' ' ' i 2500
800 2000
600 1500
400 1000
200 500

0 0

0 0.2 0.4 0.6 0.8 1

Fig. 31. Test 2 of Sec. 5.2. AUSM-IT scheme with), = K7 = 0.25 (o) and exact (solid
line) solutions at time = 0.012 s.

Density (kg/m3) Velocity (m/s)
8 T T T O 5 T T T T
7F — ok i
6 -
5| -5+ y & -
4+ -10 -
3r ast & T
2+ e
1 -20 €
0 25 1 1 1 1
0 0 0.2 0.4 0.6 0.8 1
Energy (J)
i3 T T
1000 2500
800 2000
600 1500
400 1000
200 500
0 ; 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 32. Test 2 of Sec. 5.2. AUSM-IT scheme wif), = 0 and K; = 0.25 (o) and exact
(solid line) solutions at timeé = 0.012 s.
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Density (kg/m3) Velocity (m/s)

8 T T T T 5 T T T T
7r o] E
6
5
4
3
2
1 &
0
0 0.2 0.4 0.6 0.8 1
Pressure (Pa)

1000 25001
800 2000
600 1500
400 1000
200 500

0 0

0 0.2 0.4 0.6 0.8 1

Fig. 33. Test 2 of Sec. 5.2. AUSMscheme ¢) and exact (solid line) solutions at time
t=0.012s.

Density (kg/m3) Velocity (m/s)

8 T T T T 5 T T T T

7 -

6 -

5 -

4 -

3 -

2 -

1 (e

0
0

1000 fz 25001 ]
800 2000 -
600 1500 1
400 1000 4
200 500 —

0t 1 1 1 | 7 'R = 1 1 1 | @
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 34. Test 2 of Sec. 5.2. AUSMup scheme withK,, = 0.25, K, = 0 and f. given by
Eq. (24) (see Appendix A}, and exact (solid line) solutions at time= 0.012 s.
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Density (kg/m3) Velocity (m/s)

8 T T T T 5 T T T T
7
6
5
4
3
2
1 &
0
0 0.2 0.4 0.6 0.8 1
Pressure (Pa)
T T T T e -
1000 = : 2500
800 2000 E
600 1500 —
400 1000 —
200 500 E
0 Ot ] ] 1 | €
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 35. Test 2 of Sec. 5.2. AUSMup scheme withk,, = 0.25, K, = 0 and f. = 1 (o),
and exact (solid line) solutions at time= 0.012 s.

Density (kg/m3) Velocity (m/s)

8 T T T T 5 T T T T
7F o _
6 - _
5 -
4 -
3 -
2 -
1
0

0

1000 ez, 25001

800 2000

600 1500

400 1000

200 500

0 | | | i 5 0

0 0.2 0.4 0.6 0.8 1

Fig. 36. Test 2 of Sec. 5.2. 'JCAM 2013’ schem#g ith 5 = 1 (see Eq. (26)) and exact
(solid line) solutions at timeé = 0.012 s.
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Density (kg/m3) Velocity (m/s)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 37. Test 3 of Sec. 5.2. AUSM-IT scheme wih = 0.25 and K7 = 0.25 (o) and exact
(solid line) solutions at timeé = 0.1 s.

Density (kg/ms) Velocity (m/s)

0 0.2 0.4 0.6 . 0 0.2 0.4 0.6 0.8 1

Fig. 38. Test 3 of Sec. 5.2. AUSM-IT scheme wif), = 0 and K; = 0.25 (o) and exact
(solid line) solutions at time = 0.1 s.
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Density (kg/ms) Velocity (m/s)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 39. Test 3 of Sec. 5.2. AUSMscheme ¢) and exact (solid line) solutions at time
t=0.1s.

Density (kg/ms) Velocity (m/s)

0

Fig. 40. Test 3 of Sec. 5.2. AUSMup scheme withk, = 0.25, K, = 0.75 and f. given
by Eq. (24) (see Appendix Ay}, and exact (solid line) solutions at tinie= 0.1 s.
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Density (kg/m3) Velocity (m/s)

0 1 1 1 1 0 1 1 1 b
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Pressure (Pa) Energy (J)

0 . . . . 0

Fig. 41. Test 3 of Sec. 5.2. AUSMup scheme withk,, = 0.25, K, = 0.75 and f. = 1
(o), and exact (solid line) solutions at time= 0.1 s.

Density (kg/ms) Velocity (m/s)

Pressure (Pa)
4 T T T T T T T T

0 0.2 0.4 0.6 0.8 1

Fig. 42. Test 3 of Sec. 5.2. AUSMup scheme withK,, = 0.25, K, = 0 and f. given by
Eq. (24) (see Appendix A}, and exact (solid line) solutions at time= 0.1 s.
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Density (kg/ms) Velocity (m/s)

Pressure (Pa)
4 T T T T T T T

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 43. Test 3 of Sec. 5.2. AUSMup scheme withk, = 0.25, K, = 0 andf. = 1 (o),
and exact (solid line) solutions at tinhe= 0.1 s.

Density (kg/ms) Velocity (m/s)

0

Fig. 44. Test 3 of Sec. 5.2. 'JCAM 2013’ schem#g ith 5 = 1 (see Eq. (26)) and exact
(solid line) solutions at timeé = 0.1 s.
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Density (kg/m3) Velocity (m/s)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 45. Test 3 of Sec. 5.2. SLAU schem®& @nd exact (solid line) solutions at time
t=0.1s.

Density (kg/ms) Velocity (m/s)

0

Fig. 46. Test 3 of Sec. 5.2. Momentum interpolation schemidsee Eq. (29)) and exact
(solid line) solutions at time = 0.1 s.
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5.3 Conclusion concerning the choice of the parameterseoAthSM-IT scheme

From the previous numerical experiments the following ¢gpivalues of the pa-
rameters are suggested:

o=1, K; = K, =0.25.

Moreover, no velocity diffusion is added in the face presgii, = 0, referring to
the AUSM'-up scheme, see Eq. (25)).

6 Conclusion

The proposed approach essentially consists in the inttmatuof an inertia term
in the face velocity expression. It was applied in the presardy to the AUSM -
up scheme by Liou [11]. The resulting scheme, called AUSMHIT for Inertia
Term), allows full Mach number range calculations, since it iseatension of the
AUSM*-up scheme which is retrieved when the local Mach numberggtahan
unity.

The high quality of the results obtained for acoustic wavekw Mach number

flows is about the same as by momentum interpolation. Thenefas this good

performance is the way the inertia term is introduced in tbd@ov-type scheme.
For periodic boundary conditions, it allows the conseomwf the discrete linear
acoustic energy in the low Mach number limit, at the first ordéis is achieved

if the way of interpolation of pressure tends to the centr@rpolation in the limit

M, — 0. This acoustic energy conservation property at the disd¢estl conforms

to the continuous asymptotic analysis. The superiorityhefgroposed Godunov-
type scheme over the momentum interpolation technique femBnn problems
was numerically demonstrated.

Taking into account an inertia term for velocity interpaatis applicable in princi-
ple to any Godunov-type scheme. Thus, the approach profosieelpresent study
to design the AUSM-IT scheme from the AUSMip scheme can be applied to
any other Godunov-type scheme, in order to obtain full Magmiber range high
quality results.

Appendix A AUSM*-up, AUSMT, 'JCAM 2103’, SLAU and momentum in-
terpolation

3-D version, except momentum interpolation, for sake ofengation.
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Notations:

n: unit normal to the face

v, Vi
Vn—i_:VL'n’Vn_:VR‘n’ ML:ﬁ7 MR:ﬁ
1/2 1/2
& () = | 31 siBn(m) il 21
P S 1@ F m) £ amln? =17 ol <1

A.1 AUSM [10], AUSM*-up [11] and 'JCAM 2013’ [14]

The AUSM"-up scheme is first considered.

e Transporting face velocity:

K —2
'U1T/2 = C1/2 M1/2 — m maX{l — oM 70} (pR —pL) (23)
Mijo = fi(My) + far (Mg)
1
oy Js(mElm]), Im| > 1
far(m) = {il(mi 12+im?-1)?, |m <1
4 8 9
—_ oL + or
2
(24)

Fo(Mo) = Mp(2 — M), M = min {1, max{3T", M2} }
MQ — (VnJr)Q + (Vn7>2
20%/2
c1j2 = min{éy, ér} , ¢ = (c*)Q/maX{c*, VY, ér= (c*)z/ max{c*, =V "}

2(y — 1

(C*)Q — (/7 )H
v+1

0<K, <1, 0<1; typically: K, =025, o0=1

e Face pressure:

P12 = fpa(Mi)pL + [, o(MR)pr
— Ky f (M) foo(Mg) (oL + 0r) fe(Mo)cr2(V,, = V,7) (25)

where
£ () = 5(1 &=sign(m)) , m) > 1
b T(mE£1)*2Fm) £am(m? —1)? | |m| <1
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a = %[_4+ 5(f.(My))?*] , 0< K, <1 :; typically: K, =0.75

e Convected quantities: upwinded

e The AUSM' scheme is obtained from the AUSMup scheme by taking’, = 0

in Eq. (23), andk, = 0 along witha: = 3/16 in Eq. (25). Note that the interface
speed of sound retained for AUSMs the same as the one for AUSMip, as it
was suggested by Liou in [11] to address the problem of epfpogservation.

¢ 'JCAM 2013": The transporting face velocity is

K —
L max{1 —O'MQ,O}

0 [fc(MO)Cl/2 + ﬁ}

UlT/Q = C1/2 M1/2 -

X (pr — pL) (26)

wheres € O(1). The face pressure is identical to the one of the AUSMheme.
A.2 SLAU [4,21]

e Mass flux:

(Z\A41/2)

1 — - X
(00)172 = 5 [on(ViF +[Vl") + en(V, = V27| - Ap (27)
2 2C1/2

where
V" =0 =gIVul +gVi[| , Vil =1 =gVl + 9V, ]|

oV, 4 0|V, |

Vil =
OL + Or
g = —max { min{ My, 0}, —1} min { max{ Mg, 0}, 1}
cs = CL + Cr
2

1 \/u%+vﬁ+w%+u§+vﬁ+wﬁ}

() = (1= MY, Fhya=min {1, 2

C1/2
e Face pressure ('SLAU 2’ version proposed in [4]):

pL+pr | Joo(ML) = f,0(Mg)
_'_
2 2
+\/ui+vﬁ+wﬁ+u§+v§+w§
2

P12 = (pL — pR)

( ;o(ML) + foo(Mgr) — 1)oc12  (28)

whereg = 3 (o1, + or)
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A.3 Momentum interpolation (MI) [15,16]

e Mass flux (1-D version and velocity is assumed to be positive)

B9 1 Az
SRTCH (pi+1 _pi) -

(0V)it1/2 = d¢(0v)it1/2- (29)

A2 Aiqaye Aiy1)2

In this expression,

2\4, " A,

Biyip 1 (Bi Bi-l—l)
Ai+1/2 2
whereA; andB; are terms in the momentum equation of ne@decording to

Bi = Ai(0v); + piv1j2 — pi—172 + Ax dy(ov);

and

1 1,1 1
Aiyi)2 - §(Z * Ai—f—l).

There,A; = viy1/2 andA; 1, = v,43/2, taken at the previous iteration or time-step
and defined with the AUSM expression.

e Face pressure. In all the presented calculations with mamemterpolation, the
face pressure is the one of the AUSMcheme:

D12 = f;3/16(ML)pL + f;;?,/w(MR)pR

Appendix B Pressure correction algorithm [15]

To simplify the presentation, the flow is 1-D and the velo@tpositive. Each time-
stepn — n + 1 is decomposed into iterations denoted by the superscrifst the
first iteration of the time-step, one has: = n. The superscriptsx, x and/ denote
'pre-predicted’, predicted and corrected quantities chaterationk. «» denotes the
slope limiter. Practically, no more than five iterations altewed, and the so-called
Bounded Central slope limiter was chosen in the unsteadyMaeh number flow
calculations. The ratid\t/ Az is denoted byr.
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B.1 ’Pre-prediction’ step: Construction of the common porting velocity
e o7 from

1 ok n n—1 ok 1 k k k k

5(301‘ — 4o +07) + {Qi + 5%(@ )(oi — Qz;l)}viﬂﬂ

1
- [QZL + §¢i—1(9k)(9f—1 - Q?—2)}vf—1/2 =0

I'C *k
o ()i =orvf , (eB) =g + 5o (vf)?

e Transporting face velocity:

My
Ky — oM k +.
E**CZ;I/:fc(Mo) max{l — oM ,0}Ap", AUSMT-upcf. (23)
SLAU, %%
(93+7/ , Oip1p = 2EoR SLAU cf. (27)
i+1/2
T — v MI,**
Vitr1/2 (gggfiJrl/Q , Oit1j2 = QL‘;'QR’ MI cf. (29)
i+1/2
Kk *k _ max{l—aﬁ{O}
Ci+1/2Mi+1/2 Cﬁlmfc(MO)
ol o —d4o™ i
x le%’f + KA (DT ”1/2)], AUSM-IT cf. (16)

B.2 Prediction step

o p; =pf

e o7 from

1 . 1
5o (308 — 408 + o) + [of + v (e — o) ok

1
- [QZ—1 + §¢i—1(9k)(9f—1 - Q?—Q)}%‘T—UQ =0
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e (ov); from

- [3(00); — 4(e0)} + (o0)7 ]
+ (00 + 5usl(e)(ev)f — (@) il]ofhe

~ [(eo)ies + s (@)} — (e0)tal]it o

+P§+1/2 - pf71/2 =0

k v’.*Q
o (0B); = 25+ 1@ (ol = (oE); + ph

B.3 Correction step

e p, from
1 _
o= BB —4(eE) + (0B){ ™" + (evH )i — (evH)[™), =0 (30)
where
(QUH)le/Q = (QH);H/QUZ‘TH/Q + H:+1/2<QU);‘+1/2 + (QH);‘+1/2U1‘T+1/2
(eH)ii1/2 » Hiyi -upwinded in second-order accurate form
fy
(QH);—H/Q = ﬁpgﬂp
Pirijo = Loape(MO)P; + fospne(Mis)Pia (31)
(Q’U);+1/2 = (Qv);Jrl/Q,Momentum + (Qv);Jrl/Q,Flux
2 . .
(gv);—i—l/Q,Momentum = _gT(p;—i—l - p;) (SIMPLE apprOXImatlon)
(Qv);—i—l/Q,Flux = _"fz'+1/2(p;+1 - ;)
KP
05172641/ (ME) L
X max{l — (M:H/Q)za, 0}o;, AUSMT-upcf. (23)
Riv1/2 = .
2T e SLAU cf. (27)
Cit1/2
0, MI cf. (29) or AUSM-ITcf. (16)
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e (ov); from

%(ev)z = —T[{@v); + %wi(@v)’f) [(0v); = (ev)ii ]} vl

=l t gos(@) )~ (@)l

- 7'(11924r1/2 - p271/2)

B.4 Updates

¢ Cell quantities:

7

j
pitt=pf4+p; , o =0 <1 - ?) . (o0)I = (ov)F + (ov);]

* pi
(0E)J* = (0E); + oo (eH)FH = (oE)F +pit!

¢ Cell-face quantities:

S (METPET + fo (M
— Ko [ (M) £ (M)

Yo%

x (08 + of™) f.(Mp)

X (o™ —of™h),  AUSMT-upcf. (25)

+ k+1 - k+1
il — Pr’i+1+P1§+l+fp,o(ML )~ FpoMp")
i+1/2 = 2 2
k+1\2 k+1\2
k+1 k+1 (vL )+(UR )
(i —PRT) H

X(fro(MEM) + fro(MET) = 1)
xo" e, SLAUCf. (28)

;a(M{f“)pf“ + f;a(M{;“)p{;“, AUSM-IT cf. (17) or MI

For any used numerical flux:

K+l k+1 gkl
Vit1ye = Citr oMt

with ¢/, and M, ;, defined in Appendix A. Note that this cell-face velocity i®th
AUSMT cell-face velocity [10].
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