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Abstract

For low Mach number flow calculation, when acoustic waves have to be captured, semi-
implicit methods allow to avoid the time-step limitation that arises when explicit schemes
are used. A method is suggested to solve the boundary equations so that the semi-implicitness
of the algorithm is maintained, as well as its pressure-velocity coupling. This method
is studied theoretically and numerically, in the low Mach number regime. Partially non-
reflective characteristic-based boundary conditions, with the linear relaxation form sug-
gested by Rudy and Strikwerda, [J. Comput. Phys.36:55–70, 1980], are considered. It is
shown that their properties, well known in the framework of explicit schemes, are recov-
ered with the proposed semi-implicit treatment and an acoustic CFL number significantly
larger than unity.

Key words: Characteristic-based boundary conditions, Low Mach number flow,
Semi-implicit algorithm, Acoustics

1 Introduction

For low Mach number flow calculations that include the capture of acoustic waves
propagating in the flow, semi-implicit methods allow to avoid the time-step limi-
tation that arises when explicit schemes are used. Then, it is of particular impor-
tance to maintain the semi-implicitness of the algorithm when solving the bound-
ary equations. Among the variety of artificial boundary techniques (see Colonius
[1]), characteristic-based boundary conditions, as suggested by Thompson [19] and
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Poinsot and Lele [12], are widely used. An important advantage of such an ap-
proach is that the computational domain does not have to be much larger than
the flow region of interest. Therefore, the computational cost is not drastically in-
creased by the boundary treatment. Despite the important amount of studies on
characteristic-based boundary conditions, according to the authors’ knowledge, no
investigation of the semi-implicit solution of characteristic-based boundary equa-
tions in SIMPLE-type algorithms has been published1 . The aim of the present
paper is to provide a detailed description of an effective semi-implicit solution of
characteristic-based boundary equations.

In addition to computational cost considerations, the benefits of characteristic-
based boundary conditions are recognized when acoustic waves have to be prop-
erly handled at the boundary (see Ref. [2]). For example, thespecification of an
incoming acoustic wave at the outlet can be carried out by handling the wave am-
plitudes in a straightforward manner, and this is not the case when a time-varying
outflow pressure is simply imposed. Furthermore, the characteristic-based approach
allows radiation of acoustic waves to the far field,i.e. transparent – or non-reflective
– boundary conditions. This is suitable when the sound field is of interest, and
avoids convergence problems caused by unphysical reflections. Let us underline
that characteristic-based boundary conditions are not theonly way to obtain trans-
parency and to facilitate proper handling of acoustics at the boundary (seee.g.Refs.
[3,16], where a buffer zone approach combined with a characteristic analysis allows
also both the proper handling of boundary quantities and thedamping of outgoing
acoustic waves). The present study is focused only on the class of characteristic-
based methods for the boundary conditions.

As a first approach of such characteristic-based treatment,the linear relaxation
form of the non-reflective condition, suggested by Rudy and Strikwerda [15], is
employed in the present study. It can be understood as a weakening of the crude
full non-reflective condition, which consists in setting tozero the temporal rate of
change of the entering acoustic wave amplitude. The linear relaxation method rep-
resents a trade-off between the imposition of variables andthe partial reflection of
acoustic waves. This is carried out by filtering the enteringacoustic waves, so that
only the high frequency band is concerned with the non-reflective treatment. Selle
et al. [17] established that the relaxation coefficient is proportional to the highest
frequency of the acoustic waves sent back into the computational domain. There-
fore, the smaller the gap between the current and the imposedpressures, the larger
the band of the reflected acoustic waves at the outlet. Following this approach, the
linear relaxation must be applied to the pressure at the outlet, which behaves as
a low-pass filter for the reflected waves. In particular, the direct imposition of the
static pressure at the outlet is fully reflective for acoustic waves. Combined with the

1 Some numerical simulations with a semi-implicit pressure correction method were pre-
sented in Ref. [20], but without information concerning themethod employed for the semi-
implicit boundary treatment.
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time evolution equations of the primitive variables of the flow (see Refs. [12,19]),
the relaxation form appears suitable to avoid the drift of the pressure which may
arise if the full non-reflective conditions are applied. Theallowed reflection of low
frequency waves permits to relate the pressure variable inside the domain to the
static pressure defined outside, thus ensuring the well-posedness of the problem
(seee.g.[12] for details on well-posedness). Similar results concern the velocity at
the inlet of the computational domain.

This paper is organized as follows. First, the algorithmic framework used, which
consists in a SIMPLE-type algorithm in co-located arrangement with second-order
accuracy in time and space, is described in section 2. A focuson the pressure-
velocity coupling involved in the interior of the computational domain was found
necessary since the boundary treatment is designed in such away that this pressure-
velocity coupling is accounted for therein. Then, in section 3, characteristic-based
boundary conditions with the linear relaxation approach employed by Rudy and
Strikwerda [15] are presented. An expression for the relaxation coefficient of the
velocity at the inlet is suggested. The semi-implicit solution of the characteristic-
based boundary conditions is detailed in section 4. Both theinlet and the outlet
treatments are considered. Finally, in section 5, the capability of this boundary
treatment is investigated by considering 1-D and 2-D test cases with linear acoustic
waves propagating in low Mach number flows.

The key point of the suggested approach is the derivation from the momentum and
velocity equations of a relation between pressure and velocity corrections at the
boundary, that mimics the SIMPLE approximation used in the interior of the com-
putational domain. This relation, together with the conservation equations and the
equations satisfied by the temporal rate of change of the waveamplitudes, written in
the interior and at the boundary of the computational domain, respectively, allows
the calculation of the pressure and velocity corrections onthe boundary cells.

2 Algorithm for the interior of the computational domain

In this section, the pressure correction algorithm for the interior of the computa-
tional domain is presented. In Ref. [10], we described a moregeneral formulation
of such predictor-corrector algorithm. A simplified version of this formulation is
adopted in the present contribution, with the same results for the set of computa-
tions considered. A step-by-step presentation of the algorithm is given here. For
explanations on the theoretical background of the used algorithm, the reader is re-
ferred to [10]. In the present section, it will be worth describing with details the
pressure-velocity coupling aspects in the basic algorithm, since they are mimicked
by the proposed treatment of the boundary equations explained in section 4.

For sake of simplicity, a one-dimensional flow of a perfect and ideal gas in a con-
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stant section pipe is considered. From now on,x denotes the coordinate in the flow
direction. The flow is governed by the Euler equations,

∂t̺+ ∂x(̺v) = 0, (1a)
∂t(̺v) + ∂x(̺v

2 + p) = 0, (1b)
∂t(̺E) + ∂x(̺vH) = 0, (1c)

E = e +
1

2
v2, ̺H = ̺E + p, ̺e =

p

γ − 1
, (1d)

wheret, ̺, p, v, e, E andH represent time, density, pressure, velocity, internal
energy, total energy and total enthalpy per unit mass, respectively. Furthermore,γ
denotes the specific heats ratio. Thex axis along the pipe is divided intoN cells of
length∆x. A finite volume formulation is applied, with co-located variables at the
centres of the cells.

The solution procedure is in classic prediction-correction form. Each time-stepn→
n+ 1 is decomposed into a predictor step determining variables at an intermediate
level denoted by⋆, followed by a corrector step with correction quantities denoted
by ′. Furthermore, since the equations are non-linear, iterations denoted byk are
used in between the time levelsn andn+ 1. At the first iteration, variables at level
k are equal to those at time leveln. The velocity written with subscripti + 1/2
is the transporting velocity. The velocity as a transportedquantity is part of the
transported momentum and is defined with a slope-limiter method.

• Prediction. Predicted values are derived from the continuity equation(1a) and
the momentum equation (1b). For example, the momentum equation is written as

1

2τ

[

3(̺v)⋆i − 4(̺v)ni + (̺v)n−1
i

]

+

{

(̺v)⋆i +
1

2
ψi

(

(̺v)k
) [

(̺v)ki − (̺v)ki−1

]

}

vki+1/2

−
{

(̺v)⋆i−1 +
1

2
ψi−1

(

(̺v)k
) [

(̺v)ki−1 − (̺v)ki−2

]

}

vki−1/2

+ pki+1/2 − pki−1/2 = 0. (2)

The face value of pressure is taken through the low Mach number adaptation of
AUSM+ [7], with the scaling function of the AUSM+-up scheme [8], but without
the velocity diffusion term in the pressure interpolation formula and without the
pressure dissipation term in the definition of the Mach number at the face [10]. This
means that the face pressure is determined by a polynomial interpolation between
values on both sides of the face, obtained from the definition:

pi+1/2 = f+
p (ML)pL + f−

p (MR)pR, (3)

where the polynomialsf+
p andf−

p are function of the Mach number on both sides,
and where the face values are obtained by means of the slope-limiter method. The
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face value of the velocityvki+1/2 is calculated through the AUSM+ scheme. The dis-
cretization of the continuity equation is similar as the oneof the momentum equa-
tion. Thus, the time integration is second-order backward and the space discretiza-
tion is second-order TVD, by means of the limiter function denoted byψ. The pa-
rameterτ stands formally for∆t/∆x and is determined in practice byCFLv/vmax,
whereCFLv denotes a chosen convective CFL number andvmax is the maximum
value of the convective velocity in the field. The convectiveterms in Eq. (2) and in
the discretized continuity equation are assumed to be positive, as they are positive
in the computations considered later.

From the predicted values of density̺⋆i and momentum(̺v)⋆i , predicted values
of velocity v⋆i are determined at the nodes. Combined withp⋆ = pk, predicted
valuese⋆i ,E

⋆
i and(̺H)⋆i are obtained according to Eqs. (1d). Next, predicted values

of the face pressurep⋆i+1/2 are calculated with the same procedure as forpki+1/2.
To calculate predicted values of face velocityv⋆i+1/2, the Momentum Interpolation
technique is used. It is based on the observation that the momentum equation (2) at
a node is of the form

Bi = Ai(̺v)
⋆
i +

1

2τ

[

3(̺v)⋆i − 4(̺v)ni + (̺v)n−1
i

]

+ pki+1/2 − pki−1/2,

with

Bi = −
{

1

2
ψi

(

(̺v)k
) [

(̺v)ki − (̺v)ki−1

]

}

vki+1/2

+

{

(̺v)⋆i−1 +
1

2
ψi−1

(

(̺v)k
) [

(̺v)ki−1 − (̺v)ki−2

]

}

vki−1/2

andAi = vki+1/2. A similar equation is postulated at a face as

Bi+1/2 = Ai+1/2(̺v)
⋆
i+1/2+

1

2τ

[

3(̺v)⋆i+1/2−4(̺v)ni+1/2+(̺v)n−1
i+1/2

]

+pki+1−pki ,

where two terms in the balance of the momentum fluxes are interpolated, but where
the inertia term and the pressure term are written directly at the face. The so-called
classic Rhie-Chow interpolation is used, namely:

2

Ai+1/2

=
1

Ai

+
1

Ai+1

,
Bi+1/2

Ai+1/2

=
Bi

Ai

+
Bi+1

Ai+1

.

The precise way of interpolation is in fact not critical, provided that the linear inter-
polation involves convective terms only, without a part of the inertia term [6,10,11].
The transporting face velocity is deduced from the momentumequation by

v⋆i+1/2 = (̺v)⋆i+1/2

/

̺⋆i+1/2,

where the face density is defined with the slope-limiter method.
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• Correction. As regards pressure-velocity coupling, a critical point of the algo-
rithm is the relation between pressure corrections and velocity corrections. Follow-
ing the SIMPLE approximation, an explicit relation betweenmomentum correc-
tions and pressure corrections can then be obtained from themomentum equation,
as

(

vki+1/2 +
3

2τ

)

(̺v)′i = −(p′i+1/2 − p′i−1/2), (4)

or else, in a even further simplified form which is chosen in the present algorithm,

(

vki +
3

2τ

)

(̺v)′i = −(p′i+1/2 − p′i−1/2). (5)

Considering the smallness of the time-step that has been used in the cases con-
sidered in the present study, numerical results with Eq. (4)and Eq. (5), or else,
by approximating the left hand side of Eq. (5) by3(̺v)′i/(2τ), are in fact found
to be identical. Thus, the exact form of the SIMPLE approximation adopted in the
present study appears to be not critical. In Eq. (5),p′i+1/2 andp′i−1/2 are interpolated
with the AUSM+-up polynomials (see Eq. (3)), as

p′i+1/2 = f+
p (M

⋆
i )p

′
i + f−

p (M
⋆
i+1)p

′
i+1.

Corrections for pressure are derived from the energy equation. This equation is
discretized in the same style as the continuity equation andthe momentum equation
by

1

2τ

[

3(̺E)⋆i + 3(̺E)′i − 4(̺E)ni + (̺E)n−1
i

]

+

{

(̺H)⋆i +
1

2
ψi ((̺H)⋆)

[

(̺H)⋆i − (̺H)⋆i−1

]

}

v⋆i+1/2

−
{

(̺H)⋆i−1 +
1

2
ψi−1 ((̺H)⋆)

[

(̺H)⋆i−1 − (̺H)⋆i−2

]

}

v⋆i−1/2

+ (̺Hv)′i+1/2 − (̺Hv)′i−1/2 = 0. (6)

The corrections on the enthalpy flux terms are written as

(̺Hv)′i+1/2 = H⋆
i+1/2(̺v)

′
i+1/2 + (̺H)′i+1/2v

⋆
i+1/2, (7)

withH⋆
i+1/2 = (̺H)⋆i+1/2/̺

⋆
i+1/2, where both terms in the ratio are defined with the

slope-limiter method. The corrections for total energy andtotal enthalpy are written
as

(̺E)′i =
1

γ − 1
p′i, (̺H)′i+1/2 =

γ

γ − 1
p′i+1/2. (8)

The momentum correction in Eq. (7) is written in SIMPLE-style, similarly to (5),
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as
(

v⋆i+1/2 +
3

2τ

)

(̺v)′i+1/2 = −(p′i+1 − p′i). (9)

Substitution of (8) and (9) into (7) and (6) leads to an extended Poisson equation
for the pressure corrections, where, again, gradient termsare approximated to first-
order. This equation is solved by a Gaussian elimination procedure. The pressure
corrections are then further used to determine correctionsof the momentum values
in the nodes and at the faces by (5) and (9). Density is corrected by̺′i = (∂p̺)

⋆
i p

′
i.

The whole procedure is repeated until convergence. This results then in equations
for mass, momentum and energy, discretized in the same way asthe momentum
equation (2), with values on the⋆−level andk−level replaced by values on the
time leveln + 1. All equations use the same value of the transporting velocity at
the faces.

3 Characteristic-based boundary conditions: linear relaxation form

In this section, the temporal rate of change of the convective and acoustic wave
amplitudes is introduced, as well as the linear relaxation form for the partially non-
reflective treatment at the inlet and at the outlet. The justification of this approach
at low Mach number is addressed in the Appendix section.

First, it is worth noticing that the following characteristic relations are derived from
the set (1) of equations (seee.g.Thompson [19]),

dp

̺c
− dv = 0 on dtx = v − c,

d̺− 1

c2
dp = 0 on dtx = v,

dp

̺c
+ dv = 0 on dtx = v + c.

Then, let us set

L1 = (v − c)

(

1

̺c
∂xp− ∂xv

)

, (10a)

L2 = v
(

∂x̺−
1

c2
∂xp

)

, (10b)

L3 = (v + c)

(

1

̺c
∂xp+ ∂xv

)

. (10c)
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The quantitiesLi, defined fori = 1, 2, 3 in 1-D, are interpreted as the temporal
rate of change of the wave amplitudes at the boundary [12,13]. They satisfy the
so-called LODI (for Locally One Dimensional and Inviscid) equations [12,19],

∂t̺+
̺

2c
(L1 + L3) + L2 = 0, (11a)

∂tv +
1

2
(L3 − L1) = 0, (11b)

∂tp+
̺c

2
(L1 + L3) = 0. (11c)

Following Ref. [15], a linear relaxation form of the full non-reflective outlet condi-
tionL1 = 0 can be considered,

L1 = Kp (p− p†), (12)

wherep† andp are the target and the current value of the pressure at the outlet,
respectively. The relaxation coefficientKp is related to the filtering level of outgo-
ing acoustic waves (see Ref. [17]), so thatKp 6= 0 corresponds to an acoustically
partially reflective outlet. By using Eq. (12), the reflection of high frequency out-
going acoustic waves can be avoided while maintaining a given value of the mean
pressure.

Using Eq. (12) under the hypothesis of a constant target pressure, the reflection
coefficient at the outlet is given by [17]:

Routlet(ω) = − 1

1 − i 2ω
̺cKp

. (13)

Assuming thatKp is independent of the frequency, Selleet al. [17] derived its
expression from a particular value of the frequency. They chose the frequency that
corresponds to the largest acoustic wavelength obtainablein a duct of lengthL.
Such a frequency, so-called cut-off frequency, was estimated as

fcut-off =
ωcut-off

2π
=

(1−M2
max)cmin

4L
,

whereMmax and cmin designate the maximum Mach number and the minimum
sound speed in the domain, respectively. Then, Selleet al. [17] required that half
of the acoustic energy would be fed back into the domain for anacoustic wave of
frequencyfcut-off crossing the outlet section,i.e.:

|Routlet(ωcut-off)|2 = 1/2. (14)

Combination of relations (13) and (14) provides the expression ofKp:

Kp =
π(1−M2

max)

̺L
. (15)
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The role of the factor1/2 in the right hand side of Eq. (14) will be illustrated by
numerical experiments in section 5, as well as in the similarequation suggested
underneath for the inlet treatment.

Similarly as for the outlet, a linear relaxation of the full non-reflective condition
L3 = 0 can be considered at the inlet, as

L3 = Kv(v − v†), (16)

wherev† is the target velocity. To obtain a suitable expression ofKv, a frequency
analysis similar to the one given in Ref. [17] yields2

Rinlet(ω) =
1

1− i 2ω
Kv

. (17)

Next, assuming that at the inlet section, the reflection coefficient is, again, such that
|Rinlet(ωcut-off)|2 = 1/2, provides the expression ofKv, namely:

Kv =
π(1−M2

max)cmin

L
. (18)

4 Semi-implicit treatment of the characteristic-based boundary conditions

In this section, a method to solve the boundary equations (11) with the relaxation
forms given in section 3, in combination with the algorithm used in the interior of
the computational domain, is described. It is achieved by introducing ghost cells at
the inlet and at the outlet of the domain. In the one-dimensional case considered in
this section, two ghost cells are introduced at each extremity of the domain, in order
to use second-order accurate finite differences for the gradients. The ghost cells are
numbered1 and2 at the inlet, andN − 1 andN at the outlet. On these ghost cells,
the primitive variables density, velocity and pressure, which are the unknowns of
the LODI equations (11), are calculated following the prediction-correction proce-
dure used for the interior solution. This allows to relate predicted and correction
values on ghost cells to predicted and correction values of the interior solution,
respectively, in order to mimic the suitable pressure-velocity coupling used in the
interior algorithm.

2 Expression (17) of the reflection coefficient at the inlet wasalso considered in Ref. [13].
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4.1 Inlet treatment

At the inlet, the temporal rate of change of the amplitude of the entropic waves is
written as

L2 = K̺(̺− ̺†), (19)

where̺† is the target inlet density andK̺ a relaxation coefficient. Furthermore,
from Eq. (18),

L3 = χin
v − v†

L
, χin = π(1−M2

max)cmin, (20)

wherev† is the target inlet velocity. Eqs. (19) and (20) are used on cells 1 and2.
Moreover,L1 is given by Eq. (10a).

• Prediction. ̺⋆1 is calculated from the continuity equation (11a),

3̺⋆1 − 4̺n1 + ̺n−1
1

2∆t
+
(

̺

2c

)k

1
χin

vk1 − v†

L
−
(

̺

2c

)k

1
(v − c)k1

−3vk1 + 4vk2 − vk3
2∆x

+
(v − c)k1
2(ck1)

2

−3pk1 + 4pk2 − pk3
∆x

+K̺(̺
⋆
1 − ̺†) = 0 (21)

̺⋆2 is calculated similarly from the mass equation (11a) written on cell2.

From the velocity equation (11b) written on cell2,

3v⋆2 − 4vn2 + vn−1
2

2∆t
+

1

2
(v − c)k2

−3v⋆2 + 4v⋆3 − v⋆4
2∆x

− 1

2

(

v − c

̺c

)k

2

−3pk2 + 4pk3 − pk4
2∆x

+
1

2
χin

v⋆2 − v†

L
= 0 (22)

v⋆3 andv⋆4 are unknown at this stage. However, with the momentum equation (2)
written on cells3 and4, a linear system is obtained, allowing to computev⋆2, v⋆3 as
well asv⋆4. Then, knowingv⋆2 andv⋆3 , v⋆1 can be directly calculated from the velocity
equation (11b) written on cell1.

• Correction. First, Eq. (5), which is valid for the cells located in the interior of the
computational domain, is simplified to

(̺v)′i = −2

3
τ(p′i+1/2 − p′i−1/2). (23)

This simplification is justified by the very small values of the convectiveCFL num-
ber that we will use in the numerical tests. On cell3, the velocity correction is
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deduced as

v′3 = − ∆t

3̺⋆3∆x
(p′4 − p′2), (24)

where the pressure has been interpolated centrally (choiceconsistent with AUSM
pressure interpolation at low Mach number). The velocity equation (11b) on cell2
and on iteration levelk + 1, is

3vk+1
2 − 4vn2 + vn−1

2

2∆t
+

1

2
(v − c)k2

−3vk+1
2 + 4vk+1

3 − vk+1
4

2∆x

− 1

2

(

v − c

̺c

)k

2

−3pk+1
2 + 4pk+1

3 − pk+1
4

2∆x
+

1

2
χin

vk+1
2 − v†

L
= 0 (25)

From Eqs. (22) and (25), and considering the gradients at thefirst order accurate
approximation, follows

3v′2
2∆t

+
1

2
(v − c)k2

v′3 − v′2
∆x

− 1

2

(

v − c

̺c

)k

2

p′3 − p′2
∆x

+
1

2
χin

v′2
L

= 0. (26)

Notice that the derivation of Eq. (26) from the velocity equation (11b) at the inlet,
is similar to the derivation of Eq. (5) from the momentum equation in the interior
of the computational domain. With Eq. (24), the velocity correction on cell2 can
be expressed as

v′2 = A2p
′
2 + B2p

′
3 + C2p′4, (27)

where

A2 = −




1

2∆x

(

v − c

̺c

)k

2

+
1

2∆x
(v − c)k2

∆t

3̺⋆3∆x





/

D2,

B2 =
1

2∆x

(

v − c

̺c

)k

2

/

D2,

C2 =
1

2∆x
(v − c)k2

∆t

3̺⋆3∆x

/

D2,

D2 =
3

2∆t
− 1

2∆x
(v − c)k2 +

χin

2L
. (28)

The pressure equation (11c) on cell2, is

3pk+1
2 − 4pn2 + pn−1

2

2∆t
+

1

2
(̺c)k2χin

vk+1
2 − v†

L

− 1

2
(̺c)k2(v − c)k2

−3vk+1
2 + 4vk+1

3 − vk+1
4

2∆x

+
1

2
(v − c)k2

−3pk+1
2 + 4pk+1

3 − pk+1
4

2∆x
= 0.
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Then, with a first order approximation of the gradients of pressure and velocity
corrections and using Eqs. (24) and (27), this becomes:

αp′2 + βp′3 + γp′4 = δ, (29)

where

α =
3

2∆t
+A2

(

1

2
(̺c)k2

χin

L
+

1

2∆x
(̺c)k2(v − c)k2

)

− 1

2∆x
(̺c)k2(v − c)k2

∆t

3̺⋆3∆x
− 1

2∆x
(v − c)k2,

β = B2

(

1

2
(̺c)k2

χin

L
+

1

2∆x
(̺c)k2(v − c)k2

)

+
1

2∆x
(v − c)k2,

γ = C2
(

1

2
(̺c)k2

χin

L
+

1

2∆x
(̺c)k2(v − c)k2

)

+
1

2∆x
(̺c)k2(v − c)k2

∆t

3̺⋆3∆x
,

δ = −3pk2 − 4pn2 + pn−1
2

2∆t
− 1

2
(̺c)k2χin

v⋆2 − v†

L

+
1

2
(̺c)k2(v − c)k2

−3v⋆2 + 4v⋆3 − v⋆4
2∆x

− 1

2
(v − c)k2

−3pk2 + 4pk3 − pk4
2∆x

. (30)

The momentum is corrected on the second cell as

(̺v)k+1
2 = ̺⋆2

(

1 +
p′2
pk2

)

(v⋆2 + v′2),

where̺⋆2, v
⋆
2 andv′2 are given by Eqs. (21), (22) and (27), respectively.

Now, let us describe how to calculatev′1 andp′1. First, v′1 can be expressed with
pressure corrections similar as was done previously forv′2, namely:

D1v
′
1 = B1(p

′
2 − p′1)−

1

2∆x
(v − c)k1v

′
2, (31)

where

B1 =
1

2∆x

(

v − c

̺c

)k

1

/

D1,

D1 =
3

2∆t
− 1

2∆x
(v − c)k1 +

χin

2L
.

A possibility for the expression ofv′2 in Eq. (31) is to use Eq. (27), which would
be consistent with the treatment of the cell2. However, numerical experiments (not
shown here) reveal that stability problems may occur with this choice. In this case,
v′1 would depend onp′4, as well asp′1 to p′3. This corresponds to a strong downwind
treatment with respect to the flow direction. Alternatively, an expression ofv′2 that
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depends onp′1 andp′3 can be derived from the SIMPLE approximation, when the
pressure at the face is interpolated centrally:

v′2 = − ∆t

3̺⋆2∆x
(p′3 − p′1).

Then, the LODI velocity and pressure equations lead to relations involvingv′1 and
p′1, p

′
2 andp′3 quite similar to Eqs. (27)–(28) and Eqs. (29)–(30). The momentum on

the cell1 is corrected according to

(̺v)k+1
1 = ̺⋆1

(

1 +
p′1
pk1

)

(v⋆1 + v′1).

4.2 Outlet treatment

The outlet treatment described in section 3 is now considered, with the relaxation
form given in Eqs. (12) and (15), rewritten for convenience as

L1 =
χout

̺

p− p†

L
, χout = π(1−M2

max).

This expression is used on cellsN − 1 andN .

• Prediction. On cellsN − 1 andN , the predicted density and velocity are given
by Eqs. (11a)-(11b). For instance, on cellN − 1, the density is given by

3̺⋆N−1 − 4̺nN−1 + ̺n−1
N−1

2∆t
+
(

̺

2c

)k

N−1
(v + c)kN−1

3vkN−1 − 4vkN−2 + vkN−3

2∆x

+
(

v + c

2c2

)k

N−1

3pkN−1 − 4pkN−2 + pkN−3

2∆x
+
(

1

2c

)k

N−1
χout

pkN−1 − p†

L

+ vkN−1

3̺⋆N−1 − 4̺⋆N−2 + ̺⋆N−3

2∆x
−
(

v

c2

)k

N−1

3pkN−1 − 4pkN−2 + pkN−3

2∆x
= 0

(32)

and the velocity is given by

3v⋆N−1 − 4vnN−1 + vn−1
N−1

2∆t
− χout

2̺kN−1

pkN−1 − p†

L

+
1

2
(v + c)kN−1

3v⋆N−1 − 4v⋆N−2 + v⋆N−3

2∆x

+
1

2

(

v + c

̺c

)k

N−1

3pkN−1 − 4pkN−2 + pkN−3

2∆x
= 0. (33)
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• Correction. The pressure equation (11c), with implicit discretization for pressure
and velocity reads on cellN − 1:

3pk+1
N−1 − 4pnN−1 + pn−1

N−1

2∆t
+

1

2
(̺c)kN−1(v + c)kN−1

3vk+1
N−1 − 4vk+1

N−2 + vk+1
N−3

2∆x

+
1

2
(v + c)kN−1

3pk+1
N−1 − 4pk+1

N−2 + pk+1
N−3

2∆x
+

1

2
ckN−1χout

pk+1
N−1 − p†

L
= 0. (34)

Expressions ofv′N−2 andv′N−1 in terms of pressure corrections are needed. First,
since the cellN − 2 belongs to the interior of the computational domain (see Eq.
(23)),

(̺v)′N−2 = −2

3
τ(p′N−2+1/2 − p′N−2−1/2).

With central interpolation for the pressure corrections,

v′N−2 = − ∆t

3̺⋆N−2∆x
(p′N−1 − p′N−3). (35)

Second, the implicit discretization for pressure and velocity of Eq. (11b) reads:

3vk+1
N−1 − 4vnN−1 + vn−1

N−1

2∆t
− χout

2̺kN−1

pk+1
N−1 − p†

L

+
1

2
(v + c)kN−1

3vk+1
N−1 − 4vk+1

N−2 + vk+1
N−3

2∆x

+
1

2

(

v + c

̺c

)k

N−1

3pk+1
N−1 − 4pk+1

N−2 + pk+1
N−3

2∆x
= 0. (36)

From Eqs. (33), (35) and (36), with the gradients of corrections expressed in a first
order accurate form,

v′N−1 = AN−1p
′
N−1 + BN−1p

′
N−2 + CN−1p

′
N−3, (37)

where

AN−1 =





χout

2̺kN−1L
− 1

2∆x

(

v + c

̺c

)k

N−1

− 1

2∆x
(v + c)kN−1

∆t

3̺⋆N−2∆x





/

DN−1,

BN−1 =





1

2∆x

(

v + c

̺c

)k

N−1





/

DN−1,

CN−1 =

[

1

2∆x
(v + c)kN−1

∆t

3̺⋆N−2∆x

]/

DN−1,

DN−1 =
3

2∆t
+

1

2∆x
(v + c)kN−1.
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The pressure equation (34) becomes finally, with the gradients of corrections ex-
pressed in a first order accurate form,

αp′N−1 + βp′N−2 + γp′N−3 = δ,

where

α =
3

2∆t
+AN−1

1

2∆x
(̺c)kN−1(v+c)

k
N−1+

1

2∆x
(̺c)kN−1(v+c)

k
N−1

∆t

3̺⋆N−2∆x

+
1

2∆x
(v + c)kN−1 +

1

2
ckN−1

χout

L

β = BN−1
1

2∆x
(̺c)kN−1(v + c)kN−1 −

1

2∆x
(v + c)kN−1

γ = CN−1
1

2∆x
(̺c)kN−1(v + c)kN−1 −

1

2∆x
(̺c)kN−1(v + c)kN−1

∆t

3̺⋆N−2∆x

δ = −3pkN−1 − 4pnN−1 + pn−1
N−1

2∆t
−1

2
(̺c)kN−1(v+c)

k
N−1

3v⋆N−1 − 4v⋆N−2 + v⋆N−3

2∆x

− 1

2
(v + c)kN−1

3pkN−1 − 4pkN−2 + pkN−3

2∆x
− 1

2
ckN−1χout

pkN−1 − p†

L
.

The momentum on the cellN − 1 is corrected according to

(̺v)k+1
N−1 = ̺⋆N−1

(

1 +
p′N−1

pkN−1

)

(v⋆N−1 + v′N−1),

where̺⋆N−1, v
⋆
N−1 andv′N−1 are given by Eqs. (32), (33) and (37), respectively.

Similarly as for the derivation ofv′N−1 given in Eq. (37), one has:

v′N = ANp
′
N + BNp

′
N−1 + CNv′N−1,

where

AN =





χout

2̺kNL
− 1

2∆x

(

v + c

̺c

)k

N





/

DN

BN =





1

2∆x

(

v + c

̺c

)k

N





/

DN

CN =
1

2∆x
(v + c)kN

/

DN

DN =
3

2∆t
+

1

2∆x
(v + c)kN

Then, from the LODI pressure equation (similar to Eq. (34)) and from Eq. (37),

λp′N + µp′N−1 = ζ,

15



where

λ =
3

2∆t
+AN

1

2∆x
(̺c)kN(v + c)kN +

1

2∆x
(v + c)kN +

1

2
ckN
χout

L

µ = BN
1

2∆x
(̺c)kN(v + c)kN − 1

2∆x
(v + c)kN

ζ = −3pkN − 4pnN + pn−1
N

2∆t
− 1

2
(̺c)kN (v + c)kN

3v⋆N − 4v⋆N−1 + v⋆N−2

2∆x

− 1

2
(v + c)kN

3pkN − 4pkN−1 + pkN−2

2∆x
− 1

2
ckNχout

pkN − p†

L

+
1

2∆x
(̺c)kN(v + c)kNv

′
N−1(1 − CN ).

The momentum on the cellN is corrected according to

(̺v)k+1
N = ̺⋆N

(

1 +
p′N
pkN

)

(v⋆N + v′N).

5 Numerical experiments

The test cases presented are chosen to illustrate the capability of the semi-implicit
method both at the inlet and the outlet. To explain the role ofthe relaxation coeffi-
cientKp at the outlet, Eq. (12) is modified toL1 = αpKp(p− p†). Similarly, at the
inlet, the coefficientαv is introduced such thatL3 = αvKv(v − v†) (see Eq. (16)).

In the following, dissipation and dispersion errors are used to evaluate the quality
of the solution, when a reference solution is available. We employ the methodology
proposed by Takacs [10,18]. Say thatqe andqc are exact and computed values of a
quantityq under consideration. At a given timet, the mean square error can then
be defined as

E2 =
1

N

∑

(qe − qc)
2

where the sum extends over theN nodes of the grid. Further, we define mean values
and variances of the quantities by

q̄e =
1

N

∑

qe , q̄c =
1

N

∑

qc

σ2
e =

1

N

∑

(qe − q̄e)
2 , σ2

c =
1

N

∑

(qc − q̄c)
2 .

Then, the mean square error can be written as

E2 = σ2
e + σ2

c + (q̄e − q̄c)
2 − 2 cov(qe, qc), (38)
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wherecov(qe, qc) is the covariance of the two signals. The correlation coefficient
between the two signals is then

R(qe, qc) =
cov(qe, qc)

σeσc
.

The error (38) can further be written as

E2 = (q̄e − q̄c)
2 + (σe − σc)

2 + 2σeσc[1− R(qe, qc)]. (39)

The different error components can now be identified. The difference between̄qe
andq̄c is the conservation error as the mean values of the signals express the content
of the signals. The difference betweenσe and σc is the dissipation error as the
variances express the energy of the signals with respect to their mean values. The
remaining component was considered by Takacs [18] as the dispersion error, as
for exact correlation between the signals, the only error that can occur is due to
dissipation. This way of denoting the error does not conformcompletely with the
now commonly used concept of the modified wave number to express dissipation
and dispersion errors. In order to see the relation with the modified wave number
concept, a Fourier component may be substituted into (39). This then reveals (not
derived here) the rather obvious result that non-dimensional measures of dissipation
and dispersion errors may be defined by

Ědissipation =
σe − σc
σe

, Ědispersion =
√

1− R(qe, qc). (40)

For exact solutions, the error measures are zero. The error measure for dissipation
becomes unity when all energy dissipates away in the computational result. The
error measure for dispersion becomes unity when the correlation between exact
and computational solutions disappears completely.

For the 1D test cases presented below, it will be investigated by means of a Fourier
analysis if the behaviour of the dissipation and dispersionerrors in Eqs. (40) is in
agreement with the theoretical properties of the linear stationary filters that corre-
spond to the inlet and outlet treatments.

In all the test cases considered in the following, the fluid isair with the specific
heats ratioγ = 1.4.

5.1 Acoustic inlet oscillation

For this 1D test case, the length of the computational domainis L = 100 m. The
inlet velocity is specified to oscillate about its mean valueV , as

v†(t) = V [1 + Av sin(2πft)],
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whereV = 0.30886 m s−1, Av = 10−2. Av is chosen to be sufficiently small so
that an exact solution can be derived from linear acoustics.f was taken between5
to 80 Hz so thatf/fcut−off ranges from5 to 80. The other target values required for
the boundary conditions are̺† = 1.2046 kg m−3 andp† = 101 300 Pa. The initial
conditions are



























̺0 = 1.2046 kg m−3,

v0 = V m s−1,

p0 = 101 300 Pa.

The simulation durationtf = 0.55 s is chosen such that no reflected wave can
possibly reach the inlet before the timetf . The mesh is regular withN = 5 000
cells. At the inlet, we takeαv = 104 andK̺ = 10−4 3 .

In figure 1, the role of the relaxation coefficientαp at the outlet is shown through
the total acoustic energy in the pipe, given by (linear acoustics)

Ea =
∫ L

0

{

1

2
̺0(δv)

2 +
1

2

(δp)2

̺0c
2
0

}

. (41)

The convectiveCFL number is chosen as10−2. With this value, the acousticCFL
number is around10 in the domain reached by the wave and the cut-off frequency at
the outlet is around1Hz. With αp = 1, the level of reflection of the monochromatic
wave of frequency20 Hz is very low, since the total acoustic energy in Eq. (41)
oscillates around a constant value as soon as the acoustic wave reaches the outlet.

In figure 2, the non-reflective behaviour of the outlet is obtained even if the acoustic
CFL number is significantly larger than unity, which was the mainobjective of the
present study. Moreover, this result holds even when the acoustic energy is underes-
timated, due to the numerical dissipation that arises when the acousticCFL number
is very high (see the numerical results of the total acousticenergy forCFLv+c = 20
or 50 in figure 2).

Reflective conditions may be obtained by takingL1 = L3 in the LODI equations
(11) (seee.g.Ref. [5]), which become then:

∂tv = 0, ∂tp = −̺cL3,

so that, according to this approach, no pressure-velocity coupling occurs at the
boundary. Another possible approach to obtain reflection atthe outlet consists in
setting in the LODI equationsL1 = αpKp(p−p†) with αp ≫ 1. Then, the reflection

3 With K̺ ≪ 1, the density perturbation is allowed to follow the pressureperturbation
in the isentropic way. Then, the inlet condition can be interpreted as the imposition of the
entropy.
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Fig. 1. Test: Acoustic inlet oscillation (cf. Sec. 5.1).f = 20 Hz, Av = 10−2. Time evo-
lution of the total acoustic energy,cf. Eq. (41). Mach number of the mean flow:10−3;
CFLv+c = 10.

coefficient becomes close to−1 (see Eq. (13)) so that the outlet becomes reflective.
Notice that in this case we do not have∂tv = 0 at the outlet, and the pressure
depends on the velocity, since from Eqs. (11b)-(11c),

1

̺c
∂tp+ αpKp(p− p†) = ∂tv,

and thus,

p(t) = p† +
1

αpKp

∫ t

0
e−̺cαpKp(t−s)∂sv ds,

under the assumptions that̺c = const. andp(0) = p†. Thus, usingαp ≫ 1 in L1 =
αpKp(p−p†) leads to a pressure-velocity coupling on the outlet cells. In figures 3-6
are shown dispersion and dissipation errors (see Eqs. (40))as function of time for
varying frequency of the inlet oscillation and for varying acousticCFL number. The
reference solution is obtained from linear acoustics with perfect reflection at the
outlet. In particular, the large error level in the reflectedsignal for large frequency
and large acousticCFL number is obvious. The conclusion is that for accurate
simulation of the reflected wave, the time-step has to be chosen sufficiently small,
with respect to the period of the oscillating signal.
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Fig. 2. Test: Acoustic inlet oscillation (cf. Sec. 5.1).f = 20 Hz,Av = 10−2. Time evolution
of the total acoustic energy,cf. Eq. (41). Mach number of the mean flow:10−3; αp = 1.

To get insight into this issue, Eq. (A.1b)4 is written in a first-order accurate implicit
time discretization form, as

(p̌− p̌†)n+1 =
1

1 + ˇ̺čαpǨp

2Mr

∆ť
(p̌− p̌†)n +

ˇ̺čαpǨp

2Mr(1 +
ˇ̺čαpǨp

2Mr

∆ť)
ϕn, (42)

whereϕ = −Mr
2Ľ3/Ǩp. Then, supposing thaťp0 = p̌†, Eq. (42) yields

p̌n = p̌† +
+∞
∑

k=−∞

hkϕ
n−k,

where

hk =











ˇ̺čαpǨp∆ť

2Mr(1+
ˇ̺čαpǨp

2Mr
∆ť)k

if k = 1, 2, . . . , n− 1,

0 else.
(43)

The sequence(hk) in Eq. (43) can be interpreted as the impulse response of a

4 For equations labelled with A, see the Appendix section. Thenotation ·̌ indicates non-
dimensional quantities, as defined in the Appendix section.
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Fig. 3. Test: Acoustic inlet oscillation (cf. Sec. 5.1). Time evolution of the pressure disper-
sion error,cf. Eqs. (40). Mach number of the mean flow:10−3 ; CFLv+c = 5 ; αp = 103.

discrete filter, whose transfer function is

ĥ(ω̌) =
+∞
∑

n=−∞

hne
−iω̌n∆ť =

ˇ̺čαpǨp∆ť

2Mr[(1 +
ˇ̺čαpǨp

2Mr

∆ť)eiω̌∆ť − 1]
. (44)

The phase shift induced by the filter is obtained from Eq. (44)as

arg
(

ĥ(ω̌)
)

= −arctan











sin(ω̌∆ť)

cos(ω̌∆ť)− 1

1+
ˇ̺čαpǨp

2Mr
∆ť











. (45)

Practically, for the values of∆t andω considered in the present study, the phase
shift induced by the outlet filter increases linearly with the time-step for a fixed
frequency, and increases linearly with the frequency for a fixed time-step (see figure
7). This corresponds to the behaviour of the dispersion error observed in figures 3
and 5. On the other hand, the modulus of the outlet transfer function, related to the
dissipative features of the filter, is obtained from Eq. (44)as

|ĥ(ω̌)| = ˇ̺čαpǨp∆ť

2Mr

√

(

1 + ˇ̺čαpǨp

2Mr

∆ť
)2

− 2
(

1 + ˇ̺čαpǨp

2Mr

∆ť
)

cos(ω̌∆ť) + 1

.

Practically, for the values of∆t andω considered in the present study,|ĥ(ω)| is
constant and equal to 1 (not shown). Therefore, the behaviour of the dissipation er-
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Fig. 4. Test: Acoustic inlet oscillation (cf. Sec. 5.1). Time evolution of the pressure dissipa-
tion error,cf. Eqs. (40). Mach number of the mean flow:10−3 ; CFLv+c = 5 ; αp = 103.

ror observed in figures 4 and 6 is simply the consequence of thephase shift induced
by the outlet treatment.

5.2 1-D acoustic pulse upstream propagation

Let us now consider the proposed inlet treatment with a 1D test case in which an
acoustic pulse is propagating upstream in a mean flow with a Mach number of10−5.
The one-meter long pipe is divided intoN = 500 cells. Here we takeαp = 1 and
K̺ = 10−4.

With αv = 1, the acoustic pulse leaves the computational domain without reflection
(see figure 8). Withαv = 103, the inlet can be considered as totally reflective (see
figure 9). In figure 9, an interesting point is that the calculated reflected pulse does
not coincide with the exact solution of the reflected pulse, that would be obtained
if no time difference were introduced by the inlet treatment. This time difference
induced by the inlet treatment can be explained by an analysis similar to the one
suggested for the outlet in section 5.1. Supposing thatv̌(0) = v̌†, the implicit time
discretization of Eq. (A.1a) leads to:

v̌n = v̌† +
+∞
∑

k=−∞

hkφ
n−k,
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Fig. 5. Test: Acoustic inlet oscillation (cf. Sec. 5.1). Time evolution of the pressure disper-
sion error,cf. Eqs. (40). Mach number of the mean flow:10−3 ; f = 20 Hz ; αp = 103. For
CFLv+c = 0.5 and1, results almost coincide.

whereφ = MrĽ1/(αvǨv) (see Eq. (A.2a)), and

hk =











Ǩv∆ť

2Mr(1+
αvǨv
2Mr

∆ť)k−1
if k = 1, 2, . . . , n− 1,

0 else.
(46)

The transfer function associated with the sequence in Eq. (46) is

ĥ(ω̌) =
+∞
∑

n=−∞

hne
−iω̌n∆ť =

αvǨv∆ť

2Mr[(1 +
αvǨv

2Mr

∆ť)eiω̌∆ť − 1]
. (47)

From Eq. (47), the phase shift induced by the filter at the inlet is obtained as

arg
(

ĥ(ω̌)
)

= −arctan











sin(ω̌∆ť)

cos(ω̌∆ť)− 1

1+αvǨv
2Mr

∆ť











, (48)

and the modulus of the inlet transfer function is

|ĥ(ω̌)| = αvǨv

2Mr

√

(

1 + αvǨv

2Mr

∆ť
)2 − 2

(

1 + αvǨv

2Mr

∆ť
)

cos(ω̌∆ť) + 1

. (49)

In figures 10 and 11, numerical results are obtained with a constant acousticCFL
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Fig. 6. Test: Acoustic inlet oscillation (cf. Sec. 5.1). Time evolution of the pressure dissipa-
tion error,cf. Eqs. (40). Mach number of the mean flow:10−3 ; f = 20 Hz ; αp = 103. For
CFLv+c = 0.5 and1, the results coincide with the time axis.

number. As

CFLv+c =
(

1 +
1

M

)

CFLv =
(

1 +
1

M

)

v∆t

∆x
=
(

1 +
1

M

)

v̌∆ť

∆x̌
,

we can consider that, at low Mach number, ifCFLv+c is constant, then (considering
thatMr =

√
γ M):

∆ť
/

Mr = const. = Φ. (50)

For the settings considered in this study, the modulus of theinlet transfer function,
written from Eqs. (49) and (50) as

|ĥ(ω̌)| = αvǨv

2Mr

√

(1 + αvǨv

2
Φ)2 − 2(1 + αvǨv

2
Φ) cos(ω̌ΦMr) + 1

,

is practically constant for each value of the reference Machnumber on the fre-
quency band considered in figure 12, and equal to one (not shown). So, as for the
outlet in section 5.1, the dissipation error shown in figure 11 is the consequence of
the phase shift due to the inlet treatment.
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Fig. 7. Test: Acoustic inlet oscillation (cf. Sec. 5.1). Argument of the filter transfer function
at the outlet,cf. Eq. (45). Mach number of the mean flow:10−3 ; CFLv+c = 5 ; αp = 103.

From Eqs. (48) and (50), the phase shift at the inlet is written as

arg
(

ĥ(ω̌)
)

= −arctan











sin(ω̌ΦMr)

cos(ω̌ΦMr)− 1

1+αvǨv
2

Φ











. (51)

Eq. (51) withαv = 103 is illustrated in figure 12. The phase shift decreases with
the Mach number for any given frequency5 . Moreover, the phase shift level be-
comes practically independent of the frequency as the Mach number is the smallest
considered,10−7. It is shown in figure 10 that, when the Mach numberM of the
background flow is small with respect to unity, the theoretical limit 0 of arg(ĥ (ω̌))
(see Eq. (51)) is not achieved in practice. Moreover, the dispersion error is slightly
larger for the smallest values of the background flow Mach number. The reason
of these two features is that, in the previous discussion, the time discretization is
solely accounted for, and not the space discretization. This is confirmed by varying
the time-step, as illustrated in figure 13. Notice that the numerical results of the
dispersion error are very close in figures 10 and 13 if the smallest values ofM and
CFLv+c are considered. As shown in figure 14, the dispersion error, and hence the

5 This is not in contradiction with the reference Mach number independency of
|RMr

outlet(ω̌cut-off)| andarg(RMr

outlet(ω̌cut-off)) observed in section A, since the linear filters
associated with the transfer functionsĥ andRMr

outlet are different. In particular, the filter
associated witĥh is causal and the filter associated withRMr

outlet is anti-causal.
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Fig. 9. Test: 1-D acoustic pulse upstream propagation (cf. Sec. 5.2).αv = 103. Mach
number of the mean flow:10−5; CFLv+c = 20. Exact solution (linear acoustics):•. Exact
solution of reflected wave: –◦–.
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Fig. 10. Test: 1-D acoustic pulse upstream propagation (cf. Sec. 5.2).αv = 103,
CFLv+c = 5. ForM = 10−6 and10−7, results coincide.
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Fig. 11. Test: 1-D acoustic pulse upstream propagation (cf. Sec. 5.2).αv = 103,
CFLv+c = 5. ForM = 10−6 and10−7, results coincide.
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Fig. 13. Test: 1-D acoustic pulse upstream propagation (cf. Sec. 5.2).αv = 103, Mach
number of the mean flow:10−5. ForCFLv+c = 0.5 and1, results coincide.

29



 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

P
re

ss
ur

e 
di

sp
er

si
on

 e
rr

or

Time (ms)

N = 500
N = 1000
N = 2000

Fig. 14. Test: 1-D acoustic pulse upstream propagation (cf. Sec. 5.2).αv = 103, Mach
number of the mean flow:10−5 ; CFLv+c = 5.

phase shift due to the filter, is primarily related to the length of the boundary cells.

5.3 2-D acoustic pulse propagation

Finally, a radially propagating two-dimensional Gaussian-shaped acoustic pulse in
a uniform low Mach number flow is considered. The computational domain is a
square of side length1 m, divided into500 × 500 cells. The center of the pulse is
located atx0 = 0.5 m andy0 = 0.5 m at t = 0. The pulse is generated att = 0
by a pressure perturbation(δp)0 and a density pertubation(δ̺)0 of a uniform flow
which corresponds to̺0 = 1.2046 kg m−3, u0 = v0 = 0.30886 10−2 m s−1 and
p0 = 101 300 Pa. Entropy fluctuations are set to zero by imposing(δ̺)0 = (δp)0/c20
wherec0 =

√

γp0/̺0. The initial conditions are



























̺0 = ̺0 + (δ̺)0,

u0 = u0 , v0 = v0,

p0 = p0 + (δp)0,

where the initial pressure pertubation is given by

(δp)0 = ∆p exp{−α[(x− x0)
2 + (y − y0)

2]},
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with ∆p = 200 Pa andα = 1/(0.05)2 m−2.

(a) t = 0 (b) t = 1.0 ms (c) t = 1.2 ms

(d) t = 1.5 ms (e) t = 1.8 ms (f) t = 2.1 ms

Fig. 15. Test: 2-D acoustic pulse propagation (cf. Sec. 5.3). Time evolution of the pressure
perturbation field (Pa) in a square of one-meter long side. Inlet: left and bottom sides of
the square; outlet: right and top sides of the square. Value of the mean flow Mach num-
ber (equal in both horizontal and vertical directions):9 10−6. Regular cartesian mesh,
500 × 500 cells. Value of the acousticCFL number:20. Relaxation coefficients:αv = 1
andK̺ = 10−4 (inlet); αp = 1 (outlet). The black circle indicates the radial propaga-
tion of the black disc located at the center of the pulse att = 0, with radial velocity
c0 =

√

γp0/̺0 = 343.121 m/s.

In figure 15, the radial velocity of the pressure perturbation is in good agreement
with the reference valuec0 calculated with the density and pressure of the uniform
background flow, which confirms the accuracy of the method described in section 2.
No significant reflection of acoustic waves is observed, as expected with the chosen
values of the reflection coefficients, sinceαp = αv = 1.

To assess the importance of the numerical dissipation due tothe proposed SIMPLE-
type algorithm in the results shown in figure 15, the previoussimulation is reconsid-
ered with values of reflection coefficients much larger than unity. Numerical results
are shown in figure 16, right, next to the ones of Fig. 15 (f), which are displayed
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Fig. 16. Test: 2-D acoustic pulse propagation (cf. Sec. 5.3),t = 2.1 ms. Left: Computation
parameters identical to those of Fig. 15 (f). Right:αp = 103 andαv = 103.

again in Fig. 16, left, with a common color map. As expected6 , it is observed that
the pressure perturbation keeps its sign after reflection onthe inlet line, unlike the
reflected pressure perturbation on the outlet line, whose sign changes after reflec-
tion. The net visible difference between the two pressure distributions shown in
Fig. 16 demonstrates that the suggested boundary treatmentsucceeds in this multi-
dimensional test case, with an acousticCFL number significantly larger than unity.

6 Conclusion

In this study, a partially reflective LODI-based treatment of the inlet and outlet
boundaries was considered for the simulation of inviscid flows. A semi-implicit
solution of the boundary equations was proposed, in combination with the algo-
rithm used in the interior of the computational domain. The pressure-velocity cou-
pling employed to solve the boundary equations is designed to mimic the pressure-
velocity coupling used in the interior of the computationaldomain. The numerical
experiments, carried out with a time-step that correspondsto an acousticCFL num-
ber significantly larger than unity, show that reflective or non-reflective properties
of the boundaries, well known in the framework of explicit schemes, are recovered
with the proposed semi-implicit treatment.

6 For example, see Fig. 9 bottom, for a similar feature in 1D.
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A Appendix. Linear relaxation for characteristic-based boundary conditions:
Low Mach number aspects

The suitability of the approach of linear relaxation form for the partially non-
reflective treatment at the inlet and at the outlet is addressed in this Appendix sec-
tion. Moreover, the link with classic boundary treatments for incompressible flows
is established by means of an asymptotic continuous analysis, where two length
scales, convective and acoustic, are distinguished (seee.g.Klein [4], Meister [9] or
Prosser [14]).

Reference pressurepr and density̺ r are introduced, along with a reference length
lr and a reference velocityvr, which are thought of as inertial quantities. The Mach
number representative of the flow is then defined asMr = vr/

√

pr/̺r. Any dimen-
sionless quantity will be written aš·. The LODI equations (11) can now be rewritten
in dimensionless form:

∂ť ˇ̺ + Mr
ˇ̺

2č
(Ľ1 + Ľ3) + Ľ2 = 0,

∂ťv̌ +
1

2
(Ľ3 − Ľ1) = 0, (A.1a)

∂ťp̌+Mr
ˇ̺č

2
(Ľ1 + Ľ3) = 0, (A.1b)

where

Ľ1 =
(

v̌ − č

Mr

)

(

1

Mr

1

ˇ̺č
∂x̌p̌− ∂x̌v̌

)

, (A.2a)

Ľ2 = v̌
(

∂x̌ ˇ̺−
1

č2
∂x̌p̌

)

, (A.2b)

Ľ3 =
(

v̌ +
č

Mr

)

(

1

Mr

1

ˇ̺č
∂x̌p̌+ ∂x̌v̌

)

. (A.2c)

The outlet reflection coefficient reads now

RMr

outlet(ω̌) = − 1

1 − iMr
2ω̌

ˇ̺čǨp

and the dimensionless cut-off frequency,

f̌cut-off =
(1−M2

max)čmin

4MrĽ
.

Thus, the modulus and argument ofRMr

outlet(ω̌cut-off) are

|RMr

outlet(ω̌cut-off)| =
1

√

1 +
(

2Mrω̌cut-off

ˇ̺čǨp

)2
=

1
√

1 +
[

π(1−M2
max)čmin

ˇ̺čǨpĽ

]2
,
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arg(RMr

outlet(ω̌cut-off)) = −π − arctan

(

2Mrω̌cut-off

ˇ̺čǨp

)

= −π − arctan

{

π(1−M2
max)čmin

ˇ̺čǨpĽ

}

.

These expressions do not depend on the Mach numberMr, but exhibit only a weak
dependence onMmax in the limitMmax → 0. In particular, the ratio of the reflected
acoustic energy, fed back into the domain, to the incident acoustic energy, does
not depend on the Mach numberMr. It is easily checked that the same observation
holds for the inlet treatment.

To explain the link between the charateristic-based approach previously described
and a classic approach for the boundary treatment, we employan asymptotic con-
tinuous analysis, where two length scales, convective and acoustic, are distinguished.
A variable relevant to large scale acoustic fluctuations is defined as

ξ̌ = Mrx̌.

Then, let us suppose that the pressure variable can be expanded, whenMr ≪ 1, as

p(x̌, ť,Mr) =
N
∑

n=0

Mr
np̌(n)(x̌, ξ̌, ť) + o(Mr

N) , N = 0, 1, 2

with similar expansions for the density̺̌ and the velocity̌v.

• Outlet. From Eqs. (10a) and (12)-(15), the linear relaxation expression of the
non-reflective condition at the outlet reads in dimensionless form

Ľ1 =
π(1−M2

max)

Mr
2 ˇ̺Ľ

(p̌− p̌†). (A.3)

After that the expansions in the power of the Mach number are substituted into the
expressions (A.2a) and (A.3) of̌L1, one obtains:

Ľ1 =
č(0)

Mr
∂x̌v̌

(0) − v̌(0)∂x̌v̌
(0) + č(0)(∂ξ̌v̌

(0) + ∂x̌v̌
(1))

− 1

ˇ̺(0)
(∂x̌p̌

(2) + ∂ξ̌p̌
(1)) + č(1)∂x̌v̌

(0) + o(1) (A.4)

with

č(0) =

√

√

√

√

γp̌(0)

ˇ̺(0)
, č(1) =

1

2
č(0)

(

p̌(1)

p̌(0)
− ˇ̺(1)

ˇ̺(0)

)
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and, at the other hand,

Ľ1 =
π(1−M2

max)

ˇ̺(0)Ľ

{

1

Mr
2 (p̌

(0) − p̌†)− 1

Mr

[

(p̌(0) − p̌†)
ˇ̺(1)

ˇ̺(0)
+ p̌(1)

]

+ (p̌(0) − p̌†)

[(

ˇ̺(1)

ˇ̺(0)

)2

− ˇ̺(2)

ˇ̺(0)

]

+ p̌(1)
ˇ̺(1)

ˇ̺(0)
− p̌(2) + o(1)

}

. (A.5)

Collecting coefficients of order−2,

p̌(0) = p̌†. (A.6)

Let us suppose that the target pressurep̌† is constant in time, for instance as a far-
field pressure. Then, sincedťp̌

(0) + γp̌(0)∂x̌v̌
(0) = 0 (see Ref. [4]),

∂x̌v̌
(0) = 0.

Finally, from Eq. (A.6) and the classical thermodynamic relation for a divariant
gas:

dš = čV
dp̌

p̌
− čp

dˇ̺

ˇ̺

one has, on isentropic assumption,

∂x̌ ˇ̺
(0) = 0.

The previous manipulations can be summarized as follows. Suppose that the target
pressure has a constant value. Then, as the representative Mach numberMr goes to
zero, the outlet condition resulting from the linear relaxation setting,L1 = π(1 −
M2

max)(p− p†)/(̺L), leads asymptotically to the ’classical’ outlet conditionfor the
zeroth-order primitive variables, which consists of the imposition of the pressure
and the extrapolation of the density and the velocity in the convective space scale.

Returning now to Eqs. (A.4) and (A.5), the order−1 yields

p̌(1) = 0. (A.7)

As the first-order pressure is identified as the acoustic one (see Ref. [4]), Eq. (A.7)
corresponds to the removal of the acoustic incoming wave at the outlet. However,
the proper characteristic-based non-reflective outlet condition for acoustic waves
should be

∂ξ̌v̌
(0) − 1

(ˇ̺č)(0)
∂ξ̌ p̌

(1) = 0.

In other words, as the representative Mach number goes to zero, the non-reflective
treatment of acoustic waves degenerates asymptotically toan absorbing treatment
which consists in setting the acoustic pressure to zero.
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• Inlet. Returning to the two length scales asymptotic expansions,since

Ľ3 =
č(0)

Mr

∂x̌v̌
(0) + v̌(0)∂x̌v̌

(0) + č(0)(∂ξ̌v̌
(0) + ∂x̌v̌

(1))

+
1

ˇ̺(0)
(∂x̌p̌

(2) + ∂ξ̌p̌
(1)) + č(1)∂x̌v̌

(0) + o(1) (A.8)

the identification of the expressions (A.2c) and

Ľ3 =
π(1−M2

max)

MrĽ
(v̌ − v̌†)

yields, at order−1:

č(0)∂x̌v̌
(0) = Ǩv(v̌

(0) − v̌†).

This equation holds on an interval in which the inlet lies, atx̌ = 0. On this interval,

v̌(0) = v̌†

as function of̌x. Sincev̌† is supposed to be constant in time,

∂ťv̌
(0) = 0.

From the zeroth-order momentum equation obtained through the convective and
acoustic space scales low Mach number asymptotic analysis,one has, after sepa-
ration of convective and acoustic space scales (we refer to [4,9] for details on this
scales separation technique):

∂ťv̌
(0) = −∂ξ̌ p̌(1)

/

ˇ̺(0),

from which we deduce:

∂ξ̌p̌
(1) = 0.

Thus, the acoustic pressure is extrapolated at the inlet, with an extrapolation in
the large acoustic length scale. If only the space variations of the long wavelength
acoustic waves are retained in expression (A.8), the non-reflective equatioňL3 = 0
reduces at order zero to

∂ξ̌v̌
(0) +

1

(ˇ̺č)(0)
∂ξ̌p̌

(1) = 0.

Since∂ξ̌ p̌
(1) = 0, the non-reflective equation of acoustic waves becomes trivial

and the outcoming upstream propagating acoustic waves are set to zero. Thus, at
the inlet, the filtering treatment of acoustic waves degenerates into an absorbing
treatment, based on the extrapolation of the acoustic pressure. This is similar to the
observations presented previously for the outlet treatment.
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