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Abstract

For low Mach number flow calculation, when acoustic waveshavbe captured, semi-
implicit methods allow to avoid the time-step limitatioratharises when explicit schemes
are used. A method is suggested to solve the boundary egsigtidhat the semi-implicitness
of the algorithm is maintained, as well as its pressureeilocoupling. This method
is studied theoretically and numerically, in the low Machmer regime. Partially non-
reflective characteristic-based boundary conditionsh whe linear relaxation form sug-
gested by Rudy and Strikwerdal, [Comput. Phys36:55—-70, 1980], are considered. It is
shown that their properties, well known in the framework xplecit schemes, are recov-
ered with the proposed semi-implicit treatment and an d@@$-L number significantly
larger than unity.

Key words: Characteristic-based boundary conditions, Low Mach nurfibe,
Semi-implicit algorithm, Acoustics

1 Introduction

For low Mach number flow calculations that include the captuifracoustic waves
propagating in the flow, semi-implicit methods allow to al/i¢ihe time-step limi-
tation that arises when explicit schemes are used. Thes oit particular impor-
tance to maintain the semi-implicitness of the algorithmewlsolving the bound-
ary equations. Among the variety of artificial boundary t@gnes (see Colonius
[1]), characteristic-based boundary conditions, as sstggdy Thompson [19] and
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Poinsot and Lele [12], are widely used. An important advgataf such an ap-
proach is that the computational domain does not have to behfauger than
the flow region of interest. Therefore, the computationat ¢® not drastically in-
creased by the boundary treatment. Despite the importantiaiof studies on
characteristic-based boundary conditions, accordingg@tthors’ knowledge, no
investigation of the semi-implicit solution of characstit-based boundary equa-
tions in SIMPLE-type algorithms has been publishedhe aim of the present
paper is to provide a detailed description of an effectivaigenplicit solution of
characteristic-based boundary equations.

In addition to computational cost considerations, the benef characteristic-
based boundary conditions are recognized when acoustiesnzwe to be prop-
erly handled at the boundary (see Ref. [2]). For examplespezification of an
incoming acoustic wave at the outlet can be carried out byliamnthe wave am-
plitudes in a straightforward manner, and this is not the e@sen a time-varying
outflow pressure is simply imposed. Furthermore, the charatc-based approach
allows radiation of acoustic waves to the far field, transparent — or non-reflective
— boundary conditions. This is suitable when the sound figldfiinterest, and
avoids convergence problems caused by unphysical refiesctieet us underline
that characteristic-based boundary conditions are natrtheway to obtain trans-
parency and to facilitate proper handling of acousticsabtbundary (see.g.Refs.
[3,16], where a buffer zone approach combined with a charatic analysis allows
also both the proper handling of boundary quantities andl#meping of outgoing
acoustic waves). The present study is focused only on ttss cicharacteristic-
based methods for the boundary conditions.

As a first approach of such characteristic-based treatntleatlinear relaxation
form of the non-reflective condition, suggested by Rudy atrckBerda [15], is
employed in the present study. It can be understood as a wieakef the crude
full non-reflective condition, which consists in settingzero the temporal rate of
change of the entering acoustic wave amplitude. The lirdakation method rep-
resents a trade-off between the imposition of variablesthagbartial reflection of
acoustic waves. This is carried out by filtering the entedogustic waves, so that
only the high frequency band is concerned with the non-réfletreatment. Selle
et al. [17] established that the relaxation coefficient is propodl! to the highest
frequency of the acoustic waves sent back into the compuatatdomain. There-
fore, the smaller the gap between the current and the impgoesgures, the larger
the band of the reflected acoustic waves at the outlet. Foltpthis approach, the
linear relaxation must be applied to the pressure at thepwthich behaves as
a low-pass filter for the reflected waves. In particular, thea imposition of the
static pressure at the outlet is fully reflective for acauataves. Combined with the

1 Some numerical simulations with a semi-implicit pressusgraction method were pre-
sented in Ref. [20], but without information concerning thethod employed for the semi-
implicit boundary treatment.



time evolution equations of the primitive variables of thenfl(see Refs. [12,19]),
the relaxation form appears suitable to avoid the drift @f pnessure which may
arise if the full non-reflective conditions are applied. Htlewed reflection of low
frequency waves permits to relate the pressure variabidarise domain to the
static pressure defined outside, thus ensuring the wedleess of the problem
(seee.g.[12] for details on well-posedness). Similar results condbe velocity at
the inlet of the computational domain.

This paper is organized as follows. First, the algorithmafework used, which
consists in a SIMPLE-type algorithm in co-located arrangetvith second-order
accuracy in time and space, is described in section 2. A focuthe pressure-
velocity coupling involved in the interior of the computatal domain was found
necessary since the boundary treatment is designed in suafthat this pressure-
velocity coupling is accounted for therein. Then, in sett® characteristic-based
boundary conditions with the linear relaxation approactpleyed by Rudy and
Strikwerda [15] are presented. An expression for the reéiemaoefficient of the
velocity at the inlet is suggested. The semi-implicit simntof the characteristic-
based boundary conditions is detailed in section 4. Bothrilet and the outlet
treatments are considered. Finally, in section 5, the dhiyabf this boundary
treatment is investigated by considering 1-D and 2-D tes¢savith linear acoustic
waves propagating in low Mach number flows.

The key point of the suggested approach is the derivation th® momentum and
velocity equations of a relation between pressure and igloorrections at the
boundary, that mimics the SIMPLE approximation used in terior of the com-
putational domain. This relation, together with the comagon equations and the
equations satisfied by the temporal rate of change of the arapditudes, written in
the interior and at the boundary of the computational domaspectively, allows
the calculation of the pressure and velocity correctiongherboundary cells.

2 Algorithm for the interior of the computational domain

In this section, the pressure correction algorithm for titerior of the computa-
tional domain is presented. In Ref. [10], we described a ngeresral formulation
of such predictor-corrector algorithm. A simplified versiof this formulation is

adopted in the present contribution, with the same resaitghie set of computa-
tions considered. A step-by-step presentation of the glgoris given here. For
explanations on the theoretical background of the useditiigo, the reader is re-
ferred to [10]. In the present section, it will be worth déisierg with details the

pressure-velocity coupling aspects in the basic algoriginte they are mimicked
by the proposed treatment of the boundary equations exgulamsection 4.

For sake of simplicity, a one-dimensional flow of a perfedl aeal gas in a con-



stant section pipe is considered. From nowodgenotes the coordinate in the flow
direction. The flow is governed by the Euler equations,

atQ + &C(gv) = 07 (1a)
O(ov) + 0, (0v* +p) =0, (1b)
at(QE) + ax(Q'UH) = 07 (1C)

1
E:e+§1)2, oH = oF + p, ge:L (2d)
Y

-1’
wheret, o, p, v, e, . and H represent time, density, pressure, velocity, internal
energy, total energy and total enthalpy per unit mass, otisps. Furthermorey
denotes the specific heats ratio. Thaxis along the pipe is divided intyy cells of
lengthAz. A finite volume formulation is applied, with co-located \ables at the
centres of the cells.

The solution procedure is in classic prediction-corractamm. Each time-step —

n + 1 is decomposed into a predictor step determining variatilas antermediate
level denoted by, followed by a corrector step with correction quantitiesated
by 7. Furthermore, since the equations are non-linear, iteratdenoted by: are
used in between the time levelsandn + 1. At the first iteration, variables at level
k are equal to those at time level The velocity written with subscript+ 1/2
is the transporting velocity. The velocity as a transpodedntity is part of the
transported momentum and is defined with a slope-limitehouokt

e Prediction. Predicted values are derived from the continuity equati@) and
the momentum equation (1b). For example, the momentum ieqguatwritten as

- [300) = 400 + (00t

e+ 3 (20 [(00)t - (@] et
=t J (@) [lent s~ o0t ] bk

+p§+1/2 - pf—1/2 =0. (2)

The face value of pressure is taken through the low Mach nuradb@ptation of
AUSMT [7], with the scaling function of the AUSM-up scheme [8], but without
the velocity diffusion term in the pressure interpolatienniula and without the
pressure dissipation term in the definition of the Mach nunab¢he face [10]. This
means that the face pressure is determined by a polynongapoiation between
values on both sides of the face, obtained from the definition

Pivrj2 = [ (My)pr + f; (Mg)pr, 3)

where the polynomialg,” and f,~ are function of the Mach number on both sides,
and where the face values are obtained by means of the shojterlmethod. The



face value of the velocitny/Q is calculated through the AUSMscheme. The dis-
cretization of the continuity equation is similar as the of¢the momentum equa-
tion. Thus, the time integration is second-order backwadlithe space discretiza-
tion is second-order TVD, by means of the limiter functiomaid by:. The pa-
rameterr stands formally forA¢/ Az and is determined in practice 03F L, / vyax,
whereCFL, denotes a chosen convective CFL number apgd is the maximum
value of the convective velocity in the field. The convectimems in Eq. (2) and in
the discretized continuity equation are assumed to beipesas they are positive
in the computations considered later.

From the predicted values of densitgy and momentuniov);, predicted values

of velocity v} are determined at the nodes. Combined with= p*, predicted
valuese?, EF and(pH )} are obtained according to Egs. (1d). Next, predicted values
of the face pressurg}, , , are calculated with the same procedure aspfor /-

To calculate predicted values of face veloaity, ,,, the Momentum Interpolation
technique is used. It is based on the observation that theemtorm equation (2) at

a node is of the form

* 1 * n n—
B = Ai(ov); + 5= [3(c0); = 4lev)! + ()i ] + pbiajp = oy

with
1
B, = ~{ 30 (@) (00t - (@] ok
N 1
e+ g ((@0) [lent s~ (o0t ] bt
andA; = fo/Q. A similar equation is postulated at a face as

* 1 n n—
Biyia = Aigr/2(00)is o+ o [3(9U)?+1/2 —4(ev)itap+ (QU)Z-+11/2} P~

where two terms in the balance of the momentum fluxes aregoiolizied, but where
the inertia term and the pressure term are written direttiiyeaface. The so-called
classic Rhie-Chow interpolation is used, namely:

2 1 1 Biv1i2  B; n Bia

=+ , .
Aiji2 Ai Aip A1 A A

The precise way of interpolation is in fact not critical, pised that the linear inter-
polation involves convective terms only, without a partred tnertia term [6,10,11].
The transporting face velocity is deduced from the momerdgquoation by

Vi1ye = (QU):+1/2/Q:+1/27

where the face density is defined with the slope-limiter méth



e Correction. As regards pressure-velocity coupling, a critical poihthe algo-

rithm is the relation between pressure corrections anccitgloorrections. Follow-
ing the SIMPLE approximation, an explicit relation betweaomentum correc-
tions and pressure corrections can then be obtained fromaémeentum equation,
as

3
(Ufﬂ/g + E) (ov); = —(p;+1/2 - p;—1/2)> (4)

or else, in a even further simplified form which is chosen mphesent algorithm,

3
(Uf + E) (ov); = —(p§+1/2 - p§—1/2)- (5)

Considering the smallness of the time-step that has beahingte cases con-
sidered in the present study, numerical results with Eqa(® Eq. (5), or else,
by approximating the left hand side of Eq. (5) Bfpv);/(27), are in fact found
to be identical. Thus, the exact form of the SIMPLE approxioraadopted in the
present study appears to be not critical. In Eq.%p), /2 andp!_, /2 are interpolated
with the AUSM"-up polynomials (see Eqg. (3)), as

Pip1jo = fy (M )ps 4 £y (M )P

Corrections for pressure are derived from the energy egualihis equation is
discretized in the same style as the continuity equatiorfEthomentum equation

by
1 * n n—
5= [B(0E); + 3(0E); — 4(0E); + (oE)! ™|
* ]' * * * *
+ {(QH)i + §¢z ((eH)") {(QH)i - (QH)i—J }Uz'+1/2
* 1 * * * *
= e+ s ety (et~ (o] ot
+ (0Hv)j /g — (0HV);_y /5 = 0. (6)
The corrections on the enthalpy flux terms are written as
(QHU);+1/2 = H;+1/2(QU);+1/2 + (QH);+1/2U:+1/27 (7)
with H\, , = (0H)11 )2/ 071, Where both terms in the ratio are defined with the

slope-limiter method. The corrections for total energy totdl enthalpy are written
as

1 g
(oE); = ﬁpg, (0H)iy1)0 = o1 ir1y20 (8)

The momentum correction in Eq. (7) is written in SIMPLE-sty$imilarly to (5),



as
* i ! ] o 9
Vit1e T o0 (Qv)i—i—l/Z = —(Pip1 — Pi)- 9)

Substitution of (8) and (9) into (7) and (6) leads to an exéehBoisson equation
for the pressure corrections, where, again, gradient tarmapproximated to first-
order. This equation is solved by a Gaussian eliminatiorcqutare. The pressure
corrections are then further used to determine correctbtise momentum values
in the nodes and at the faces by (5) and (9). Density is ceddny o, = (0,0);p;.
The whole procedure is repeated until convergence. Thigtsethen in equations
for mass, momentum and energy, discretized in the same wteasomentum
equation (2), with values on the-level andk—level replaced by values on the
time leveln + 1. All equations use the same value of the transporting vigi@dti
the faces.

3 Characteristic-based boundary conditions: linear relaxation form

In this section, the temporal rate of change of the convediivd acoustic wave
amplitudes is introduced, as well as the linear relaxatiwmffor the partially non-

reflective treatment at the inlet and at the outlet. Theflaation of this approach
at low Mach number is addressed in the Appendix section.

First, it is worth noticing that the following charactertstelations are derived from
the set (1) of equations (seeg. Thompson [19]),

d
P _qv=0 on dix =v —c,
oc

1
do——dp=0 on dix=wv,
c

dp
oc

+dv=0 on dix=v+ec

Then, let us set

El = (U - C) <i8xp - 8:BU> ) (10a)
oc

£o=v (00— 50p). (10b)
c

L3 =(v+c) <i0xp + 01,21) ) (10c)
oc



The quantitiesC;, defined fori = 1,2, 3 in 1-D, are interpreted as the temporal
rate of change of the wave amplitudes at the boundary [12TI8y satisfy the
so-called LODI (for Locally One Dimensional and Inviscidjuations [12,19],

00+ 5-(L1+ L3) + L3 =0, (11a)
O+ 3Ly~ £) =0, (11b)
Op + %(51 + L3) = 0. (11c)

Following Ref. [15], a linear relaxation form of the full neeflective outlet condi-
tion £, = 0 can be considered,

Ly =K, (p-p), (12)

wherep' andp are the target and the current value of the pressure at thet,out
respectively. The relaxation coefficieit, is related to the filtering level of outgo-
ing acoustic waves (see Ref. [17]), so tih§f # 0 corresponds to an acoustically
partially reflective outlet. By using Eq. (12), the reflectiof high frequency out-
going acoustic waves can be avoided while maintaining angradue of the mean
pressure.

Using EqQ. (12) under the hypothesis of a constant targespresthe reflection
coefficient at the outlet is given by [17]:

1

1—i 2w
ocKp

Routlet (w) = - (13)

Assuming thatk, is independent of the frequency, Seéleal. [17] derived its
expression from a particular value of the frequency. Thesetthe frequency that
corresponds to the largest acoustic wavelength obtainaldeduct of lengthL.
Such a frequency, so-called cut-off frequency, was eséthas

Weut-off _ (1 - anqax)cmin
or AL ’

f cut-off —

where Mnax and cpin designate the maximum Mach number and the minimum
sound speed in the domain, respectively. Then, Slkd. [17] required that half

of the acoustic energy would be fed back into the domain foa@ustic wave of
frequency/f.uoff Crossing the outlet sectione.:

|Routlet (Wcut-off) |2 - 1/2 (14)
Combination of relations (13) and (14) provides the expoessf K,

(1 — M?2,)
K,= ———m& 15



The role of the factod /2 in the right hand side of Eq. (14) will be illustrated by
numerical experiments in section 5, as well as in the sing@tpration suggested
underneath for the inlet treatment.

Similarly as for the outlet, a linear relaxation of the fubmreflective condition
L3 = 0 can be considered at the inlet, as

L3 =K,(v— ’UT), (16)

wherev' is the target velocity. To obtain a suitable expressiokpf a frequency
analysis similar to the one given in Ref. [17] yiekds

(17)

Next, assuming that at the inlet section, the reflectionfmefit is, again, such that
| Rintet (Weutoff) |* = 1/2, provides the expression éf,, namely:

K, = W(l — Mr%lax)cmin.

7 (18)

4 Semi-implicit treatment of the characteristic-based bouadary conditions

In this section, a method to solve the boundary equationswith the relaxation
forms given in section 3, in combination with the algorithsed in the interior of
the computational domain, is described. It is achieved bpducing ghost cells at
the inlet and at the outlet of the domain. In the one-dimeraioase considered in
this section, two ghost cells are introduced at each extyeshthe domain, in order
to use second-order accurate finite differences for thegmtsl The ghost cells are
numbered and2 at the inlet, andV — 1 and/V at the outlet. On these ghost cells,
the primitive variables density, velocity and pressureicitare the unknowns of
the LODI equations (11), are calculated following the pc&adn-correction proce-
dure used for the interior solution. This allows to relatedicted and correction
values on ghost cells to predicted and correction valued®firiterior solution,
respectively, in order to mimic the suitable pressure-sigfjacoupling used in the
interior algorithm.

2 Expression (17) of the reflection coefficient at the inlet ais® considered in Ref. [13].



4.1 Inlet treatment

At the inlet, the temporal rate of change of the amplitudeheféntropic waves is
written as

Lo = K@(Q - QT)7 (19)

where o' is the target inlet density anH, a relaxation coefficient. Furthermore,
from Eq. (18),

vV — ’U]L
'CS = XinT 5y Xin = 71-(1 - Méax)cmina (20)
wherev' is the target inlet velocity. Egs. (19) and (20) are used dis ¢eand2.
Moreover,L, is given by Eq. (10a).

e Prediction. o7 is calculated from the continuity equation (11a),

1 k ko f k _3k+4k_kz
() St (2) o i

307 — 407 + 01~

2At 2 L 2¢/4 2Ax
v—c)F —3pF + Apk — pk N
(g(cmgl LB Kol - o) =0 (1)
1

05 is calculated similarly from the mass equation (11a) wrmitte cell2.

From the velocity equation (11b) written on c2|l

vy — 4oy + oyt 1 g —oUs 4 4vs — v}
2AL Talvmek 2z
k *
S ) R B VA e 0
2\ oc /, 2Ax 2 L

v} andv} are unknown at this stage. However, with the momentum eoju#f)
written on cells3 and4, a linear system is obtained, allowing to computev; as
well asvy. Then, knowingy andvy, v} can be directly calculated from the velocity
equation (11b) written on cell.

e Correction. First, Eq. (5), which is valid for the cells located in théanor of the
computational domain, is simplified to

2

(ov); = _gT(p;+1/2 - p§—1/2)- (23)

This simplification is justified by the very small values oéttonvectiveCFL num-
ber that we will use in the numerical tests. On cglithe velocity correction is

10



deduced as

o At
5 3p5Ax

() — Ph), (24)

where the pressure has been interpolated centrally (cleorgistent with AUSM
pressure interpolation at low Mach number). The velocityatipn (11b) on celR
and on iteration levet + 1, is

o5t —dop + 0yt 1 p =305 4ot — ot
+ —(U - 0)2
AL 2 2Ax
k
B 1 v —c —3p’2f+1 + 4p’§+1 _ pi+1 n lx. M =0 (25)
2 QC 9 QA.’,U 2 " L

From Egs. (22) and (25), and considering the gradients dirdteorder accurate
approximation, follows
v 1 L Uy — U 1<v—c>kpg—p’2 1

~—Xin—5> — V. 26
oc Ax +2XL 0 (26)

sar T3 T T AL T

2

Notice that the derivation of Eq. (26) from the velocity etjoa (11b) at the inlet,
is similar to the derivation of Eq. (5) from the momentum dprain the interior
of the computational domain. With Eq. (24), the velocityreation on cell2 can
be expressed as

Ué = .Azplz —+ szé —+ CQ]?Z, (27)

/D27

where

= (w—ch—— /D
G 2Ax(v o) 3Q§Ax/ 2
_ 3 1 k Xin
Do= 55 "oV Tt oL (28)

The pressure equation (11c) on cglis

3p§+1 — 4p3 +p§_1 + 1( )k ] U§+1 — ol
2At 2 oc 2X1n L
1 . k_3,U§+1 + 4U§+1 _ ’Uff—’_l
I M
- c)’f_?’pl“§+1 S Ml Z A
2 2 20z .

11



Then, with a first order approximation of the gradients ofsptge and velocity
corrections and using Egs. (24) and (27), this becomes:

aph + Bps + 0y = 6, (29)
where
_ 3 1 k Xin 1 k)
o= o s (S + (00l — o)

- E(QC) ( 6)2 3Q§AJ§' - AL (,U - C)Z7

1 in 1 1
8= B, (o0 + (0o — ) + (v =),

S PN - > 1 . At
7= (e + gy (0o — o)) + 5x(edlblo — g
b —dpppyTt 1 vp o
0= oAt 2(90)2X1n I
1, L—305 + Ak — o)1 ) — 305 + 4phk — pk

The momentum is corrected on the second cell as

p
(ov)5™ = 0} (1 + p’%) (v3 + vy),
5

whereps, v5 andv) are given by Egs. (21), (22) and (27), respectively.

Now, let us describe how to calculat¢ andp). First, v{ can be expressed with
pressure corrections similar as was done previously:fonamely:

1 k, ./

Dlvi = Bl(plz - p/1) - AL (U - C)1U2> (31)
where
k
1 v —cC
B = 2Ax < oc )1/1)1’
3 1 Xln
Di=5ar  aas N o

A possibility for the expression af;, in Eq. (31) is to use Eq. (27), which would
be consistent with the treatment of the &IHowever, numerical experiments (not
shown here) reveal that stability problems may occur with ¢hoice. In this case,
v; would depend o), as well ag); to p;. This corresponds to a strong downwind
treatment with respect to the flow direction. Alternatively expression af}, that

12



depends oy} andp; can be derived from the SIMPLE approximation, when the
pressure at the face is interpolated centrally:

At
I I
Uy = 305Ax (ps pl)'

Then, the LODI velocity and pressure equations lead toicglatinvolvingv; and

P}, Py andpl quite similar to Egs. (27)—(28) and Egs. (29)—(30). The mtna on
the celll is corrected according to

p/
(e)+ = g (1 ; p—;) (v +11).
1

4.2 OQutlet treatment

The outlet treatment described in section 3 is now consifjevéh the relaxation
form given in Eqgs. (12) and (15), rewritten for conveniense a

_pf
Xout P p 2
L= — out = m(1 — M i
1 0 L ; Xout ﬂ-( )

max

This expression is used on cels— 1 and V.

e Prediction. On cellsN — 1 and N, the predicted density and velocity are given
by Egs. (11a)-(11b). For instance, on c¥ll- 1, the density is given by

(v + o)k 3uy_y — 4vN_y + U5 g

3oh_1 —40%_; + oy < 0 >k

2At 2¢) N-1 Nt 2Ax
n (U + C>k 3ph_1 — APk o + ks n (i)k Py — D
2¢? JN-1 2Ax 2¢) no1 O L
Lok 301 —40N_o T O3 ( v )k 3pk_1 — i o + P s —0
N-1 2Ax 2/ N-1 2Ax
(32)
and the velocity is given by
B e 0 Xout Py — D'
2At 20% L
1 3vy_1 — dun_o + UN_
+§(U+C>IJ€V—1 N—1 2A1\/562 N-3
k
n 1 fvtec 3pk, L —Apk o+ Pk, _ 0. (33)
2\ oc )y, 2Ax

13



e Correction. The pressure equation (11c), with implicit discretizatior pressure
and velocity reads on celN — 1:

3PN — Aply + PR n 1( o)k (v + o)k Byt — 4urh + Ry
2At g TN N1 2Ax
1 3pt —AapNL s 1 P =
-+ 5(1) + 0)%—1 1 2AJ} 2 3 -+ §C?V—1X0ut1T - O (34)

Expressions of),_, andv)y,_, in terms of pressure corrections are needed. First,
since the cellV — 2 belongs to the interior of the computational domain (see Eq.
(23)),

2
(0v)y_g = _gT(plN—2+l/2 - PQV_2—1/2)-

With central interpolation for the pressure corrections,

At
- 3@7\,—2Ax (pQV—l - p?v—?,)- (35)

/
UnN_g =

Second, the implicit discretization for pressure and vigjaaf Eq. (11b) reads:

31)56\/4__11 - 4U]7\L[_1 + U?\L[__ll . Xout p?\/—‘r—ll - pT

2At 20% L

k k k
n 1 (Wt o)k BunT — 4oyt + oy
2 2Az
k k k k
B R/ Tk e TS
2\ oc )y, 2Ax

From Egs. (33), (35) and (36), with the gradients of cormeiexpressed in a first
order accurate form,

Vy_q = An_1Py_1 + Byno1DPy_o + Cno1Dy_s, (37)
where

k
= — — —| /Dn_
An-1 [29?\,_1L 2Ax( oc ) 2Ax<v+c) N-b

N-1
N—1 397\/—2A$

3
DN—I = E_'_

2A.§C</U _'_ C)?V—l'
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The pressure equation (34) becomes finally, with the grasliehcorrections ex-
pressed in a first order accurate form,

apy_ + By _o + P53 =0,
where

3 1 1 At
o= 2At+AN 5A, (00)y_1 (v+e)k_ 1+2A (00)y_1 (v+e)k_ 13 “Ar

1 1 Xou
+—2A (U+C)N1+2k Lt
1 1
B=Bn_157 AL (QC)?V 1(”"‘0)?\/ 1 %(U"‘Cﬁv_l

k -
v=Cn- 157, (o)1 (v + )k ) — QAx(QC)N—l(U +C)N_13g7\,_2Ax

* * *
3/UN_1 - 4UN_2 _'_ UN_3

3pk_, —Aph_, + p”‘_1 1
§ = ——H= 5 ﬁNt - - 5(90)53\/—1(7’ C)?\/—l AT
1 k 329?\7—1 - 429?\7—2 + p?\f—?) 1, p?\f—l —p!
- 5(” + )N N - 5 —1Xout™

The momentum on the ceN — 1 is corrected according to

p *
()N = oh_1 (1 + pN 1) (vn_1 + Vv 1),
N-1

wheregy_,, v} _; andv),_, are given by Egs. (32), (33) and (37), respectively.
Similarly as for the derivation af),_, given in Eq. (37), one has:

vy = AnDy + Bypy_1 + CnUy_1s

where
X 1 v+c\”
out
D
Av = 20% L " 2Ax ( oc )N / N
k
1 v+c
20z \ oc )y

1
Cn = 2Ax sAz TN /DN

3 1
Dyv— 2 1~
N =oa7 Taag 0t )y

Then, from the LODI pressure equation (similar to Eq. (34 &om Eq. (37),

APy + 1py_1 = ¢,
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3 1 1 Xout
A 2 g k k ko, Lok
SA7 + N—QAJ}(QC)N(U +o)y + —2Ax(v +o)y+ 2CN 7
1
Iz BNE(QC)?V(U +o)k - N (v+ o)k
. 3plfv — 4ply +p71i/_1 1 k p Uy —4uy g H Uy
1 3pk —aph_ ok, 1 Pk — !
o rop Tt L
1
+ a0k (v + ity (1~ Cx).

The momentum on the ceN is corrected according to

p/
(ov)&™ = ok (1 + p—kN> (vx + V).
N

5 Numerical experiments

The test cases presented are chosen to illustrate the tgpafihe semi-implicit
method both at the inlet and the outlet. To explain the roliefrelaxation coeffi-
cient K, at the outlet, Eq. (12) is modified &, = «,K,(p — p'). Similarly, at the
inlet, the coefficienty, is introduced such that; = o, K, (v — v') (see Eq. (16)).

In the following, dissipation and dispersion errors aredugeevaluate the quality
of the solution, when a reference solution is available. Wpley the methodology
proposed by Takacs [10,18]. Say thatandg. are exact and computed values of a
guantityg under consideration. At a given tinitethe mean square error can then
be defined as

1
82 = N Z(QE - QC)Z

where the sum extends over tNenodes of the grid. Further, we define mean values
and variances of the quantities by

_ 1 _ 1
Qe—NZQe 9 QC—NZQC
2 1 —~\2 2 1 —~\2
O, = N Z(Qe - Qe) y O = N Z<QC - QC)
Then, the mean square error can be written as

E =02+ 02+ (G — 4c)* — 2 cov(qe, qc), (38)
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wherecov (g, g.) is the covariance of the two signals. The correlation caeffic
between the two signals is then

COVi{e, qc
R(qe,q.) = M-

Oe0c

The error (38) can further be written as
E* = (G — q.)* + (0e — 0.)* + 20.0.[1 — R(qe, q.)]. (39)

The different error components can now be identified. Thizihce between,
andg, is the conservation error as the mean values of the signptegxthe content
of the signals. The difference between and o, is the dissipation error as the
variances express the energy of the signals with respebetorhean values. The
remaining component was considered by Takacs [18] as tipemi®n error, as
for exact correlation between the signals, the only errat tan occur is due to
dissipation. This way of denoting the error does not confoampletely with the
now commonly used concept of the modified wave number to sgptessipation
and dispersion errors. In order to see the relation with tbdified wave number
concept, a Fourier component may be substituted into (38% then reveals (not
derived here) the rather obvious result that non-dimemrgimeasures of dissipation
and dispersion errors may be defined by

Oc — O¢

5 gdispersion =y/1- R(Qm QC) (40)

gdissipation = o
For exact solutions, the error measures are zero. The egasume for dissipation
becomes unity when all energy dissipates away in the cortipog result. The
error measure for dispersion becomes unity when the ctioelaetween exact
and computational solutions disappears completely.

For the 1D test cases presented below, it will be investiblayemeans of a Fourier
analysis if the behaviour of the dissipation and dispersioars in Egs. (40) is in
agreement with the theoretical properties of the linediastary filters that corre-
spond to the inlet and outlet treatments.

In all the test cases considered in the following, the fluidirswith the specific
heats ratioy = 1.4.

5.1 Acoustic inlet oscillation

For this 1D test case, the length of the computational donisain= 100 m. The
inlet velocity is specified to oscillate about its mean valyeas

vi(t) = V[1 + A, sin(27ft)],
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whereV = 0.30886 m s~%, A, = 1072, A, is chosen to be sufficiently small so
that an exact solution can be derived from linear acousfiegs taken betweeh

to 80 Hz so thatf / f..._o« ranges frond to 80. The other target values required for
the boundary conditions agé = 1.2046 kg m~2 andp’ = 101 300 Pa. The initial
conditions are

0¥ = 1.2046 kg m~3,

W=V ms,

p® =101 300 Pa.
The simulation duratiort; = 0.55 s is chosen such that no reflected wave can

possibly reach the inlet before the time The mesh is regular witt. = 5 000
cells. At the inlet, we taker, = 10* andK, = 10~* 3.

In figure 1, the role of the relaxation coefficiemf at the outlet is shown through
the total acoustic energy in the pipe, given by (linear aos)s

Ea - /OL {190(61})2 + 1 <5p>2 } (41)

2 2 00c3

The convectiveCFL number is chosen a$)—2. With this value, the acousticFL
number is aroundoO in the domain reached by the wave and the cut-off frequency at
the outlet is aroundHz. With o, = 1, the level of reflection of the monochromatic
wave of frequency0 Hz is very low, since the total acoustic energy in Eq. (41)
oscillates around a constant value as soon as the acousgaagches the outlet.

In figure 2, the non-reflective behaviour of the outlet is oi#d even if the acoustic
CFL number is significantly larger than unity, which was the nabjective of the
present study. Moreover, this result holds even when thesticeenergy is underes-
timated, due to the numerical dissipation that arises wheatousti€CFL number
is very high (see the numerical results of the total acoestergy forCFL, . = 20
or 50 in figure 2).

Reflective conditions may be obtained by takifig= L; in the LODI equations
(11) (seee.g.Ref. [5]), which become then:

0w =0, Op = —ocLs,

so that, according to this approach, no pressure-velocitypling occurs at the
boundary. Another possible approach to obtain reflectictheutlet consists in
setting in the LODI equation§; = «, K,(p—p') with a;, > 1. Then, the reflection

3 With K, < 1, the density perturbation is allowed to follow the presspeeturbation
in the isentropic way. Then, the inlet condition can be ioteted as the imposition of the
entropy.
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Fig. 1. Test: Acoustic inlet oscillatiorcf Sec. 5.1).f = 20 Hz, A, = 10~2. Time evo-
lution of the total acoustic energgf. Eq. (41). Mach number of the mean flond—2;
CFL,y. = 10.

coefficient becomes close tel (see Eq. (13)) so that the outlet becomes reflective.

Notice that in this case we do not hav¥ey = 0 at the outlet, and the pressure
depends on the velocity, since from Egs. (11b)-(11c),

1
@atp + a, Ky (p — pT) = v,

and thus,

1
apKp

¢
p(t) =p' + /0 e e Kt=9)g 4 s,

under the assumptions that = const. andp(0) = p'. Thus, usingy, > 1in £; =

o, K,(p—p') leads to a pressure-velocity coupling on the outlet cellfigures 3-6
are shown dispersion and dissipation errors (see Egs. #4GUnction of time for
varying frequency of the inlet oscillation and for varyingpasticCFL. number. The
reference solution is obtained from linear acoustics wihfexrt reflection at the
outlet. In particular, the large error level in the reflectéghal for large frequency
and large acousti€FL number is obvious. The conclusion is that for accurate
simulation of the reflected wave, the time-step has to bearhesfficiently small,
with respect to the period of the oscillating signal.
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Fig. 2. Test: Acoustic inlet oscillatioref, Sec. 5.1)f = 20 Hz, A, = 10~2. Time evolution
of the total acoustic energgf. Eq. (41). Mach number of the mean flowt—3; o, = 1.

To get insightinto this issue, Eq. (A.1b)s written in a first-order accurate implicit
time discretization form, as

1 - gca, K,
M, (1 + L2252 AT)

@, (42)

wherep = —M,2£;/K,. Then, supposing thaf = pf, Eq. (42) yields

~ +w
Pr=pt+ Y "
k=—00
where
wopfedl if g =1,2,...,n -1,
hy, = { Me(I+=5EADF (43)
0 else

The sequencéhy) in Eqg. (43) can be interpreted as the impulse response of a

4 For equations labelled with A, see the Appendix section. idiation indicates non-
dimensional quantities, as defined in the Appendix section.
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Fig. 3. Test: Acoustic inlet oscillatiorcf, Sec. 5.1). Time evolution of the pressure disper-
sion error,cf. Egs. (40). Mach number of the mean flold—3 ; CFL,;. = 5 ; a;, = 103.

discrete filter, whose transfer function is

A oo s~ M 0C < £
W@)= Y hge oA = coplyat (44)
n=—00 2Mr[(1 + &pp ZI\I;Ir pAt)elwAt — 1]
The phase shift induced by the filter is obtained from Eq. &)
. sin(WAF)
arg (h(w)) = —arctan cos(@AT) — —T— (45)
14+ 2Iﬁrf’At

Practically, for the values o\t andw considered in the present study, the phase
shift induced by the outlet filter increases linearly witke ttime-step for a fixed
frequency, and increases linearly with the frequency fotedftime-step (see figure
7). This corresponds to the behaviour of the dispersiorr etsserved in figures 3
and 5. On the other hand, the modulus of the outlet transfetiton, related to the
dissipative features of the filter, is obtained from Eq. (d4)

o, KAt

h@)| = — v |
I (14 Zoe A7) — 2 (14 Z2Ee A7) cos(@Ad) + 1

Practically, for the values of\t andw considered in the present studi(w)| is
constant and equal to 1 (not shown). Therefore, the behagfdbe dissipation er-
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Fig. 4. Test: Acoustic inlet oscillatiorcf, Sec. 5.1). Time evolution of the pressure dissipa-
tion error,cf. Egs. (40). Mach number of the mean flold—3 ; CFL,;. = 5 ; a;, = 10%.

ror observed in figures 4 and 6 is simply the consequence @itase shiftinduced
by the outlet treatment.

5.2 1-D acoustic pulse upstream propagation

Let us now consider the proposed inlet treatment with a 1Dd&se in which an
acoustic pulse is propagating upstream in a mean flow witheéhMamber ofl 0.
The one-meter long pipe is divided infé = 500 cells. Here we take,, = 1 and
K,=10""

With «,, = 1, the acoustic pulse leaves the computational domain witiedlection
(see figure 8). Withy, = 103, the inlet can be considered as totally reflective (see
figure 9). In figure 9, an interesting point is that the caltedareflected pulse does
not coincide with the exact solution of the reflected pulbat tvould be obtained

if no time difference were introduced by the inlet treatm@ritis time difference
induced by the inlet treatment can be explained by an arsagjsiilar to the one
suggested for the outlet in section 5.1. Supposingdffgt = v, the implicit time
discretization of Eq. (A.1a) leads to:

~ +w
" = UT + Z hk¢n_k,

k=—o00
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Fig. 5. Test: Acoustic inlet oscillatiorcf, Sec. 5.1). Time evolution of the pressure disper-

sion errorcf. Egs. (40). Mach number of the mean flol—3 ; f = 20 Hz ; o, = 10%. For
CFL,+. = 0.5 and1, results almost coincide.

wherep = M. L, /(o KK, (See Eq. (A.2a)), and

Bb__— ifk=1,2,...,n—1,
hy, = { PMe(+552AD (46)
0 else

The transfer function associated with the sequence in E6.i$4

—io h —ionAft avaAf
— ne — ~ - — .
— 2M,[(1 + %55 Af)eleAl — 1]

(47)

From Eq. (47), the phase shift induced by the filter at the islebtained as

sin(WAT7)

arg (h(d))) = —arctan cos@A) — — T [ (48)
14+ 88w A
and the modulus of the inlet transfer function is
UKU
c (49)

OM \/ auKu At —9 (1 + Oév—hf[{rvAf) cos(wAf) + 1

In figures 10 and 11, numerical results are obtained with steom acousti€CFL
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Fig. 6. Test: Acoustic inlet oscillatiorcf, Sec. 5.1). Time evolution of the pressure dissipa-
tion error,cf. Egs. (40). Mach number of the mean flod—3 ; f = 20 Hz ; o, = 103. For
CFL,+. = 0.5 and1, the results coincide with the time axis.

number. As

1 1\ vAt 1\ 9Af
CFLy.. = (1+M) CFL, = (HM) bt (HM) v

we can consider that, at low Mach numbeKL, .. is constant, then (considering
thatM, = /7 M):

Af/Mr = const. = O. (50)

For the settings considered in this study, the modulus oinle¢ transfer function,
written from Egs. (49) and (50) as

o, K,
IM, /(1 + @Kedp)? — 2(1 4 @Fadp) cos(wdM,) + 1

(@) =

is practically constant for each value of the reference Magimber on the fre-
guency band considered in figure 12, and equal to one (notrsh&wm, as for the
outlet in section 5.1, the dissipation error shown in figutesithe consequence of
the phase shift due to the inlet treatment.
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Fig. 7. Test: Acoustic inlet oscillatiorcf, Sec. 5.1). Argument of the filter transfer function
at the outletcf. Eq. (45). Mach number of the mean flowd—2 ; CFL, ;. = 5 ; a;, = 10.

From Egs. (48) and (50), the phase shift at the inlet is wride

sin(wPM, )
cos(WPM, ) — —2

P

arg (iL((IJ)) = —arctan (51)

Eq. (51) witha,, = 103 is illustrated in figure 12. The phase shift decreases with
the Mach number for any given frequencyMoreover, the phase shift level be-
comes practically independent of the frequency as the Maotber is the smallest
considered]0~7. It is shown in figure 10 that, when the Mach numbérnof the
background flow is small with respect to unity, the theosdtiiznit 0 of arg(h (@)
(see Eq. (51)) is not achieved in practice. Moreover, thpeatson error is slightly
larger for the smallest values of the background flow Mach lbemThe reason
of these two features is that, in the previous discussiantithe discretization is
solely accounted for, and not the space discretizatiors iElgonfirmed by varying
the time-step, as illustrated in figure 13. Notice that thenerical results of the
dispersion error are very close in figures 10 and 13 if the lestalalues oM and
CFL,,. are considered. As shown in figure 14, the dispersion emorhance the

> This is not in contradiction with the reference Mach numbedependency of
|RM . (@eutot)| @ndarg(RM" | (@eut-off)) Observed in section A, since the linear filters
associated with the transfer functiohsand R\ are different. In particular, the filter

associated witth is causal and the filter associated wit":, . is anti-causal.
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Fig. 8. Test: 1-D acoustic pulse upstream propagatorsec. 5.2)«, = 1. Mach number
of the mean flow10~%; CFL,. = 20. Exact solution (linear acoustics):
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Fig. 9. Test: 1-D acoustic pulse upstream propagatingec. 5.2).c,, = 103. Mach
number of the mean flow:0~%; CFL,,. = 20. Exact solution (linear acoustics): Exact
solution of reflected wave:o—.
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Fig. 10. Test: 1-D acoustic pulse upstream propagatichh ec. 5.2).«,, = 103,

CFL,4. = 5. ForM = 10~% and10~7, results coincide.
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Fig. 11. Test: 1-D acoustic pulse upstream propagatichh ec. 5.2).c,, = 103,

CFL,4. = 5. ForM = 10~% and10~7, results coincide.
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Fig. 12. Test: 1-D acoustic pulse upstream propagatbrséc. 5.2). Argument of the filter
transfer function at the inletf. Eq. (51).CFL, 1. = 5; o, = 105.
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Fig. 13. Test: 1-D acoustic pulse upstream propagatiénSec. 5.2)a, = 102, Mach
number of the mean flowt:0~°. For CFL,. = 0.5 and1, results coincide.
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Fig. 14. Test: 1-D acoustic pulse upstream propagatiénSec. 5.2)a, = 102, Mach
number of the mean flow:0~° ; CFL, . = 5.

phase shift due to the filter, is primarily related to the kngf the boundary cells.
5.3 2-D acoustic pulse propagation

Finally, a radially propagating two-dimensional Gausssaaped acoustic pulse in
a uniform low Mach number flow is considered. The computaiaomain is a
square of side lengthm, divided into500 x 500 cells. The center of the pulse is
located atry = 0.5 m andy, = 0.5 m att = 0. The pulse is generated at= 0
by a pressure perturbatidip)® and a density pertubatiqide)® of a uniform flow
which corresponds tp, = 1.2046 kg m™3, ug = vy = 0.30886 1072 m s~! and
po = 101 300 Pa. Entropy fluctuations are set to zero by imposifig)° = (p)°/c2

wherecy = /vpo/00. The initial conditions are

o° = 00+ (d0)°,
uO = Uy , UO = o,
P’ =po+ (0p)°,
where the initial pressure pertubation is given by

(0p)° = A, exp{—a(z — z0)> + (y — v0)*]},
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with A, = 200 Pa anda = 1/(0.05)* m™2.

@t=0 (b)t=1.0ms (c)t=1.2ms

(d)t=15ms (e)t =1.8 ms (ft=21ms

Fig. 15. Test: 2-D acoustic pulse propagatioh $ec. 5.3). Time evolution of the pressure
perturbation field (Pa) in a square of one-meter long sidet:lfeft and bottom sides of
the square; outlet: right and top sides of the square. Valiukeomean flow Mach num-
ber (equal in both horizontal and vertical direction8)10~. Regular cartesian mesh,
500 x 500 cells. Value of the acousti€FL number:20. Relaxation coefficientsy, = 1
and K, = 107 (inlet); o, = 1 (outlet). The black circle indicates the radial propaga-
tion of the black disc located at the center of the pulse at 0, with radial velocity

co = \/YPo/oo = 343.121 m/s.

In figure 15, the radial velocity of the pressure perturbai®in good agreement
with the reference valug, calculated with the density and pressure of the uniform
background flow, which confirms the accuracy of the methodrilesd in section 2.
No significant reflection of acoustic waves is observed, aeeted with the chosen
values of the reflection coefficients, sineg= «,, = 1.

To assess the importance of the numerical dissipation dine fgroposed SIMPLE-
type algorithm in the results shown in figure 15, the prevgosilation is reconsid-
ered with values of reflection coefficients much larger thaityuNumerical results
are shown in figure 16, right, next to the ones of Fig. 15 (f)johtare displayed
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Pressure perturbation (Pa)

250 000 25.0

-48.0 31.3

Fig. 16. Test: 2-D acoustic pulse propagatioh $ec. 5.3)¢ = 2.1 ms. Left: Computation
parameters identical to those of Fig. 15 (f). Righ:= 10® anda,, = 103.

again in Fig. 16, left, with a common color map. As expeéteitl is observed that
the pressure perturbation keeps its sign after reflectiotm@imlet line, unlike the
reflected pressure perturbation on the outlet line, whage canges after reflec-
tion. The net visible difference between the two pressus&ritutions shown in
Fig. 16 demonstrates that the suggested boundary treasmergeds in this multi-
dimensional test case, with an acousti€. number significantly larger than unity.

6 Conclusion

In this study, a partially reflective LODI-based treatmehttee inlet and outlet
boundaries was considered for the simulation of inviscid/i$loA semi-implicit
solution of the boundary equations was proposed, in cortibmavith the algo-
rithm used in the interior of the computational domain. Thesgure-velocity cou-
pling employed to solve the boundary equations is desigmedric the pressure-
velocity coupling used in the interior of the computatiodamain. The numerical
experiments, carried out with a time-step that corresptmds acousti€FL num-
ber significantly larger than unity, show that reflective onsreflective properties
of the boundaries, well known in the framework of explicihemes, are recovered
with the proposed semi-implicit treatment.

6 For example, see Fig. 9 bottom, for a similar feature in 1D.
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A Appendix. Linear relaxation for characteristic-based boundary conditions:
Low Mach number aspects

The suitability of the approach of linear relaxation fornr the partially non-
reflective treatment at the inlet and at the outlet is adékssthis Appendix sec-
tion. Moreover, the link with classic boundary treatmeiatsihcompressible flows
is established by means of an asymptotic continuous asaliere two length
scales, convective and acoustic, are distinguished(geklein [4], Meister [9] or
Prosser [14]).

Reference pressugge and density, are introduced, along with a reference length
I, and a reference velocity, which are thought of as inertial quantities. The Mach
number representative of the flow is then definedlas= v./,/p./o.. Any dimen-
sionless quantity will be written asThe LODI equations (11) can now be rewritten
in dimensionless form:

050 + M, 2V(£1 +L3) + Ly =0,

1 5

8tv + 2(,63 — £1) =0, (Ala)

0 + M, 2 5 (L) + L) =0, (A.1b)
where

< . ¢ 1 1. . .

£1 = <'U — E) <E&0jp — 0:;;21) , (A2a)

Ly =i <ai,@ - %ajp) , (A.2b)

C

< . ¢ 11 B .

£3 = (’U + Mr) (E&aﬁ) + 833@) . (AZC)
The outlet reflection coefficient reads now

1
R(I;/lllrle (d))
tlet IM QCK

and the dimensionless cut-off frequency,

(1 - Mr%ax)émin
AM, L '

f cut-off =

Thus, the modulus and argumentib}]{'tlct (Weutoff) Are

|Routlet Weut-off) - Y R
rwcut off T2~ VM max) Cmin len
\/1 _'_ ch \/1 + chp
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M. Do,
arg( R e (Weutoft)) = —7 — arctan <w>
ock,
= —m — arctan (1 _VM%%X}émin ‘
o0cK, L

These expressions do not depend on the Mach nuivibdsut exhibit only a weak
dependence o, in the limit Mo — 0. In particular, the ratio of the reflected
acoustic energy, fed back into the domain, to the incidentsiic energy, does
not depend on the Mach numbk. It is easily checked that the same observation
holds for the inlet treatment.

To explain the link between the charateristic-based ambrpaeviously described
and a classic approach for the boundary treatment, we enapl@agymptotic con-
tinuous analysis, where two length scales, convective endsdic, are distinguished.
A variable relevant to large scale acoustic fluctuationeimeéd as

&= M,z.
Then, let us suppose that the pressure variable can be eeghamdenM, < 1, as
N ~
p(, L, M) = 3" M"p™(7,€,1) + o(M,Y) , N=0,1,2
n=0

with similar expansions for the densityand the velocity.

e Outlet. From Egs. (10a) and (12)-(15), the linear relaxation esgion of the
non-reflective condition at the outlet reads in dimensissferm

. (1 — M2,,) .
Y S—— L S A A.3
1 Mr2éL (p p) ( )

After that the expansions in the power of the Mach number abstgtuted into the
expressions (A.2a) and (A.3) df;, one obtains:

#(0)
. C
Li=51 0500 — 9@ 0,0 + &0 (05 + 0;0)
1 § . A -
0O (0 + 851)(1)) + D900 +o(1) (A4)

with

§ 1) 1

5(0) _ 'yp(O) é(l) _ 15(0) p( ) B Q( )
00 7’ 2 pO 50



and, at the other hand,

. w(l— M2 1. . 1 o
£=m vmaX){ (" —ph) — — ") = + "]

M2

PO = pt. (A.6)

Let us suppose that the target pressiris constant in time, for instance as a far-
field pressure. Then, sincgp® + 150 9,0 = 0 (see Ref. [4]),

Finally, from Eqg. (A.6) and the classical thermodynamiatiein for a divariant
gas:
dp  do

v_cv
p "0

ds = ¢y
one has, on isentropic assumption,

The previous manipulations can be summarized as follows&se that the target
pressure has a constant value. Then, as the representatolrerimbe, goes to
zero, the outlet condition resulting from the linear rekiom setting,£; = =(1 —
M2, )(p—p')/(oL), leads asymptotically to the 'classical’ outlet conditfonthe

zeroth-order primitive variables, which consists of theawsition of the pressure
and the extrapolation of the density and the velocity in tvective space scale.

Returning now to Egs. (A.4) and (A.5), the ordet yields
pt =0. (A.7)

As the first-order pressure is identified as the acoustic see Ref. [4]), Eq. (A.7)
corresponds to the removal of the acoustic incoming wavieeabtitlet. However,
the proper characteristic-based non-reflective outletlitimm for acoustic waves
should be

1
50—~ 9.1 —
D0 0 Oep 0.

In other words, as the representative Mach number goes @ ther non-reflective
treatment of acoustic waves degenerates asymptoticadly stbsorbing treatment
which consists in setting the acoustic pressure to zero.
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e Inlet. Returning to the two length scales asymptotic expansginse

(0)

¢

£y —

0:0 + 59,0 + ¢ (90 + 9;0))

1
05?4+ 9pV) + V9,5 + 0(1) (A.8)

* 50

the identification of the expressions (A.2c) and

. m(1—=M2,)

max
3 — <

LI (0 — vf)
yields, at order1:
99,50 = K, (0@ — o).
This equation holds on an interval in which the inlet lies; at 0. On this interval,
@ =yt
as function ofi. Sincev' is supposed to be constant in time,

8517(0) = 0.

From the zeroth-order momentum equation obtained throhglconvective and
acoustic space scales low Mach number asymptotic anatyséshas, after sepa-
ration of convective and acoustic space scales (we refet, 8 for details on this

scales separation technique):

8517(0) — —8525(1)/@(0),
from which we deduce:
85]5(1) = 0.

Thus, the acoustic pressure is extrapolated at the inlét, an extrapolation in
the large acoustic length scale. If only the space variatadrthe long wavelength
acoustic waves are retained in expression (A.8), the nfleetive equationCs = 0
reduces at order zero to

1
@w®+@a@%ﬁ”=o
Sinceagp(” = 0, the non-reflective equation of acoustic waves becomesiltriv
and the outcoming upstream propagating acoustic wavesate gero. Thus, at
the inlet, the filtering treatment of acoustic waves degatiesrinto an absorbing
treatment, based on the extrapolation of the acoustic yresshis is similar to the
observations presented previously for the outlet treatmen
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