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Abstract

The proper scaling of the pressure-velocity coupling thistea from the Momentum In-
terpolation approach for unsteady calculation in low Maamber flow is first identified.
Then, it is used to suggest a modification of the AUSMp scheme that allows acoustic
simulations in low Mach number flow.
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1 Introduction

Unsteady flow calculation in the low Mach number regime, imtipalar when
acoustics has to be accounted for, remains a challengirgono Usually, the nu-
merical pressure dissipation, necessary to overcome #ekehboard decoupling
that arises when a finite volume method in co-located armraege is applied, is
designed from analysis of steady flow problems only. Theltiegunumerical dis-
sipation is not time-step dependent and therefore canmotip® properly follow
the flow unsteadiness. In Ref. [1], the present authors dstraied that with a
time-consistent definition of the face velocity based on Matam Interpolation,
an accurate representation of travelling acoustic wavebtained in a low Mach
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number flow! . It was also demonstrated that the quite commonly used AU-8p
definition of the face velocity leads to strong damping ofieti travelling waves.
In the present contribution, we analyse the low Mach numbelirgy of the pres-
sure dissipation term in the Momentum Interpolation metwadt the approach of
Venkateswaran and Merkle in Refs. [3,4], and derive from guaeline for im-
proving the pressure dissipation term of the AUSMp method. It is demonstrated
that the modified AUSM-up method works very well for some kinds of problems
with acoustic waves in low Mach number flow, but that for ottyges of problems
the quality of the Momentum Interpolation can still not baakeed.

2 Algorithmic framework

A one-dimensional flow of air in a pipe with variable crossigen areas is con-
sidered. The viscous effects and heat transfer are nedlette flow is governed
by the Euler equations,

9(0S5) + 0x(0vS) = 0, 1)

di(ovS) + 0, (0v?S) + SO,p = 0, 2

9 (0ES) + 0, (eHvS) = 0, 3)

with pe = %p (ideal gas)E = e + %1)2, oH = oF + p, 4)
v —

wheret, o, p, v, ¢, E and H denote time, density, pressure, velocity, internal en-
ergy, total energy and total enthalpy per unit mass amténotes the coordinate
in the flow direction. Furthermore; is the ratio of the specific heats. The pipe is
divided into V cells of equal length\z. A finite volume formulation is applied,
with co-located variables at the centres of the cells. Incthrevective flux terms in
Egs. (1)-(3), density, momentunpwv and total enthalpy per unit of volume{ are
considered as transported quantities and defined with adexrder TVD upwind
method. The common velocity in the convective fluxes is aergd as the trans-
porting velocity, defined on faces of the cells. With the badgorithm, the face
velocity follows from Momentum Interpolation, as detailadhe next section. The
AUSMT-up definition is briefly recalled in a later section. The ddization of the
pressure gradient in the momentum equation (2) which regulre definition of
the pressure on the cell faces, is also detailed in the netibge

I In Ref. [2], we showed that the lack of time consistency of tinee-step dependent
face velocity influences in a negative way the quality of thkitson also for steady flow
calculations.



3 Predictor-corrector formulation with face velocity from Momentum Inter-
polation

In Ref. [1], the present authors formulated a predictorexor algorithm of a quite
general form. The purpose was to set up a framework for stéidybooad class of
algorithms. In practice though, such a general formulaisooften not necessary.
In this paper, we use a predictor-corrector algorithm o$siaform, which is a
simplified version of the algorithm described in Ref. [1]f ltith exactly the same
result for the problems under study here. Each time-stepn + 1 is decomposed
into a predictor step determining variables at an interatedievel denoted by,
followed by a corrector step with correction quantities atex bys. Furthermore,
since the equations are non-linear, iterations denotéddrg used in between the
time levelsn andn + 1. At the first iteration, variables at levél are equal to
those at time leveb. At time leveln, all nodal quantities are known, as well as the
values of the transporting velocity, , , and the pressurgf,, , on the faces. The
faces are denoted by half indices. The velocity written witbscript + 1/2 is the
transporting velocity. The velocity as transported qusrigi part of the transported
momentum and is defined with a TVD upwind method. Distincti@tween the
two meanings of the velocity will always be clear in the foteeu

Predicted values are derived from the continuity equatigrafd the momentum
equation (2) by

i

Siox in, n- o, 1
= (30] — 40} + 0] 1) + Si+1/2{9i + §¢z(9k)(gf - Q?—l)}vzﬁrl/z

2T
N 1
- i—1/2{0i—1 + §¢i—1(9k)(9f—1 - Qf—2)}vf—1/2 =0, (5

%[3@); — 4(0v)7 + (ov)7 ']

+ Sl (00)f + 30i((00)) (o) — (00 ok

— Sal(e0)is + bal(e0))(e0)ey — () al}ok 1
+ 8Pl — Piiijp) = 0. (6)

The time integration is second order backward. The spaazetization is sec-
ond order upwind TVD, where> denotes the limiter function. The parameter
stands formally forAt/Az and is determined in practice YFL, /v,,.c, Where
CFL, denotes a chosen convective CFL number apd is the maximum value
of the convective velocity in the field. In the numerical sgsinly flows with pos-
itive convective velocity are considered. Positive valassassumed for the space
discretization of the convective terms in Egs. (5)-(6). Duéhe implicit time dis-
cretization, the convective CFL number is allowed to bedattyan unity. For ac-



curacy reasons, however, we will choose this number muchiemntlaan unity in
the tests detailed in later sections.

From the predicted values of densityand momentunfgv)?, predicted values of
velocity v are determined at the nodes. Combined with= p*, predicted values
er, Er and (pH)r are obtained according to Egs. (4). Next, predicted valdes o
the face quantitiep;, , , andvy,, , are calculated. The face value of pressure is
taken through the low Mach number adaptation of AUS[], with the scaling
function of the AUSM -up scheme [6], but without the velocity diffusion term in
the pressure interpolation formula and without the pressdissipation term in the
definition of the Mach number on the face. For details, werredethe original
publications on the AUSM discretization [5,6], as well a®to earlier publication
[1]. This means that the face pressure is determined by anpoiial interpolation
between values on both sides of the face, obtained from tH2 dafinition,

Piv1j2 = [ (My)pL + f (Mg)pr, (7)

where the polynomialsf(™ and f,) are function of the Mach number on both
sides, with a quite particular definition of these Mach nurapleased on a common
interface speed of sound.

The Momentum Interpolation technique is based on the observthat the mo-
mentum equation (6) at a node is of the form

* 1 * n n—
B; = Ai(ov); + 5[3(90% —4(ov); + (ov); 1] —|—pf+1/2 - pf_1/27 (8)

with

B = 2L (0l — (en)fal}ekis

+ 5152/2{(011)@*—1 + %¢i—1((@v)k)[(gv)f_l — <QU)§—2]}U£€_1/2

Sit1/2  k
andA; = =220, .

A similar equation is postulated for the momentum terms cace fis

* 1 * n n—
Bij1p = Ai+1/2(QU>i+1/2+E[3(Qv>i+1/2_4(Qv>i+1/2+(gv>i+ll/2]+p§+1_p?= 9)
where two terms in the balance of the momentum fluxes arepiited, but where
the inertia term and the pressure term are written directlyhe face. We use the
so-called classic Rhie-Chow interpolation, namely:

2 1 1 B2 Bi  Bin

- + ) - A )
Ai—i—l/? AZ Ai+1 Ai—i—l/? Az Ai—i—l




but the precise way of interpolation is not critical [1,7,8he transporting face
velocity is deduced from the momentum equation by

Ui*+1/2 = (QU):+1/2/Q:+1/27 (10)
where the face density is defined with the TVD upwind method.

Corrections for the pressure are derived from the energgteayu This equation is
discretized in the same style as the continuity equatiorfEthomentum equation

by

%[3@); +3(0B); — 4(0E)! + (0B

+ Sl (QH); + 3i((oH))(H); — (oH)i] Wiy
~ Sicap{(0HY + g9 () (0H)Ey — (oH) ]}y
+ Sis1y2(0HV)i 15 — Sic1p2(0Hv)i_y s = 0. (11)

The corrections on the enthalpy flux terms are written as

<9HU);+1/2 = H;+1/2(QU>;+1/2 + (QH);+1/2U:+1/27 (12)

With H\, p = (0H)14 /071 2, Where both terms in the ratio are defined with the
TVD upwind method.

Neglecting the contribution of the kinetic energy, the ections for total energy
and total enthalpy are written as

1

i
(oE); = ﬁp;, (0H )iy1y2 = ﬁp;-i-l/m (13)

wherep;, , , is interpolated with the AUSN-up polynomials as
P;+1/2 = f;(Mz*)p; + fp_(M:+l)p;+l' (14)

The momentum corrections are written in SIMPLE-style, das®the momentum
equations (8) and (9), as

3 / /
(A; + Z)(QU)Q = _(pi+1/2 - pi—1/2)7 (15)
3 / / /
(Az+1/2 + Z)(Q’U)H-lﬂ = —(Pi+1 - Pi)- (16)

Substitution of (13), (14) and (16) into (12) and (11) leadlsah extended Pois-
son equation for the pressure corrections. This equatieoli'ed by a Gaussian
elimination procedure. The pressure corrections are tinehdr used to determine



the corrections of the momentum values at the nodes and dadés by (15) and
(16). Density is corrected by, = (0,0);p;. The whole procedure is then repeated
until convergence. This results then in the equations @aiid (11) with values at
the x—level andk—level replaced by values at the time lewel- 1 and correction
values in (11) equal to zero. These equations are discdetizéhe same way and
use the same value of the transporting velocity on the faces.

4 Transporting velocity in Momentum Interpolation

The scaling property of the transporting velocity thatesign the Momentum In-
terpolation approach is studied, along with its relatiothwie time-step indepen-
dency of the steady state, which is related to the time ctargig of the scheme.

4.1 Scaling property

We introduce a reference length pressure,, densityp,, velocity v, and timet,.

Our purpose is to study acoustic propagation in low Mach remfibw. Therefore,
we choose the length of the flow domain as reference lengtleaghvective velocity
v, of the background low Mach number flow and the velog'@r/gr, which is of

the same order as the velocity of sound in the mean flow, aserefe velocities.
The reference Mach number is thus definedvas= v././p./0.. The reference
time is of the order of the time needed by an acoustic waveaieelithrough the

reference length, thus = [, /1/p./ 0. The non-dimensional form of the discretized
momentum equation becomes

35¢

* 1 k k QSt n St n—1 *
Bi = Ai(0v)i + 3 Pivr2 = Pimaje) = — (0u)i + 5 (ev)i™ + o~ (ev)i (17)

where all parameters are non-dimensiongland B; belong toO (1), and where
St = (I./v,)/t, is the reference Strouhal number. The non-dimensional &drtine
face velocity equation (9) is similarly

1

(Qv):+1/2 = KCBHI/?_KP(pr_pf)+KI[2Q?+1/2U?+1/2_59?4:11/21’?;11/2]7 (18)
where
3S K S
Ko = (Aig12 + 2—;>_17KP = WZ, K= ch (19)

are the coefficients of the convection, pressure and inertnas.

For acoustic problems in low Mach number flow, the refereime tst, = Ml /v,
(cf. e.g.Ref. [4]), so that the reference Strouhal numBgbelongs toO (1/M).



Table 1
Scalings of the face velocity coefficients for low Mach numbeoustic problems with
Momentum Interpolation

Convection term Pressure term Inertia term Time consigtenc

1+ 30" (M2 4 M)~ (1+7M)7? yes

Thus, the scaling behaviour of the coefficients (19) can Ipeessed in terms af
andM only. The results are given in Table 1. Let us emphasize Hestet scaling
properties are the same as in the discretized momentumie (7).

4.2 Time consistency

As pointed out by Pascau [8], an important property, whicteiated to the time
consistency of the scheme, is the time-step independerhg tfansporting veloc-
ity if a steady state is reached. Inspection of Eq. (18) witkfficients (19), shows
that, at steady state (= n—1 = %), the transporting velocity at the face is indepen-
dent of the time-step. Further, the corraft scaling of the convection term with
respect to the pressure coefficient in unsteady flows (sde Tals maintained for
steady flows.

Physically, at low Mach number, the momentum equation (E€pines a balance
between the pressure term and the inertia term. Such a lealswatso expressed
locally on the face of a control volume by Eq. (18). We say tiwa scheme is
time-consistent since the individual terms in the expmes§18) are similar to cor-
responding terms in the momentum equation at the nodes (17).

5 Transporting velocity in AUSM *-type schemes

The idea developed in this section is that the previous whens concerning
the scaling property of the transporting velocity obtaiti@@dugh the Momentum
Interpolation method can be applied with advantage to Godilype schemes.
As an example of such schemes, AUSMp is considered [6]. Then, variants of
AUSM*-up adapted for unsteady calculations are studied.

5.1 Necessity of a time-step dependent definition of thep@mting velocity

Possible checkerboard decoupling of the pressure is avardéhe AUSM™-up
scheme by adding a pressure dissipation term in the intipolformula for the



face velocity. First, the interface Mach number is written a

- k — Pr — D
Mi+1/2 = fAJZ(ML)WLfM(MR)_m maX{l_(MiH/Q)zg’ O} m’
(20)

where the expressions fgfi, ky, o, HM/Q, Mo i+1/2, ciy1/2 @nd f are given in
Ref. [6], ando; 12 = (o1, + or)/2. Notice that the interpolation polynomiaf§;
are different fromf;t in Egs. (7) and (14).

The face velocity is defined by
Viy1/2 = Civ12Mig1)2. (21)

We remark that we may replace the face velocity from Momenntsrpolation (9)
by (21) and still use the pressure correction algorithm nowt with (15) replaced

by

(QU); = _Hi+l/2(p;'+1 - p;), (22)
with
kyp “7* 2 oy,
Kip1)2 = ———7——max{l — (M, ,,)%0, 0} ———.
FMGi41/) o Oit1/2Ci+1/2

The expression (22) has the correct Mach number scalingtéadyg flows, but
misses the time-dependent term of the Momentum Interpolatpproachdf. Table
1).

The effect of the inappropriate pressure dissipation of MJSup for acoustic sim-
ulation in low Mach number flow was evidenced in our previouslg [1]. As it
is illustrated in Fig. 1, which presents results extracteanf[1], the AUSM"-up
scheme leads to unphysical dissipation of acoustic tiageivaves when com-
pared to the results obtained with the Momentum Interpamtathethod. Thus, it
can be hoped that better results be obtained with a modifred ddAUSM™-up, in
order to recover the time-step dependency and the scalomgepy of the pressure-
velocity coupling of the Momentum Interpolation method.

5.2 Time-step dependent AUSNype interpolation

A modification of AUSM™-up that satisfies the time-step dependency as well as
the suitable scaling property of the pressure-velocityptiog evidenced in Sec. 4,

is suggested. It is compared with the LDFSS-2001 schemeideddn Ref. [9],
which is an AUSM variant involving an explicit time-step deqency as well.



Pressure distribution (Pa)
o
|

: \ : ; ' AU +_-U —
: : : : Momentum Interpolation :
T O SRS, 4

Pipe axial coordinate (m)

Fig. 1. Downstream propagation of a wave forced at the lafhldary of a pipe of constant
cross-section ared. Pressure distribution & = 2 ms. The inlet velocity is specified
to oscillate about a mean valig, asv'(t) = V[1 + Asin(27ft)], where A = 1072,
V = 0.30886 ms~! and f = 2 10% Hz. Exact solution:e (linear acoustics). Number
of cells: N = 500. Mach number of the background flowI = 10~3. ConvectiveCFL
number:CFL, = 10~%. TVD-limiter is Bounded Central (Figure adapted from Réf)[

e MODIFIED AUSMT-up. To adapt the AUSN-up scheme in order to obtain a
transporting velocity suitable for acoustic simulationow Mach number flows,
the interface Mach number given by Eq. (20) is modified suet tie scaling of
the coefficient of the pressure gradient becoés+ M/7)~" in acoustic regime,
as for the Momentum Interpolation approach (see Table 1):

Mi+1/2 = fz\JQ(ML) + fA}(MR)

7 Pr — PL
— kymax{1 — (M;;1/2)%c,0} , (23)
8 W 0i+1/2Ci+1 2L f (Mo is1/2)Cigrjo + 2]

wheres € O (1). To verify the correct scaling, the reference quantitieSe¢. 4.1

are used for the non-dimensionalization of the pressurdigmaterm in Eq. (23).
As k,max{1 — (M;;1,2)%0,0} € O(1) if M < 1, itis sufficient to note that the
ratio in the last term of Eq. (23) is not modified in non-dimensal form. Notice

that in EqQ. (22)x is then given by

Vi 2 o
Kir1/z = kpmax{l — (M, )0, 0} — :
/ Qit+1/2 [f(Mg,i+1/2)Cf+1/2 + g]

¢ LDFSS-2001. A simplified version of the transporting vetpaf LDFSS-2001
described in Ref. [9], in order to bring it in the form (23), is

. 2
QZ+1/2UI/2,rCf,conv

~ - ~ Pr—D
Vi+1/2 = Ci+1/2,conv (Mf + Mg — Miy1y2 & - ) ) (24)



where

_ 1
’U%/Z,ref,conv = maX{T 27 |Ui|12nax}7 Qi+1/2 = i(QL + QR)7

1
~ _ 2 2 —
Ci+1/2,conv = \/Uz'+1/2 + 41}1/2,r0f,eonv7 Vit1/2 = §(UL + 'UR)v

1 v
M) = (M 12, Myjr = —2—

)
Ci41/2,conv

1 1 1
— (M — S (My + |My]) — Mg + (Mg — |Mg])].

Mi -
+1/2 2[ 2 9

In Eq. (22),x is given by

o Cz’+1/2,convMi+1/2
Kit1/2 = 3 .
U1/2,rof,conv

Notice that the transporting velocity definition given infR@] needs to be simpli-
fied in the present paper, in order to obtain an expressidrdties not involve the
transported quantities. The algorithm described in Sean2titen be used without
modification. Using the same reference quantities as fostading study of the
modified AUSM™-up scheme, the non-dimensional pressure gradient terny.in E
(24), at the leading order in the power of the reference Machber, is

Pr — DL

M
Oi+1/27

Thus, LDFSS-2001 has the propamsteadylow Mach number scaling, for very
low Mach number. However, the scaling is not exactly the samthe one of the
properly scaled Momentum Interpolation methods consitlereSec. 4 ¢f. Refs.
[7,8]), which is mimicked by the modified AUSMup defined before. Further, both
the modified AUSM -up scheme and the LDFSS-2001 scheme lack an inertia term
in the face velocity definition.

6 Numerical experiments

Two test cases of increasing complexity are now considerddst the proposed
modified AUSM"-up scheme. They differ essentially by the spectral coragtite
propagating acoustic wave. For both test cases, boundaditmms are not rele-
vant because we do not continue the calculations until waasesh boundaries. For
test case 1 used previously to illustrate the deficiency o&8Md-up (Fig. 1), the
improvement by the modified scheme is impressive. As shovign2, both the
LDFSS-2001 and the modified schemes permit to simulate amdyrthe propaga-
tion of the harmonic wave. For propagation of a non-harmevage (pulse), the

10



results differ more. On a propagation distance less thammater, both the mod-
ified AUSMT-up and LDFSS-2001 schemes give quite good results with anly
slight difference of the pulse when compared to the Momerituerpolation re-
sults (Fig. 3, a-b). Note that in such a case, the results égtdndard AUSM-up
scheme are of very bad quality. If a longer distance of prapag is considered
(Fig. 3, c-d), the Momentum Interpolation method outpearfsiboth the modified
AUSM*-up and LDFSS-2001 schemes. The reason is the lack of theitem in
the face velocity definition, necessary for full time cotesiey of the face velocity.
The lack of the inertia term has as consequence that theyjaathe results varies
with the value of the coefficiertt and that its optimum value is problem dependent.
For the case shown in Fig. 2, the best results are obtained forl, while for the
case shown in Fig. 3 the best results are obtainegd for0.01.

Pressure distribution (Pa)

Modified AUSM *-u ‘
LDFSS-2001 —— -

0.8 1

Pipe axial coordinate (m)

Fig. 2. Downstream propagation of a wave forced at the lafhidary of a pipe of constant
cross-section are. Pressure distribution at= 2 ms. Exact solutione (linear acoustics).
Number of cells:N = 500. Mach number of the background flonf = 10~2. Convective

CFL number:CFL, = 10~%.

7 Conclusion

The time-step dependency and the scaling of the pressloetkyeoupling suitable

for unsteady calculation in low Mach number flow, includirgastic features, has
been identified in the Momentum Interpolation approach sstayl in Refs. [7,8].
We observed that the proper form of the inertia term in thaesparting velocity
definition is related to the time-step independency of thady state. This suitable
scaling of the pressure gradient dissipation has then beeh to suggest a modi-
fication of AUSM"™-up scheme to allow acoustic simulations in low Mach number
flow. The accuracy improvement when the solution is comp#rdtie one of the
original AUSM"-up scheme indicates that the scaling identified in the Mdoman
Interpolation approach can be applied with advantage tauGodtype schemes.
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Fig. 3. Downstream propagation of an acoustic pulse in agfipenstant cross-section area
S. Pressure distribution &t= 5 1072 ms (top),t = 2.33 ms, t = 6.7 ms andt = 9.03 ms
(bottom). Exact solution: linear acoustics. Number ofceN = 2 500. Mach number of
the background flowM = 10~%; convectiveCFL number:CFL, = 5 10~*. Results by
AUSMT-up coincide with the coordinate-axis for= 6.7 ms andt = 9.03 ms.
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