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Abstract

Low Mach number flow computation in co-located grid arrangement requires pressure-
velocity coupling in order to prevent the checkerboard phenomenon. Two broad categories
of pressure-velocity coupling methods for unsteady flows can be distinguished based on
the time-step dependency of the coupling coefficient in the definition of the transporting
velocity on a face of a control volume. As an example of the time-step independent cate-
gory, the AUSM+-up scheme is studied. As an example of the second category, Rhie-Chow
momentum interpolation methods are studied. Within the momentum interpolation tech-
niques, again two broad categories can be distinguished based on the time-step dependency
of the coupling coefficient used for unsteady flow computations, but when a steady state is
reached. Variants of Rhie-Chow interpolation methods in each subcategory are studied on
critical test cases. The result of the study is that for a goodrepresentation of unsteady flows
containing acoustic information, the pressure-velocity coupling coefficient must explicitly
depend on the time-step, but that the transporting velocitymust become independent of the
time-step when a steady state is reached.
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1 Introduction

Solving the compressible flow model instead of the incompressible – or else, the
dilatable flow model – to simulate low Mach number flow, presents an impor-
tant advantage: the acoustic field is resolved as well as the hydrodynamic one.
For instance, this allows to get insight into the physical mechanisms of sound
generation in the flow. However, a particular difficulty arises for low Mach num-
ber computations in finite volume formulation with co-located arrangement, since
pressure-velocity coupling is then required to avoid the checkerboard decoupling
phenomenon, which increases as the Mach number decreases. Albeit present in
principle in the calculated field, the acoustic waves can then be damped so that
no usable acoustic information is obtained. This holds evenif small time-step and
mesh spacing are used. Thus, when solving the compressible equations in low Mach
number regime, special care has to be applied to introduce a pressure-velocity cou-
pling that preserves meaningful acoustic information, andmore generally, to calcu-
late unsteady solutions satisfactorily.

Broadly, two large classes of pressure-velocity coupling can be distinguished in un-
steady calculations. First, the pressure-velocity coupling can be introduced through
a coefficient that does not depend explicitly on the time-step (seee.g. [4,8]). In
the second class, the pressure-velocity coupling is explicitly time-step dependent
in unsteady calculation (seee.g.[2,5,6,11,15,20]). Rhie-Chow interpolation, which
consists in the construction of the transporting – or interface – velocity inspired by
the method presented in Ref. [13] for steady calculations, belongs to this second
class of methods. However, the interpretation of this interpolation method is not
unique, as far as unsteady calculations are considered.

As pointed out by Pascau [11], an important property justifies the distinction be-
tween two groups of unsteady momentum interpolation methods. The distinctive
property is whether or not the interpolation carried out forsteady flows is recov-
ered when a steady state is reached while the interpolation is carried out for un-
steady flows. Evidently, this property is strongly related to the time consistency of
the scheme. If it is satisfied, the time-step independency ofthe steady state is guar-
anteed. For instance, this is the case for the interpolationprocedures suggested in
Refs. [6,11,20], but not for the ones suggested in Refs. [2,5,15]. Let us emphasize
that, as clearly shown in Ref. [11], the time-step dependency of the steady state is
not the consequence of the presence of the time-step as multiplying factor of the
pressure gradient in the transporting velocity expression.

The present investigation focuses on the manner in which thepressure-velocity cou-
pling should be carried out to allow high quality unsteady low Mach number flow
calculations as well as steady ones. To compare the different possibilities of this
coupling, belonging to the groups mentioned above, a commonpressure correction
algorithm is used. It is described in Sec. 2. The pressure-velocity coupling is intro-
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duced through the construction of the transporting velocity only. This velocity is
unique in the flux terms when solving the basic conservation equations, for mass,
momentum and energy. Various elements of its construction are detailed in Sec. 3.
To probe the schemes, a series of one-dimensional problems and a two-dimensional
problem, for which exact solutions exist or for which the physical interpretation is
obvious, are chosen. The numerical experiments are presented in Sec. 4.

2 Pressure correction algorithm

In this section, the common features of the methods considered in the following
are described. For simplicity, a one-dimensional flow of a perfect and ideal gas in a
nozzle with a variable or constant section is considered. Inthe following,x denotes
the coordinate in the flow direction. The flow model is given bythe Euler equations:

∂t(̺S) + ∂x(̺vS) = 0 (1a)
∂t(̺vS) + ∂x((̺v

2 + p)S) = pdxS (1b)
∂t(̺ES) + ∂x(̺vHS) = 0 (1c)

E = e +
1

2
v2 (1d)

̺H = ̺E + p (1e)

̺e =
p

γ − 1
(1f)

wheret, ̺, p, v, e, E andH represent time, density, pressure, velocity, internal
energy, total energy and total enthalpy per unit mass, respectively. Furthermore,γ
denotes the ratio of the specific heats andS the cross-section area of the nozzle.
Thex axis along the nozzle is divided intoN cells of length∆x. A finite volume
formulation in co-located arrangement is applied.

2.1 Prediction-correction method

In the solution procedure adopted, each time-stepn → n + 1 is decomposed into
iterations that take the following form, where the superscripts ⋆ and′ denote pre-
dicted and correction quantities of each iterationk (first iteration:k = n):

(1) Pre-estimation step: Generate a transporting velocityvTi+1/2 on the cell face,
that will be used in the following two steps. The transporting velocity is de-
fined through an auxiliary density̺⋆⋆ and velocityv⋆⋆, that can be thought
of as ’pre-predicted’. These are obtained from the continuity and momentum
equations, where the cell face velocityvki+1/2 and pressurepki+1/2 are calcu-
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lated through a simple low Mach number adaptation of the AUSM+ interpo-
lation (see Sec. 2.2). For instance, the momentum equation is written as:

1

2
(3(̺v)⋆⋆i − 4(̺v)ni + (̺v)n−1

i )

+
τ

Si

[

{(̺v)⋆⋆i +
1

2
ψi((̺v)

k)[(̺v)ki − (̺v)ki−1]}v
k
i+1/2Si+1/2

− {(̺v)ki−1 +
1

2
ψi−1((̺v)

k)[(̺v)ki−1 − (̺v)ki−2)]}v
k
i−1/2Si−1/2

]

+ τ(pki+1/2 − pki−1/2) = 0 (2)

wherevT is positive andτ is formally defined as∆t/∆x and practically cal-
culated asCFLv/vmax. Here,ψ denotes a slope limiter, for instance Bounded
Central (defined later), allowing to reach second-order accuracy in space,
while the same order of accuracy in time is obtained by using the second-
order backward discretization. The construction of the transporting velocity
will be detailed in Sec. 3. This transporting velocity is used in all equations
in the prediction step. In the pre-estimation step, the boundary conditions are
taken into account.

The pre-estimation step is introduced here in order to allowa unique def-
inition of the transporting velocity in all equations in theprediction step. In
most practical algorithms, this pre-estimation step is notused. This then has as
consequence that the transporting velocity in the momentumequation differs
from the transporting velocity in the equation used to derive the pressure field,
which typically is the continuity equation. In the present study, we introduce
the pre-estimation step in order to avoid phenomena relatedto differences in
the transporting velocities in the different equations.

(2) Prediction step: Withp⋆i = pki , calculate̺ ⋆
i using

1

2
(3̺⋆i − 4̺ni + ̺n−1

i ) +
τ

Si
{[̺⋆i +

1

2
ψi(̺

k)(̺ki − ̺ki−1)]v
T
i+1/2Si+1/2

− [̺⋆i−1 +
1

2
ψi−1(̺

k)(̺ki−1 − ̺ki−2)]v
T
i−1/2Si−1/2} = 0

where the transporting velocityvT is positive. A similar equation stands for
momentum(̺v)⋆. From the predicted density, momentum and pressure, cal-
culate the predicted values of total energy and total enthalpy.

(3) Correction step: Calculate the pressure correctionp′ by solving the energy
equation in second-order accurate backward discretization form in time. Flux
terms are expanded as

(̺vH)k+1
i+1/2 = (̺H)⋆i+1/2v

T
i+1/2 +H⋆

i+1/2(̺v)
′
i+1/2 + (̺H)′i+1/2v

T
i+1/2

where(̺H)⋆i+1/2 is upwinded in second-order accurate form as a convected
quantity, as well asH⋆

i+1/2. Furthermore, neglecting the kinetic energy contri-
bution,(̺H)′i+1/2 = γ

γ−1
p′i+1/2 and(̺v)′i+1/2 and(̺v)′i are derived from the
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momentum equation according to the SIMPLE approximation method. This
will be detailed in Sec. 2.3.

(4) Updates:pk+1
i = p⋆i +p

′
i, ̺

k+1
i = ̺⋆i +(∂p̺)

⋆
i p

′
i, (̺v)

k+1
i = (̺v)⋆i +(̺v)′i . The

total energy, total enthalpy, the cell face pressurepk+1
i+1/2 and velocityvk+1

i+1/2 are
finally updated.

2.2 Cell face quantities in the pre-estimation stage

For explanations on the AUSM+ and AUSM+-up schemes, we refer to [7,8] and
focus only on a low Mach number adaptation of AUSM+, by using the scaling
function in the construction of the AUSM+-up scheme. The notationL orR, which
refers to the left or right side of the facei + 1/2, is adopted since an extrapolation
technique will be used in the following. Thus, a Mach number on the sideS is
defined as

MS =
vS

ci+1/2

, S = L,R

whereci+1/2 is the interface speed of sound defined in Ref. [7]. A mean Mach
number at the facei+ 1/2 is also defined,

M i+1/2 =

√

√

√

√

(vL)2 + (vR)2

2c2i+1/2

and a reference Mach numberM0,i+1/2 by

M2
0,i+1/2 = min{1,max{M

2
i+1/2,M

2
co}} (3)

whereMco is a cut-off Mach number that belongs toO(M∞). The scaling function
suggested in Ref. [8] is

f(M) =M(2−M). (4)

The use of this function permits the proper asymptotic behaviour of the pressure
dissipation term forM ց 0 in the face velocity (see Ref. [8]), defined by the
following expressions:

M±
(1)(M) =

1

2
(M ± |M |)

M±
(4)(M) = ±

1

4
(M ± 1)2 ±

1

8
(M2 − 1)2

P±
(0)(M) =M±

(1)(M)/M

P±
(5)(M) =

1

4
(M ± 1)2(2∓M)±

3

16
(5(f(M0))

2 − 4)M(M2 − 1)2
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M±(M) =







M±
(1)(M) , |M | ≥ 1

M±
(4)(M) , |M | < 1

P±(M) =







P±
(0)(M) , |M | ≥ 1

P±
(5)(M) , |M | < 1

pi+1/2 = P+(ML)pL + P−(MR)pR (5)

Mi+1/2 = M+(ML) +M−(MR) (6)

vi+1/2 = ci+1/2 Mi+1/2. (7)

To reach second-order accuracy in space, the primitive variablesp, ̺ andv used in
the AUSM+ scheme are extrapolated at the facei+ 1/2 according to

φL = φi +
1

2
ψi(φ)(φi − φi−1) , φR = φi+1 −

1

2
ψi+1(φ)(φi+1 − φi)

whereψ denotes a slope limiter. Practically, MinMod or Bounded Central were
chosen. For instance, for Bounded Central:

ψi(θ)(θi − θi−1) = BC(θi − θi−1, θi+1 − θi)

where

BC(a, b) = MinMod(b, 2a)

and

MinMod(a, b) =
sign(a) + sign(b)

2
min{|a|, |b|}.

2.3 Energy-based pressure correction equation

As in every algorithm that belongs to the SIMPLE family, a relationship between
momentum correction and pressure correction has to be constructed. First, the mo-
mentum is predicted implicitly with the second-order upwind discretization for the
convected quantity̺v and the second-order backward discretization in time,

1

2
{3(̺v)⋆i − 4(̺v)ni + (̺v)n−1

i }

+
τ

Si

[{(̺v)⋆i +
1

2
ψi((̺v)

k)[(̺v)ki − (̺v)ki−1]}v
T
i+1/2Si+1/2

− {(̺v)⋆i−1 +
1

2
ψi−1((̺v)

k)[(̺v)ki−1 − (̺v)ki−2]}v
T
i−1/2Si−1/2]

+ τ(pki+1/2 − pki−1/2) = 0. (8)
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Substracting Eq. (8) from the one satisfied by the momentum atthe iterationk + 1
when the same discretization procedure has been applied,

1

2
{3(̺v)k+1

i − 4(̺v)ni + (̺v)n−1
i }

+
τ

Si
[{(̺v)k+1

i +
1

2
ψi((̺v)

k+1)[(̺v)k+1
i − (̺v)k+1

i−1 ]}v
k+1
i+1/2Si+1/2

− {(̺v)k+1
i−1 +

1

2
ψi−1((̺v)

k+1)[(̺v)k+1
i−1 − (̺v)k+1

i−2 ]}v
k+1
i−1/2Si−1/2]

+ τ(pk+1
i+1/2 − pk+1

i−1/2) = 0

the following relation is obtained,

3

2
(̺v)′i +

τ

Si
{[{(̺v)k+1

i +
1

2
ψi((̺v)

k+1)[(̺v)k+1
i − (̺v)k+1

i−1 ]}v
k+1
i+1/2

− {(̺v)⋆i +
1

2
ψi((̺v)

k)[(̺v)ki − (̺v)ki−1]}v
T
i+1/2]Si+1/2

− [{(̺v)k+1
i−1 +

1

2
ψi−1((̺v)

k+1)[(̺v)k+1
i−1 − (̺v)k+1

i−2 ]}v
k+1
i−1/2

− {(̺v)⋆i−1 +
1

2
ψi−1((̺v)

k)[(̺v)ki−1 − (̺v)ki−2]}v
T
i−1/2]Si−1/2}

+ τ(p′i+1/2 − p′i−1/2) = 0

which is approximated by:

3

2
(̺v)′i = −

τ

Si
[{(̺v)′i +

1

2
ψi((̺v)

k)[(̺v)′i − (̺v)′i−1]}v
T
i+1/2Si+1/2

− {(̺v)′i−1 +
1

2
ψi−1((̺v)

k)[(̺v)′i−1 − (̺v)′i−2]}v
T
i−1/2Si−1/2]

− τ(p′i+1/2 − p′i−1/2). (9)

For effective computation, the slope limiter term in Eq. (9)is replaced by the
second-order upwind form. According to the SIMPLE approximation principle, a
mass flux correction on the face is deduced from Eq. (9), as

(̺v)′i+1/2,M = −
2

3
τ(p′i+1 − p′i)

where the indexM denotes the momentum equation origin of this expression. How-
ever, let us leave the possibility open for a more general mass flux correction ex-
pression, which may take into account a contribution of the numerical flux function
used, so that:

(̺v)′i+1/2 = (̺v)′i+1/2,M + (̺v)′i+1/2,F (10)

where

(̺v)′i+1/2,F = −κi+1/2(p
′
i+1 − p′i). (11)
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The value of the non negative coefficientκ will be detailed in Sec. 3, according to
the pressure-velocity coupling to be chosen.

To compute the pressure correctionp′, a key role is assigned to the energy equa-
tion. Again, in order to achieve second-order accuracy in time, the second-order
backward scheme is used:

1

2
{3(̺E)k+1

i − 4(̺E)ni + (̺E)n−1
i }

+
τ

Si

{

(̺vH)k+1
i+1/2Si+1/2 − (̺vH)k+1

i−1/2Si−1/2

}

= 0 (12)

The total energy is expanded as

(̺E)k+1
i = (̺E)⋆i + (∂p(̺e))

⋆
i p

′
i.

In the case of a perfect gas,

(∂p(̺e))
⋆
i =

1

γ − 1
.

Neglecting the kinetic energy contribution, the total enthalpy correction at the face
is written as:

(̺H)′i+1/2 =
γ

γ − 1
p′i+1/2.

In the flux terms, the pressure correction is interpolated using the AUSM+ adapta-
tion described in Sec. 2.2:

p′i+1/2 = P+(M⋆
i )p

′
i + P−(M⋆

i+1)p
′
i+1.

Thus, the energy equation (12) becomes

Ci−1p
′
i−1 + Cip

′
i + Ci+1p

′
i+1 = Σi (13)

where

Ci−1 = −
τ

Si
[
γ

γ − 1
P+(M⋆

i−1)v
T
i−1/2 + (κi−1/2 +

2

3
τ)H⋆

i−1/2]Si−1/2

Ci =
3

2(γ − 1)
+
τ

Si

{

[
γ

γ − 1
P+(M⋆

i )v
T
i+1/2 + (κi+1/2 +

2

3
τ)H⋆

i+1/2]Si+1/2

− [
γ

γ − 1
P−(M⋆

i )v
T
i−1/2 − (κi−1/2 +

2

3
τ)H⋆

i−1/2]Si−1/2

}

Ci+1 =
τ

Si

[
γ

γ − 1
P−(M⋆

i+1)v
T
i+1/2 − (κi+1/2 +

2

3
τ)H⋆

i+1/2]Si+1/2
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and

Σi = −
1

2
{3(̺E)⋆i − 4(̺E)ni + (̺E)n−1

i }

−
τ

Si
{(̺H)⋆i+1/2v

T
i+1/2Si+1/2 − (̺H)⋆i−1/2v

T
i−1/2Si−1/2}.

3 Transporting velocity construction

To avoid the checkerboard decoupling phenomenon that may arise at low Mach
number when a co-located arrangement is used, the transporting velocity should
be constructed such as to couple the pressure and the velocity. Examples of such
couplings are considered in this section: a transporting velocity obtained by the
AUSM+-up interpolation and several alternatives of Rhie-Chow interpolation.

3.1 AUSM+-up cell-face velocity

AUSM+-up is an extension of AUSM+, that consists in the addition of pressure-
velocity coupling terms in the expressions of the pressure and the Mach number at
the interface (see Eqs. (5)-(6)). Eq. (5) is replaced by:

pi+1/2 = P+(ML)pL + P−(MR)pR
−KvP

+(ML)P
−(MR)(̺L + ̺R)f(Mi+1/2)ci+1/2(vR − vL)

whereKv is a positive constant. Moreover, instead of Eq. (6), the Mach number at
the interface is expressed as

Mi+1/2 = M+(ML) +M−(MR)

−
Kp

f(M0,i+1/2)
max{1 − (M i+1/2)

2σ, 0}
pR − pL

̺i+1/2c
2
i+1/2

(14)

whereKp andσ are two constants and̺i+1/2 = (̺L + ̺R)/2.

The mass flux at the interfacei+ 1/2 is then written as:

(̺v)i+1/2 = ci+1/2 Mi+1/2 ̺L (15)

and the interface velocityvTi+1/2 is given by the formula of AUSM+, Eq. (7), but
now expressed with the interface Mach number given by Eq. (14). The numerical
values of the parametersKp, Kv andσ used in the subsequent test cases are those
suggested in Ref. [8]:Kp = 0.25,Kv = 0.75 andσ = 1.
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According to Eq. (15), the AUSM+-up contribution of the mass flux correction is
written as

(̺v)′i+1/2,F = c⋆i+1/2 M
′
i+1/2 ̺

⋆
L

where

M ′
i+1/2 = −

Kp

f(M⋆
0,i+1/2)

max{1− (M
⋆
i+1/2)

2σ, 0}
p′i+1 − p′i

̺⋆i+1/2(c
⋆
i+1/2)

2
.

Thus, the pressure corrections are not extrapolated. This was found necessary in
order to maintain the positivity of the correction system (13). Returning to Eq.
(11), the dissipation coefficient arising from the AUSM+-up scheme is

κi+1/2 =
Kp

f(M⋆
0,i+1/2)

max{1− (M
⋆
i+1/2)

2σ, 0}
̺⋆L

̺⋆i+1/2c
⋆
i+1/2

.

3.2 Rhie-Chow interpolation alternatives

The Rhie-Chow interpolation consists in the derivation of atransporting velocity
from the momentum equation only, so that the contribution ofa numerical flux
function in Eq. (10) is excluded andκi+1/2 = 0 in Eq. (11). The procedure to
derive an interpolated velocity is not unique. As illustrated further, a crucial issue
is the time-step independency of the steady state. So, let usbegin by the case of a
steady flow before showing several alternatives of interpolation for unsteady flows.

3.2.1 Steady flow

In a steady flow, the momentum equation (2) can be written as:

v⋆⋆i =
Bi

Ai
−

1

Ai
(pki+1/2 − pki−1/2) (16)

where

Ai = ̺⋆⋆i v
k
i+1/2Si+1/2/Si

and

Bi = −
1

Si

[1

2
ψi((̺v)

k)[(̺v)ki − (̺v)ki−1]v
k
i+1/2Si+1/2

− {(̺v)ki−1 +
1

2
ψi−1((̺v)

k)[(̺v)ki−1 − (̺v)ki−2)]}v
k
i−1/2Si−1/2

]

.
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A relation at the cell-face similar to the one written at the cell-center in (16) is
postulated:

vTi+1/2 =
Bi+1/2

Ai+1/2

−
1

Ai+1/2

(pki+1 − pki )

where the cell-face quantities in the RHS need to be specified. Then, a first option
consists in the linear interpolation ofB independently of the interpolation ofA, by
setting:

Bi+1/2 =
1

2
(Bi +Bi+1). (17)

With this choice, the transporting velocity, in the form typically used in practice, is:

vTi+1/2 =
1

2Ai+1/2

(Aiv
⋆⋆
i + Ai+1v

⋆⋆
i+1)

+
1

Ai+1/2

[
1

2
(pki+3/2 − pki+1/2) +

1

2
(pki+1/2 − pki−1/2)− (pki+1 − pki )]. (18)

A second option consists in the linear interpolation of the ratioB/A, namely:

(

B

A

)

i+1/2
=

1

2

[

(

B

A

)

i
+
(

B

A

)

i+1

]

(19)

which leads to:

vTi+1/2 =
1

2
(v⋆⋆i + v⋆⋆i+1) +

1

2Ai+1
(pki+3/2 − pki+1/2) +

1

2Ai
(pki+1/2 − pki−1/2)

−
1

Ai+1/2

(pki+1 − pki ). (20)

This latter option is sometimes referred as the original Rhie-Chow interpolation
method [11]. In Eqs. (18) and (20), a common choice is:

1

Ai+1/2

=
1

2
(
1

Ai

+
1

Ai+1

).

The expression (18) was suggested by Lien and Leschziner [6]and by Pascau [11],
but not used for steady flows. The expression (20) was used forsteady flows by
Miller and Schmidt [10], Majumdar [9] and Lien and Leschziner [6], to make the
result independent of the underrelaxation coefficient. In case of underrelaxation of
the velocity, both choices (17) and (19) lead to a transporting velocity indepen-
dent of the underrelaxation coefficient at steady state. As recognized by Pascau
[11], both choices ensure the time-step independency of thetransporting velocity
at steady state, when unsteady equations are considered.
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3.2.2 Unsteady flow

Keeping the notations of the steady case in Sec. 3.2.1, the momentum equation (2)
with its inertial terms leads to

Bi = Aiv
⋆⋆
i + (pki+1/2 − pki−1/2)−

2

τ
(̺v)ni +

1

2τ
(̺v)n−1

i +
3

2τ
(̺v)⋆⋆i . (21)

As previously in Sec. 3.2.1, a similar equation written at the cell-face is postulated:

Bi+1/2 = Ai+1/2v
T
i+1/2 + (pki+1 − pki )−

2

τ
̺ni+1/2(v

T
i+1/2)

n

+
1

2τ
̺n−1
i+1/2(v

T
i+1/2)

n−1 +
3

2τ
̺⋆⋆i+1/2v

T
i+1/2. (22)

It is worth to notice that the cell-face velocity has to be stored at each time-step.
The option that corresponds to Eq. (17) leads to:

vTi+1/2 =
1

2Ai+1/2
(Aiv

⋆⋆
i + Ai+1v

⋆⋆
i+1)

+
1

Ai+1/2

[
1

2
(pki+3/2 − pki+1/2) +

1

2
(pki+1/2 − pki−1/2)− (pki+1 − pki )]

+
1

Ai+1/2

[
2

τ
̺ni+1/2(v

T
i+1/2)

n −
1

2τ
̺n−1
i+1/2(v

T
i+1/2)

n−1 −
3

2τ
̺⋆⋆i+1/2v

T
i+1/2]

−
1

2Ai+1/2

[
2

τ
(̺v)ni −

1

2τ
(̺v)n−1

i −
3

2τ
(̺v)⋆⋆i

+
2

τ
(̺v)ni+1 −

1

2τ
(̺v)n−1

i+1 −
3

2τ
(̺v)⋆⋆i+1]. (23)

With form (23), wherevT is present in both sides of the equation, it is clear that
the expression (18) in the steady case is recovered if a steady state is reached, so
that this steady state is independent of the time-step. Another important feature of
both expressions (22) and (23) (presented in Ref. [6] and used e.g.in Ref. [20]) is
that the dependency of the face velocityvTi+1/2 on the pressure difference involves
a coefficient that contains explicitly the time-step.

The option that corresponds to Eq. (19) is suggested in Ref. [11]. It leads to an
expression ofvT which also satisfies the two properties just mentioned. In this
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case, the transporting velocity reads:

vTi+1/2 =
1

2ai+1/2

(v⋆⋆i + v⋆⋆i+1)

+
1

ai+1/2

[
1

2Ai+1

(pki+3/2−p
k
i+1/2)+

1

2Ai

(pki+1/2−p
k
i−1/2)−

1

Ai+1/2

(pki+1−p
k
i )]

+
1

ai+1/2

{2

τ

[ 1

Ai+1/2

̺ni+1/2(v
T
i+1/2)

n −
1

2Ai

(̺v)ni −
1

2Ai+1

(̺v)ni+1

]

−
1

2τ

[ 1

Ai+1/2

̺n−1
i+1/2(v

T
i+1/2)

n−1 −
1

2Ai
(̺v)n−1

i −
1

2Ai+1
(̺v)n−1

i+1

]

+
3

2τ

[ 1

2Ai
(̺v)⋆⋆i +

1

2Ai+1
(̺v)⋆⋆i+1

]}

(24)

where

ai+1/2 = 1 +
1

Ai+1/2

3

2τ
̺⋆⋆i+1/2.

In Ref. [15], a variant is suggested to avoid non physical oscillations in the solution
when small time-steps are used. In fact, this variant was already suggested in Ref.
[2]. In this case, Eq. (21) is rewritten as:

αiv
⋆⋆
i = Bi − (pki+1/2 − pki−1/2) +

2

τ
(̺v)ni −

1

2τ
(̺v)n−1

i

where

αi = Ai +
3

2τ
̺⋆⋆i .

Linear interpolation of the ratioB/α yields:

vTi+1/2 =
1

2
(v⋆⋆i + v⋆⋆i+1)

+
[ 1

2αi
(pki+1/2 − pki−1/2) +

1

2αi+1
(pki+3/2 − pki+1/2)−

1

αi+1/2

(pki+1 − pki )
]

−
2

τ

[ 1

2αi
(̺v)ni +

1

2αi+1
(̺v)ni+1 −

1

αi+1/2
̺ni+1/2(v

T
i+1/2)

n
]

+
1

2τ

[ 1

2αi
(̺v)n−1

i +
1

2αi+1
(̺v)n−1

i+1 −
1

αi+1/2
̺n−1
i+1/2(v

T
i+1/2)

n−1
]

(25)

where

1

αi+1/2

=
1

2
(
1

αi
+

1

αi+1
).

Obviously in this case, the steady state, if it exists, is time-step dependent.
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Table 1
Scalings of the transporting velocity coefficients for low Mach number acoustic problems

Convection term Pressure term Inertia term Time consistency

Refs. [6,11] : (1 + 1
τM)−1 (M2 + M

τ )
−1 (1 + τM)−1 yes

Refs. [2,15] : (1 + 1
τM)−1 (M2 + M

τ )
−1 (1 + τM)−1 no

3.2.3 Low Mach number aspects

It is important to check if the transporting velocities considered in section 3.2.2
preserve the low Mach number scaling of the discretized momentum equation (21).
Let us introduce a reference lengthlr, pressurepr, density̺r, velocityvr and time
tr. We choose the length of the flow domain as reference length. Further reference
values are the pressure, density and convective velocityvr of the background low
Mach number flow. We consider the velocity

√

pr/̺r, which is of the same order
as the velocity of sound in the mean flow. The reference Mach number is thus
defined asM = vr/

√

pr/̺r. Our purpose is to study acoustic propagation in low
Mach number flow. Therefore, the reference time is of the order of the time needed
by an acoustic wave to travel over the reference length, thustr = lr/

√

pr/̺r. The
non-dimensional form of the discretized momentum equation(21) becomes

Bi = Aiv
⋆⋆
i +

1

M2
(pki+1/2−p

k
i−1/2)−

2 St

τ
(̺v)ni +

St

2τ
(̺v)n−1

i +
3 St

2τ
(̺v)⋆⋆i (26)

whereSt = (lr/vr)/tr is the reference Strouhal number. The Mach number scaling
of the transporting velocities considered in section 3.2.2proves to be identical.
As an illustration, the use of the linear interpolation given in (17) (cf. Lien and
Leschziner, 1994 [6]) leads to the following expression of the transporting velocity:

vTi+1/2 = KCBi+1/2 −KP (p
k
i+1 − pki )

+KI [2̺
n
i+1/2(v

T
i+1/2)

n −
1

2
̺n−1
i+1/2(v

T
i+1/2)

n−1] (27)

where

KC = (Ai+1/2 +
3 St

2τ
̺⋆⋆i+1/2)

−1 , KP =
KC

M2
, KI = KC

St

τ
(28)

are the coefficients of the convection, pressure and inertiaterms. For acoustic prob-
lems in low Mach number flow, the reference time istr = Mlr/vr (cf. e.g.Ref.
[19]), so that the reference Strouhal numberSt belongs toO (1/M). Thus, the scal-
ing behaviour of coefficients (28) can be expressed in terms of τ andM only. This
corresponds to the scaling given term by term in Table 1. The time consistency
property refers to the ability of the methods to obtain a steady state independent of
the time-step.
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The previous non-dimensional formulation evidences that the Mach number scal-
ing properties of the discretized momentum equation (21) are preserved by the
transporting velocities considered in section 3.2.2. Therefore, these Mach number
scaling properties will be referred to as theproperones.

The pressure-velocity coupling coefficient, which is the pressure term in Table 1,
second column, consists in a steady scaling term inM2 and an unsteady scaling
term inM/τ . The steady scaling must be recovered when a steady state is reached
after a transient phase, that is, as soon as we can take∆t = τ∆x → +∞. Let us
emphasize that this condition is immediately satisfied withMomentum Interpola-
tion methods.

For the AUSM+-up scheme, the proper steady scaling is obtained through the scal-
ing functionf , such thatf(M) ∈ O (M) whenM ց 0 (see Eq. (4)). Notice that
the steady scaling is solely accounted for by the AUSM+-up scheme, which is de-
rived from an analysis of steady equations. However, for acoustic simulation in low
Mach number flow, it is demonstrated by Dellacherie [3] that the pressure-velocity
coupling in the AUSM+-up scheme is suitable to avoid spurious acoustic waves,
and this is not the case, unless∆x ∈ O (M), for the AUSM or AUSM+ schemes
(see [8]), which do not involve the proper steady scaling. Therefore, for acoustic
simulations in low Mach number flow, we shall consider the AUSM+-up scheme,
with the pressure-velocity coupling that involves the scaling function given in Eq.
(4).

The comparison between the AUSM+-up scheme and the Momentum Interpolation
methods will reveal the role of the unsteady low Mach number scaling. As the scal-
ing properties are the same for all the Momentum Interpolation methods considered
in this study, the comparison of the methods on unsteady numerical experiments
will make clear the practical importance of the time consistency property.

4 Numerical experiments

A series of numerical test cases is performed with the intention to investigate a
suitable choice of the transporting velocity allowing unsteady calculations, with
the possibility of acoustic features. Practically, five iterations per time-step are suf-
ficient.

4.1 Boundary treatment

A characteristic-based treatment is applied to the boundary, following Thompson
[17] and Poinsot and Lele [12]. The primitive variables̺, v andp are calculated at
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the inlet and the outlet by solving the LODI (for Locally One Dimensional Inviscid)
equations, written as

∂t̺+
̺

2c
(L1 + L3) + L2 = −̺v

dxS

S

∂tv +
1

2
(L3 − L1) = 0

∂tp+
̺c

2
(L1 + L3) = −̺vc2

dxS

S

where the quantities

L1 = (v − c)(
1

̺c
∂xp− ∂xv)

L2 = v(∂x̺−
1

c2
∂xp)

L3 = (v + c)(
1

̺c
∂xp+ ∂xv).

are interpreted as the temporal rate of change of the wave amplitudes [12]. At the
outlet, the amplitude of the incoming acoustic wave is written as

L1 = kp(p− p†) (29)

where the superscript† denotes a target value. At the inlet, the amplitudes of the
incoming convective and acoustic waves are written with thesame convention as

L3 = kv(v − v†) , L2 = k̺(̺− ̺†). (30)

The filtering level of the boundary is tuned through the relaxation coefficientskp,
kv andk̺, following Selleet al. [14].

4.2 Steady low Mach number flow

As a preliminary test, before considering numerical experiments involving an un-
steady flow and acoustic features, let us check the ability ofthe algorithm described
in Sec. 2 to calculate steady low Mach number solutions, whenthe transporting ve-
locity is one of the four given in Sec. 3. For this test, a one-meter long converging-
diverging nozzle is considered. Its section (dimensions inmeter) is given by

S(x) =































0.1, 0 ≤ x ≤ 2/28

0.1

{

0.9 + 0.1

[

2
(

x− 11

28
9

28

)2

−
(

x− 11

28
9

28

)4
]}

, 2/28 ≤ x ≤ 20/28

0.1, 20/28 ≤ x ≤ 1
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The fluid is air. The initial conditions are:


























̺0 = 1.2046 kg m−3

v0 = 0

p0 = 101 300 Pa

(31)

The boundary conditions are given by (see Eqs. (29)-(30)):

̺† = 1.2046 kg m−3 , v† = 0.30886 m s−1 , p† = 101 300 Pa. (32)

At convergence, the Mach number at the throat of the nozzle is10−3 and is around
9 10−4 at the inlet and the outlet of the nozzle, where the section isconstant. This
latter value is chosen for the cut-off Mach numberMco in Eq. (3) and the AUSM+-
up construction described in Sec. 3.1. The convectiveCFL number is0.1. Thus,
the acousticCFL number is around100. The axis of the nozzle is divided into100
cells with a constant mesh spacing∆x. For this test only, the MinMod slope limiter
is used. The Bounded Central limiter is used elsewhere.
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(a) Eqs. (7) and (14),cf. Liou, 2006 [8].
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(b) Eq. (23),cf. Lien et al., 1994 [6].

Fig. 1. Steady low Mach number flow through a converging/diverging nozzle.

The solutions are shown in Figs. 1-2 (seee.g.Ref. [1] for the exact solution). As
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(a) Eq. (24),cf. Pascau, 2011 [11].
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(b) Eq. (25),cf. Shenet al., 2001 [15].

Fig. 2. Steady low Mach number flow.

expected, the pressure correction method of Sec. 2 combinedwith the various trans-
porting velocities of Sec. 3 gives results free of checkerboard decoupling oscilla-
tions. All variants of the face velocity expressions have the ability of calculating
accurately the steady low Mach number flow solutions.

4.3 Unsteady low Mach number flows

A series of distinctive unsteady test cases is investigatedin this section. We first
consider a low Mach number flow in which unsteadiness is achieved through a
time-varying inlet velocity. For this first unsteady test, the frequency of the sollic-
itation is kept constant. Secondly, the advection of an acoustic pulse is addressed.
The choice of a narrow signal, that possesses a broad spectrum in space, is suitable
to reveal the dispersive features of a scheme (seee.g.Ref. [18]). Finally, the inter-
ference of two acoustic pulses is considered, as an illustration of the capability of
the method selected from the previous test cases. In each test case, the data are cho-
sen in order to obtain linear acoustic features, allowing a direct comparison with
the exact solution.
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4.3.1 Inlet velocity oscillation

To evidence the suitability of a definition of the face velocity with time-step depen-
dency of the pressure-velocity coupling, the propagation of a wave forced at the left
boundary of a nozzle with constant section (a pipe) is now considered. The pipe is
one-meter long and divided into500 cells. The cut-off Mach numberMco is 9 10−4.
The initial conditions are:



























̺0 = 1.2046 kg m−3

v0 = 0.30886 m s−1

p0 = 101 300 Pa

The simulation length is chosen such that no wave reaches theoutlet before the
time tf = 2 ms. The inlet velocity is specified to oscillate about a mean valueV , as

v†(t) = V [1 + A sin(2πft)]

whereV = 0.30886 m s−1, A = 10−2 andf = 2 103 Hz. The other target val-
ues required at the boundary are:̺† = 1.2046 kg m−3 and p† = 101 300 Pa.
The convectiveCFL number is chosen as10−4. With this value, the acousticCFL
number is around0.1 in the domain reached by the wave. Thus, the acoustic waves
generated through the sinusoidal variations of the inlet velocity, can be accurately
calculated.

Results attf = 2 ms shown in Fig. 3 demonstrate that the transporting velocity
given through the Rhie-Chow interpolation in Eqs. (23) (Lien et al., 1994), (24)
(Pascau, 2011) and (25) (Shenet al., 2001) are very close to each other. As ex-
pected, these methods properly take into account the inlet oscillations. Moreover,
the velocity of the wave front propagation is very close to the one obtained from
the linear acoustic theory. Acoustics is involved since theoscillating inlet velocity
corresponds to the oscillation of the incoming wave amplitudeL3 (see Eq. (30)).
Finally, the density, velocity and pressure profiles obtained when AUSM+-up in-
terpolation is used do not reproduce correctly the oscillations (see Fig. 3, bottom).
The pressure-velocity coupling of this scheme is not time-step dependent and there-
fore, can not capture the variations imposed at the inlet, despite the small time-step
chosen. Moreover, the position of the wave front is not well calculated. Thus, the in-
adequation of the AUSM+-up interpolation to accurately calculate acoustic waves
in a low Mach number flow is evidenced. This scheme will, therefore, not be con-
sidered in the following numerical experiments.

4.3.2 Acoustic pulse propagation

A narrow acoustic pulse is generated through an initial acoustic Gaussian pertur-
bation superimposed onto a mean flow, with constant density̺0, velocity v0 and
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Fig. 3. Propagation of a wave forced at the left boundary. Pressure distribution,
t = 2 10−3 s. Exact solution (linear acoustic theory):•.

pressurep0, in a five-meter long pipe. Thus,p = p0 + δp, where att = 0,

δp = A exp(−
(x−m)2

2s2
).

By taking δv = δp/(̺0c0) andδ̺ = δp/c20, a pulse that propagates to the right
(downstream) is obtained. In this case, the initial position is given bym = 0.2 m.
To obtain a pulse travelling to the left (upstream), initialvalues are such that:δv =
−δp/(̺0c0) andδ̺ = δp/c20. In this casem = 4.8 m. The dimensional numerical
settings for the wave generation are given in Table 2.
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A (Pa) s (m) m (m) p0 (Pa) v0 (m / s) ̺0 (kg /m3)

200 2 0.2 or 4.8 101 300 0.30886 1.2046

Table 2
Settings for the acoustic pulse generation.
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Fig. 4. Acoustic pulse propagation - Downstream propagation. Pressure distribution (results
using Lien and Leschziner [6] and Pascau [11] formulations coincide).

A pipe divided intoN = 2 500 cells is considered. The boundary conditions are
those given by (32). The Mach number of the mean flow is9 10−4, which is also
the value chosen forMco, and the convectiveCFL number is5 10−5 (except in Fig.
8 where several values are compared). The acousticCFL number is around0.055.

The downstream propagation of the pulse is shown in Fig. 4. Itis observed that
its advection velocity is basically correct when the transporting velocities used are
those given in Eqs. (23) (Lienet al., 1994) and (24) (Pascau, 2011). Moreover, the
shape of the Gaussian pulse is conserved. On the contrary, using the transporting
velocity given in Eq. (25) (Shenet al., 2001) leads to a large error, both in position
and shape. In case of upstream propagation of the acoustic pulse, a glance at the
Fig. 5 suffices to demonstrate that only the transporting velocities given by (23)
(Lien et al., 1994) and (24) (Pascau, 2011) give satisfying results concerning the
amplitude and position of the pulse.

In order to quantify the errors associated to the different choices of the transporting
velocities, we follow here the procedure introduced by Takacs [16]. Say thatqe and
qc are exact and computed values of a quantityq under consideration. At a given
time t, the mean square error can then be defined as:

E2 =
1

N

∑

(qe − qc)
2

where the sum extends over theN nodes of the grid. Further, we define mean values
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and variances of the quantities by

q̄e =
1

N

∑

qe , q̄c =
1

N

∑

qc

σ2
e =

1

N

∑

(qe − q̄e)
2 , σ2

c =
1

N

∑

(qc − q̄c)
2 .

Then, the mean square error can be written as

E2=
1

N

∑

[(qe − q̄e)− (qc − q̄c) + (q̄e − q̄c)]
2

=
1

N

∑

(qe − q̄e)
2 +

1

N

∑

(qc − q̄c)
2 + (q̄e − q̄c)

2 −
2

N

∑

(qe − q̄e)(qc − q̄c)

= σ2
e + σ2

c + (q̄e − q̄c)
2 − 2 cov(qe, qc) (33)

wherecov(qe, qc) is the covariance of the two signals. The correlation coefficient
between the two signals is then

R(qe, qc) =
cov(qe, qc)

σeσc
.

The error (33) can further be written as

E2 = (q̄e − q̄c)
2 + (σe − σc)

2 + 2σeσc[1− R(qe, qc)]. (34)

The different error components can now be recognized. The difference between̄qe
andq̄c is the conservation error as the mean values of the signals express the con-
tent of the signals. With the conservative discretization used here, this error is zero.
The difference betweenσe andσc is the dissipation error as the variances express
the energy of the signals with respect to their mean values. The remaining compo-
nent was considered by Takacs [16] as the dispersion error, as for exact correlation
between the signals, the only error that can occur is due to dissipation. This way
of denoting the error does not conform completely with the now commonly used
concept of the modified wave number to express dissipation and dispersion errors.
In order to see the relation with the modified wave number concept, a Fourier com-
ponent may be substituted into (34). This then reveals (not derived here) the rather
obvious result that non-dimensional measures of dissipation and dispersion errors
may be defined by

Êdissipation =
σe − σc
σe

, Êdispersion =
√

1− R(qe, qc). (35)

For exact solutions, the error measures are zero. The error measure for dissipation
becomes unity when all energy dissipates away in the computational result. The
error measure for dispersion becomes unity when the correlation between exact and
computational solutions disappears completely. The erroranalysis with (35) of the
results shown in figures 4 and 5 reveals that the dispersion error dominates, which
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Fig. 6. Acoustic pulse propagation - Downstream propagation. Dispersion error vs.
time-steps (results using Lien and Leschziner [6] and Pascau [11] formulations coincide).

is already obvious when inspecting the figures. The evolution of the dispersion
errors in shown in figures 6 and 7. For a correct interpretation of the results, we
should keep in mind that the dispersion error in the time domain is a quantity that
grows with time according to (35). The nowadays common modified wave number
analysis, on the other hand, produces error factors per timestep (so not for the
evolved time in the computation), that depend on the wave number. In figures 6 and
7, it is clearly demonstrated that the dispersion errors with the transporting velocity
given by (25) (Shenet al., 2001) are extremely large.

Suppose that, based on the above considerations, an adequate transporting velocity
is chosen, for instance the one given in Eq. (24) (Pascau, 2011). Then, the simu-
lation can still be useless, unless a carreful choice of theCFL parameter has been
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made, as shown in Fig. 8. With a convectiveCFL less than10−3, which corresponds
in this test case to an acousticCFL less than unity, the advection of the pulse is cor-
rectly simulated. With higher values, the simulation is notsatisfying. In particular,
the advection velocity is overestimated.

4.3.3 Interference of two acoustic pulses

A one-meter long pipe divided intoN = 500 cells is considered. The initial con-
ditions are obtained through the method used for the acoustic pulse propagation in
Sec. 4.3.2, but now, two pulses are generated in the same meanflow: one propagat-
ing to the right (downstream) and one to the left (upstream).Their initial positions

24



are given bym1 = 0.2 m andm2 = 0.8 m. For both pulses,A = 200 Pa and
s = 2 m. The mean flow is given by the values:

̺0 = 1.2046 kg m−3 , v0 = 3.0886 10−3 m s−1 , p0 = 101 300 Pa.

The Mach number of the mean flow is9 10−6. The convectiveCFL number is10−5

and the transporting velocityvT is the one given in Eq. (24), following Pascau [11].

In Fig. 9, left, the two pulses, denoted by A and B, move towards each other. Their
meeting is shown in Fig. 9, right. The interference is constructive for the density and
the pressure, and destructive for the velocity. In Fig. 10, the pulses are completely
overlapping. As expected, the resulting shape of the pressure is a pulse with the
amplitude of400 Pa (twice the amplitude of the individual pulses). In Fig. 11,
the pulses are not altered by the interference. Thus, the principle of superposition
of the pulses is correctly simulated. The results obtained with Eq. (23), following
Lien and Leschziner [6], are quasi identical to those obtained with Eq. (24) (not
shown here).
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Fig. 9. Interference of two acoustic pulses.CFLv = 10−5.
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Fig. 10. Interference of two acoustic pulses att = 8.5 10−4 s. CFLv = 10−5.

4.3.4 Two-dimensional acoustic pulse propagation

Up to this point, only one-dimensional test cases were considered. In order to con-
vince the reader about its simplicity and effectiveness, the suggested approach is
considered in this section for a two-dimensional test case,namely a two-dimensional
acoustic pulse propagating in a low Mach number uniform flow.In cartesian coor-
dinates, the construction of the transporting velocity from the momentum equation
can be obtained dimension by dimension. For example, the first component of the
transporting velocity can be constructed as follows. The first component of the mo-
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Fig. 11. Interference of two acoustic pulses.CFLv = 10−5.

mentum equation reads:

∂t(̺u) + ∂x(̺u
2 + p) + ∂y(̺uv) = 0

whereu andv are the velocity components inx andy directions, respectively. Fol-
lowing the discretization procedure explained in Sec. 3.2.2, we obtain, with obvious
notations:

Bu
ij = u⋆⋆ijA

u
ij + pki+1/2,j − pki−1/2,j −

2∆x

∆t
(̺u)nij +

∆x

2∆t
(̺u)n−1

ij +
3∆x

2∆t
̺⋆⋆ij u

⋆⋆
ij

where

Au
ij = ̺⋆⋆ij (u

k
i+1/2,j +

∆x

∆y
vki,j+1/2)
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and

Bu
ij = −

[1

2
ψij((̺u)

k)[(̺u)kij − (̺u)ki−1,j]u
k
i+1/2,j

− {̺⋆⋆i−1,ju
⋆⋆
i−1,j +

1

2
ψi−1,j((̺u)

k)[(̺u)ki−1,j − (̺u)ki−2,j]}u
k
i−1/2,j

]

−
∆x

∆y

[1

2
ψij((̺u)

k)[(̺u)kij − (̺u)ki,j−1]v
k
i,j+1/2

− {̺⋆⋆i,j−1u
⋆⋆
i,j−1 +

1

2
ψi,j−1((̺u)

k)[(̺u)ki,j−1 − (̺u)ki,j−2]v
k
i,j−1/2}

]

.

The linear interpolation (see Eq. (19)),

(

B

A

)u

i+1/2,j
=

1

2

(

Bu
ij

Au
ij

+
Bu

i+1,j

Au
i+1,j

)

leads to thex−component of the interface velocity,

uTi+1/2,j =
1

2aui+1/2,j

(

Bu
ij

Au
ij

+
Bu

i+1,j

Au
i+1,j

)

−
1

aui+1/2,jA
u
i+1/2,j

(pki+1,j − pkij) +
1

aui+1/2,jA
u
i+1/2,j

2∆x

∆t
̺ni+1/2,j(u

T
i+1/2,j)

n

−
1

aui+1/2,jA
u
i+1/2,j

∆x

2∆t
̺n−1
i+1/2,j(u

T
i+1/2,j)

n−1

where
1

Au
i+1/2,j

=
1

2
(
1

Au
ij

+
1

Au
i+1,j

)

and

aui+1/2,j = 1 +
1

Au
i+1/2,j

3

2τ

1

̺⋆⋆i+1/2,j

.

The correction step of the suggested algorithm consists in solving the following
pentadiagonal system:

Ci−1,jp
′
i−1,j + Ci,j−1p

′
i,j−1 + Cijp

′
ij + Ci+1,jp

′
i+1,j + Ci,j+1p

′
i,j+1 = Σij (36)

where

Ci−1,j = −
∆t

∆x

[2

3
H⋆

i−1/2,j

∆t

∆x
+

γ

γ − 1
P+(Mu,⋆

i−1,j)u
T
i−1/2,j

]

Ci,j−1 = −
∆t

∆y

[2

3
H⋆

i,j−1/2

∆t

∆y
+

γ

γ − 1
P+(Mv,⋆

i,j−1)v
T
i,j−1/2

]

Ci+1,j = −
∆t

∆x

[2

3
H⋆

i+1/2,j

∆t

∆x
−

γ

γ − 1
P−(Mu,⋆

i+1,j)u
T
i+1/2,j

]

Ci,j+1 = −
∆t

∆y

[2

3
H⋆

i,j+1/2

∆t

∆y
−

γ

γ − 1
P−(Mv,⋆

i,j+1)v
T
i,j+1/2

]
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(a) t = 0. (b) t = 0.15 ms.

(c) t = 0.30 ms. (d) t = 1.00 ms.

Fig. 12. 2-D acoustic pulse propagating in a uniform flow. Time evolution of the pressure
perturbation field (Pa) in a square of one-meter long side. Inlet: left and bottom sides of
the square; outlet: right and top sides of the square. Value of the mean flow Mach number
(equal in both horizontal and vertical directions):9 10−6. Regular cartesian mesh,500×500
cells. Value of the acousticCFL number:20. The black circle indicates the radial propa-
gation of the black disc located in the center of the pulse att = 0, with the radial velocity
c0 =

√

γp0/̺0 = 343.121 m/s.

Cij =
3

2(γ − 1)
+

∆t

∆x

[2

3
H⋆

i+1/2,j

∆t

∆x
+

γ

γ − 1
P+(M⋆

i,j)u
T
i+1/2,j

+
2

3
H⋆

i−1/2,j

∆t

∆x
−

γ

γ − 1
P−(M⋆

i,j)u
T
i−1/2,j

]

+
∆t

∆y

[2

3
H⋆

i,j+1/2

∆t

∆y
+

γ

γ − 1
P+(M⋆

i,j)v
T
i,j+1/2

+
2

3
H⋆

i,j−1/2

∆t

∆y
−

γ

γ − 1
P−(M⋆

i,j)v
T
i,j−1/2

]
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and

Σij = −
{3

2
(̺E)⋆ij − 2(̺E)nij +

1

2
(̺E)n−1

ij

+
∆t

∆x
[(̺H)⋆i+1/2,ju

T
i+1/2,j − (̺H)⋆i−1/2,ju

T
i−1/2,j ]

+
∆t

∆y
[(̺H)⋆i,j+1/2v

T
i,j+1/2 − (̺H)⋆i,j−1/2v

T
i,j−1/2]

}

.

With the dimension by dimension decomposition of the non-diagonal coefficients
of the pentadiagonal system (36), an alternate direction approach procedure to solve
it is straightforward and effective. This approach was employed for the simulation
presented in Fig. 12, where a radially propagating two-dimensional acoustic pulse
is considered. The pulse is generated by a pressure perturbation δp and a density
pertubationδ̺ of a uniform flow which corresponds to

̺0 = 1.2046 kg m−3 , u0 = v0 = 0.30886 10−2 m s−1 , p0 = 101 300 Pa.

Entropy fluctuations are set to zero by imposingδ̺ = δp/c20 wherec0 =
√

γp0/̺0.
The initial conditions are:



























̺0 = ̺0 + δ̺

u0 = u0 , v0 = v0

p0 = p0 + δp

where the initial pressure pertubation is given, inPa, by

δp = 200 exp
[

−
(x− 0.5)2 + (y − 0.5)2

(0.05)2

]

.

With an acousticCFL number much larger than unity,CFLv+c = 20, and a Mach
number of the background flow around10−5, the suggested numerical method is
able to capture the acoustic wave propagation, with the correct radial velocity (see
Fig. 12).

5 Conclusion

A pressure correction algorithm allowing unsteady calculations, including acous-
tics, in low Mach number regime, has been presented. Severalforms of the required
pressure-velocity coupling have been compared. The examples considered suggest
that the strategy succeeds only if the pressure-velocity coupling, carried out through
the construction of the transporting velocity, satisfies the following properties:
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• The time-step is explicitly introduced in the pressure-velocity coupling coeffi-
cient.

• The transporting velocity is defined such that the steady state is time-step inde-
pendent.
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