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Abstract

Low Mach number flow computation in co-located grid arrangetrrequires pressure-
velocity coupling in order to prevent the checkerboard pineenon. Two broad categories
of pressure-velocity coupling methods for unsteady flows loa distinguished based on
the time-step dependency of the coupling coefficient in #fndion of the transporting
velocity on a face of a control volume. As an example of theetistep independent cate-
gory, the AUSM"-up scheme is studied. As an example of the second cateduisr,Ghow
momentum interpolation methods are studied. Within the emom interpolation tech-
niques, again two broad categories can be distinguishextitmasthe time-step dependency
of the coupling coefficient used for unsteady flow computetjdut when a steady state is
reached. Variants of Rhie-Chow interpolation methods thesaubcategory are studied on
critical test cases. The result of the study is that for a gepdesentation of unsteady flows
containing acoustic information, the pressure-velocayming coefficient must explicitly
depend on the time-step, but that the transporting velocigt become independent of the
time-step when a steady state is reached.
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1 Introduction

Solving the compressible flow model instead of the incongbds — or else, the
dilatable flow model — to simulate low Mach number flow, présesmn impor-
tant advantage: the acoustic field is resolved as well as ydeotlynamic one.
For instance, this allows to get insight into the physicalkchamisms of sound
generation in the flow. However, a particular difficulty assfor low Mach num-
ber computations in finite volume formulation with co-loedtarrangement, since
pressure-velocity coupling is then required to avoid thec&erboard decoupling
phenomenon, which increases as the Mach number decredbes. gxesent in
principle in the calculated field, the acoustic waves cam the damped so that
no usable acoustic information is obtained. This holds évemall time-step and
mesh spacing are used. Thus, when solving the compresgildéens in low Mach
number regime, special care has to be applied to introducesayre-velocity cou-
pling that preserves meaningful acoustic information, imwede generally, to calcu-
late unsteady solutions satisfactorily.

Broadly, two large classes of pressure-velocity coupliangloe distinguished in un-
steady calculations. First, the pressure-velocity cagptian be introduced through
a coefficient that does not depend explicitly on the time-gs=ee.g.[4,8]). In
the second class, the pressure-velocity coupling is d@iplibme-step dependent
in unsteady calculation (seeg.[2,5,6,11,15,20]). Rhie-Chow interpolation, which
consists in the construction of the transporting — or iatesf— velocity inspired by
the method presented in Ref. [13] for steady calculatioegrgs to this second
class of methods. However, the interpretation of this patation method is not
unique, as far as unsteady calculations are considered.

As pointed out by Pascau [11], an important property justifiee distinction be-
tween two groups of unsteady momentum interpolation methdde distinctive
property is whether or not the interpolation carried outdtgady flows is recov-
ered when a steady state is reached while the interpolaiocarried out for un-
steady flows. Evidently, this property is strongly relatedte time consistency of
the scheme. If it is satisfied, the time-step independentye$teady state is guar-
anteed. For instance, this is the case for the interpolgionedures suggested in
Refs. [6,11,20], but not for the ones suggested in Refs,]3]5Let us emphasize
that, as clearly shown in Ref. [11], the time-step depenglefthe steady state is
not the consequence of the presence of the time-step aplyinigj factor of the
pressure gradient in the transporting velocity expression

The present investigation focuses on the manner in whicpréssure-velocity cou-
pling should be carried out to allow high quality unsteady Mach number flow
calculations as well as steady ones. To compare the diff@assibilities of this
coupling, belonging to the groups mentioned above, a conpregsure correction
algorithm is used. It is described in Sec. 2. The pressul@eig coupling is intro-



duced through the construction of the transporting vejoaitly. This velocity is
unique in the flux terms when solving the basic conservatqragons, for mass,
momentum and energy. Various elements of its constructienletailed in Sec. 3.
To probe the schemes, a series of one-dimensional probleirestavo-dimensional
problem, for which exact solutions exist or for which the picgl interpretation is
obvious, are chosen. The numerical experiments are pegkengec. 4.

2 Pressure correction algorithm

In this section, the common features of the methods coresidier the following
are described. For simplicity, a one-dimensional flow of digu¢ and ideal gas in a
nozzle with a variable or constant section is considerethdriollowing,z denotes
the coordinate in the flow direction. The flow model is givertloy Euler equations:

0 (0S) + 0.(0vS) =0 (1a)
9 (ovS) + 0.((0v* + p)S) = pd..S (1b)
0 (0ES) + 0,(ovHS) =0 (1c)
E=e+ %vz (1d)
oH =oF +p (1e)
ge = —— (1)

v—1

wheret, o, p, v, e, E and H represent time, density, pressure, velocity, internal
energy, total energy and total enthalpy per unit mass, otispd. Furthermorey
denotes the ratio of the specific heats @hthe cross-section area of the nozzle.
The x axis along the nozzle is divided int® cells of lengthAzx. A finite volume
formulation in co-located arrangement is applied.

2.1 Prediction-correction method

In the solution procedure adopted, each time-step n + 1 is decomposed into
iterations that take the following form, where the supepisi and/ denote pre-
dicted and correction quantities of each iteratioffirst iteration:k = n):

(1) Pre-estimation step: Generate a transporting veI@i,{Lt]y/Q on the cell face,
that will be used in the following two steps. The transpaytielocity is de-
fined through an auxiliary density™ and velocityv**, that can be thought
of as 'pre-predicted’. These are obtained from the contyramd momentum
equations, where the cell face velocilﬁ/w2 and pressur¢§+1/2 are calcu-



(2)

3)

lated through a simple low Mach number adaptation of the AUSMerpo-
lation (see Sec. 2.2). For instance, the momentum equatioritien as:

2 (3(e0)” — 4o + (v ™)
+ é[{(gv);* + %wi((QU)k)[(gv) — (0)f )0l 2 Sivny

+ 7'(10?4r1/2 - P§—1/2) =0 (2

wherevT is positive andr is formally defined ag\t/Az and practically cal-
culated a<’FL, /vn.x. Here,i» denotes a slope limiter, for instance Bounded
Central (defined later), allowing to reach second-ordeumy in space,
while the same order of accuracy in time is obtained by usiegsecond-
order backward discretization. The construction of thegpmrting velocity
will be detailed in Sec. 3. This transporting velocity is dise all equations

in the prediction step. In the pre-estimation step, the damnconditions are
taken into account.

The pre-estimation step is introduced here in order to alamique def-
inition of the transporting velocity in all equations in theadiction step. In
most practical algorithms, this pre-estimation step isusetd. This then has as
consequence that the transporting velocity in the momewiguation differs
from the transporting velocity in the equation used to detine pressure field,
which typically is the continuity equation. In the presenidy, we introduce
the pre-estimation step in order to avoid phenomena retatddferences in
the transporting velocities in the different equations.

Prediction step: With; = pF, calculatep? using

1 * n n— T * 1
530! — 4o + o) + o {lo + S¥ile") (e} — ol )]vi e Sivy2
o
—[of1 + Q@bi—l(Qk)(Qf—l - Qf—Z)]UzT—l/QSi—l/Q} =0

where the transporting velocity" is positive. A similar equation stands for
momentum(pv)*. From the predicted density, momentum and pressure, cal-
culate the predicted values of total energy and total epyhal

Correction step: Calculate the pressure correctpioby solving the energy
eqguation in second-order accurate backward discretiz&tion in time. Flux
terms are expanded as

(QUH)f:11/2 = (QH)z‘*+1/2Ui1:r1/2 + H;+1/2(QU);+1/2 + (QH);+1/2U;EF1/2

where(oH);,, », is upwinded in second-order accurate form as a convected
quantity, as well agf;, , ,. Furthermore, neglecting the kinetic energy contri-
bution, (0H )}, /5 = 555Pi41/2 @nd(ov)i,, and(ev); are derived from the



momentum equation according to the SIMPLE approximatiothow This
will be detailed in Sec. 2.3.

(4) Updatespi*! = p; +pj, of*' = of +(8,0)1p}s (00); ™' = (ov); + (0v); - The
total energy, total enthalpy, the cell face presgiird,, and velocitys}'’ , are

finally updated.
2.2 Cell face quantities in the pre-estimation stage

For explanations on the AUSMand AUSM"™-up schemes, we refer to [7,8] and
focus only on a low Mach number adaptation of AUSMy using the scaling
function in the construction of the AUSMup scheme. The notatidhor R, which
refers to the left or right side of the face- 1/2, is adopted since an extrapolation
technique will be used in the following. Thus, a Mach numbertioe sidesS is
defined as

Mg=-25_  S—ILR
Cit+1/2

wherec; ./, is the interface speed of sound defined in Ref. [7]. A mean Mach
number at the faceé+ 1/2 is also defined,

- vr, 2 + (VR 2
Mi+1/2 = J —( >2 3 ( )
Cit1/2

and a reference Mach numhgf; ;. /» by
. -2
M()Q,z‘+1/2 = min{1, max{MHl/z, Mgo}} 3)

whereM,, is a cut-off Mach number that belongs@M,,). The scaling function
suggested in Ref. [8] is

F(M) = M(2 - M), (4)

The use of this function permits the proper asymptotic beheanof the pressure
dissipation term foM *\, 0 in the face velocity (see Ref. [8]), defined by the
following expressions:



My (M), M| >1

MEM) = {M@;)(M) M| <1

PE) = {P@(M) L M=

PE(M) , M| <1
piv1j2 = PT(Mp)pr + P~ (Mg)pr (5)
Mij1y = MT(Mp) + M~ (Mp) (6)
Viy1/2 = Civ1j2 Miy1y2. (7)

To reach second-order accuracy in space, the primitivabkasp, 0 andv used in
the AUSM™ scheme are extrapolated at the fagel/2 according to

¢ = ¢i + %@Dz’(@(@ —¢i-1) , Or = Piy1 — %¢i+1(¢)(¢i+1 — ¢5)

where denotes a slope limiter. Practically, MinMod or Bounded @anwere
chosen. For instance, for Bounded Central:

Vi(0)(6; — 0 1) = BC(6; — 0,1, 6:41 — 6)

where
BC(a, b) = MinMod (b, 2a)

and
sign(a) + sign(b)

MinMod(a, b) = 5

min{]al, |b[}.

2.3 Energy-based pressure correction equation

As in every algorithm that belongs to the SIMPLE family, aatenship between
momentum correction and pressure correction has to bercoted. First, the mo-
mentum is predicted implicitly with the second-order upgivdiscretization for the
convected quantityv and the second-order backward discretization in time,

%{3@); —4(ov)? + (0v)i ™"}

* %@[{(Qv): * %wz((gv)k)[(gy)f o (Qv)f_l]}vgrlﬂsiﬂm

LoV + b a((e0)) () — (0)Eal bl Sicrys]
+7(pf1je — Piajp) = 0. (8)



Substracting Eq. (8) from the one satisfied by the momentuireaterationk + 1
when the same discretization procedure has been applied,

%{3(90)?“ —4(ev)} + ()i}

" é[{(gv)]ﬁl * lwi((gv)kﬂ)[(gv)kﬂ (o) ot 2 Siey

— {00} + a0 o0 — (o)1 Si
+ 7(pf:11/2 pf+11/2) =0
the following relation is obtained,
S(e0)i+ (@) + S0i((e0) e = (eIl
1
— (o)t + 5Uil(e0)) (@0} — (@)}l alSir

1
— [{(ev)ifi + S ((ev)" D)(ev)ili = (ev)iZzhvi)s
N 1
—{(ov)is + §wi_1((9v)’f)[(9v)?_1 — (0V)ia]}vi1 /o) Sim1/0}
+ T(p;+1/2 - p§—1/2) =0
which is approximated by:

(0l = — (o) + 50i((e0) (e — (e0)l}oloSivr

1 /
— {(ov)i_y + §¢i—1((QU)k)[(QU);—1 - (Qv>i—2]}UzT—1/ZSi—1/2]
T(P;+1/2 - P;—1/2)- 9)
For effective computation, the slope limiter term in Eqg. (9)replaced by the

second-order upwind form. According to the SIMPLE appraadion principle, a
mass flux correction on the face is deduced from Eqg. (9), as

2
(QU);+1/2,M = _57(p;+1 — ;)

where the indeX/ denotes the momentum equation origin of this expressiow-Ho
ever, let us leave the possibility open for a more generakrflag correction ex-
pression, which may take into account a contribution of tin@erical flux function
used, so that:

(0V)iz12 = (0V)ig1jo00 + (OV)ig1/oF (10)
where
(00)ig10.p = —Kir12(Piys — Ph)- (11)



The value of the non negative coefficienwill be detailed in Sec. 3, according to
the pressure-velocity coupling to be chosen.

To compute the pressure correctioha key role is assigned to the energy equa-
tion. Again, in order to achieve second-order accuracynretithe second-order
backward scheme is used:

Li3(0B)E — a(0B)! + (0B

2
_
+ g () S = (0H)H S 2} =0 (12)

The total energy is expanded as
(0B)7™ = (0B); + (9(0¢))ipi-
In the case of a perfect gas,

1

(@hlee))t =

Neglecting the kinetic energy contribution, the total extyply correction at the face
is written as:

~
(QH)§+1/2 = ﬁ ;+1/2-

In the flux terms, the pressure correction is interpolatédguthe AUSM™ adapta-
tion described in Sec. 2.2:

p§+1/2 = P+(Mi*)p§ + P_<M;+1)p§+1'
Thus, the energy equation (12) becomes

Cioapiy + Cip; + Cipapiyy = % (13)
where

* 2 *
—P+(Mi—1)UiT—1/2 + (Kim172 + gT)Hi—1/2]Si—1/2

3 T « 2\ s
Ci = 2-1) + g{[ﬁPJr(Mi )UiT-i-1/2 + (Kiv2 + gT)Hi—H/Z]SHl/?

Y g 2\
- [ﬁp (Mol jy = (Kicaja + gT)Hi—l/z]Sz'—m}

TV o 2\
Ciyr = _[mp (Mi+1)UiT+1/2 - (“z’+1/2 + gT)Hi+1/2]Si+1/2



and

% = —5{3(eB); — 4(eB)! + (B) )

T * *
- §{<QH)i+1/2UEi-1/QSi+1/2 - (QH>i—1/ZU;F—1/ZSi—1/2}'

3 Transporting velocity construction

To avoid the checkerboard decoupling phenomenon that msg at low Mach
number when a co-located arrangement is used, the tramgpedlocity should
be constructed such as to couple the pressure and the yelexémples of such
couplings are considered in this section: a transportirigcity obtained by the
AUSM*-up interpolation and several alternatives of Rhie-Chawripolation.

3.1 AUSM -up cell-face velocity

AUSM*-up is an extension of AUSM, that consists in the addition of pressure-
velocity coupling terms in the expressions of the pressadethe Mach number at
the interface (see Egs. (5)-(6)). Eq. (5) is replaced by:

Pit1j2 = P (Mp)pr + P~ (Mg)pr
— K,PT(ML)P~(Mg) (oL + QR)f(Mi+1/2)Ci+1/2(UR —vg)

whereK, is a positive constant. Moreover, instead of Eq. (6), theMaamber at
the interface is expressed as

Miy1j2 = MT (ML) + M~ (Mp)

K, <7 Pr — DL
— % {1 = ()%, 0 LETPE (g
J(Moit1/2) 1= (Mitaye)o, 03 Qit1/2C7 11/

wherek, ando are two constants ang.,» = (or, + 0r)/2.
The mass flux at the interfager 1/2 is then written as:
(0V)it1/2 = Civ1y2 Miy1y2 o (15)

and the interface velocity}]rl/2 is given by the formula of AUSM, Eq. (7), but
now expressed with the interface Mach number given by EQ. {ll#e numerical
values of the parameters,, K, ando used in the subsequent test cases are those
suggested in Ref. [8], = 0.25, K, = 0.75 ando = 1.



According to Eq. (15), the AUSNtup contribution of the mass flux correction is
written as

(QU)§+1/2,F = Cz‘*+1/2 Mi/+1/2 o7

where
K — P, — P
/ p 2 1+1 7
ir1/2 — x max{1 — (M, ,,)°0,0} " " .
Y f(MO,i-i-l/?) Y Qi+l/2(ci+1/2)2

Thus, the pressure corrections are not extrapolated. Tassfaund necessary in
order to maintain the positivity of the correction syster3)(1Returning to Eq.
(11), the dissipation coefficient arising from the AUSMp scheme is

K

p Vi 2 oL
Rit1/2 = max{l — (M, ,/,)°0,0}—
A M) s

071/26741 2 .
3.2 Rhie-Chow interpolation alternatives

The Rhie-Chow interpolation consists in the derivation dfaensporting velocity
from the momentum equation only, so that the contributiora afumerical flux
function in Eq. (10) is excluded ang,,/» = 0 in Eqg. (11). The procedure to
derive an interpolated velocity is not unique. As illustcfurther, a crucial issue
is the time-step independency of the steady state. So, letgia by the case of a
steady flow before showing several alternatives of intexjoah for unsteady flows.

3.2.1 Steady flow

In a steady flow, the momentum equation (2) can be written as:

B; 1
Vi = Z - E(pirl/z —pf—1/2) (16)

where
A = QZ*U5+1/252'+1/2/SZ'
and
11
B, = —= [5¢il(e)")(v)f — (@) 1]vkr o Sisa e

—{(ov)is + %wi—l((@v)k)[(@v)f_l — ()i )I}vi 1 2 Sim1ya .

10



A relation at the cell-face similar to the one written at thedl-center in (16) is
postulated:

B; 1

T i+1/2 k k

Ui = - Diy1 — D

+1/2 Ai+1/2 Ai+1/2 ( o )

where the cell-face quantities in the RHS need to be specifieeh, a first option
consists in the linear interpolation &f independently of the interpolation af, by
setting:

1
Bit12 = 5(32 + Bit1). (17)

With this choice, the transporting velocity, in the formitygily used in practice, is:

T * *
Vit1/2 = m(/lﬂ%* + Ait1vgy)

1 1

1
+—— =W — Phrje) T =P e — D1 0) — (0F — PF)]. (18)
Ao [2< +3/2 +1/2) 2( +1/2 1/2) (Pit )]

A second option consists in the linear interpolation of t#orB /A, namely:

(§>m - [(g) i <§)+1 (19)

which leads to:

1 *k *k 1 1
U;Erm = 5(% +vi%) + m(pﬁg/z - pfﬂ/z) + ﬁ(pfﬂ/z - pf_l/Q)

)

1
Y (pF., —pb). (20)
i+1/2

This latter option is sometimes referred as the originaleRbihow interpolation
method [11]. In Egs. (18) and (20), a common choice is:

Lol

Ai+1/2 2

1+ 1
A A

( )-

The expression (18) was suggested by Lien and Leschzinanfbby Pascau [11],
but not used for steady flows. The expression (20) was usestdady flows by
Miller and Schmidt [10], Majumdar [9] and Lien and Leschzifg], to make the
result independent of the underrelaxation coefficientasecof underrelaxation of
the velocity, both choices (17) and (19) lead to a transpgrtielocity indepen-
dent of the underrelaxation coefficient at steady state.e&sgnized by Pascau
[11], both choices ensure the time-step independency dirémsporting velocity
at steady state, when unsteady equations are considered.

11



3.2.2 Unsteady flow

Keeping the notations of the steady case in Sec. 3.2.1, theeminim equation (2)
with its inertial terms leads to

S @)

* 2 n 1 n—
B = A + (p§+1/2 - P?—1/2) — =(0v)} + 5=(ov)i ' + o

T 2T

As previously in Sec. 3.2.1, a similar equation written at¢kll-face is postulated:

2 7 n
Biy12 = Ai+1/2UiT+1/2 + (pf+1 - pf) - ;&41/2(%’11/2)
1 n—1 T n—1 3 * T
+ o0V )"+ o0 el (22)

It is worth to notice that the cell-face velocity has to berstbat each time-step.
The option that corresponds to Eq. (17) leads to:

1 * *
Ugl-l/2 = 7214‘4_1/2 (Aﬂ)i* + AZ'+1’U;+1)
+ ! [l(p§+3/2 - pf+1/2) + 1<JD§+1/2 - p§—1/2) - (pf+1 — )]
Aiy1y2 2 2

1 2 n T n 1 n—1 T n—1 3 * T
+ T‘H/z [;Qi+1/2(%+1/2) - ZQZ‘+1/2('U2‘+1/2) - ZQfﬂ/zvz‘H/z]

1 2 n 1 n—1 3 *k

2 n 1 n—1 3 *k
+ ;(Q'U)i—i-l - Z(Q'U)H-l - Z(Qv)i—i—l]' (23)

With form (23), wherev™ is present in both sides of the equation, it is clear that
the expression (18) in the steady case is recovered if aysttatk is reached, so
that this steady state is independent of the time-step.emamportant feature of
both expressions (22) and (23) (presented in Ref. [6] and eigein Ref. [20]) is
that the dependency of the face veIocziﬁgl/2 on the pressure difference involves
a coefficient that contains explicitly the time-step.

The option that corresponds to Eq. (19) is suggested in R&f. [t leads to an
expression ofvT which also satisfies the two properties just mentioned. is th

12



case, the transporting velocity reads:

1
T *k Hok
Vig1/2 = m(vz +v7)
1 1 1 1

(pf+3/2 —Pf+1/2) + ﬁ(PfH/z —pf_uz) - T(pi‘:—l —pm

air1/2 2441 i+1/2

1 2 1, T \n 1 n 1 n
{_ [A 0 1/2(Vigay0)" — Q—AZ-(QU)i - M(gv)i+l}

Qit1/2 ~T " Ai41)/2
1 1 n—1 T n—1 1 n—1 1 n—1
T o [mgiﬂ/z(viﬂ/z) - Q—Ai(Qv)i - m(QU)iH}

3[1

+ 554 ()]} (@4)

*k 1
(Qv)z + 2Ai+1

where

1 3 L

aiy12 =1+ Z@i—i—l/?

Ait12

In Ref. [15], a variant is suggested to avoid non physicaillasions in the solution
when small time-steps are used. In fact, this variant wasadir suggested in Ref.
[2]. In this case, EqQ. (21) is rewritten as:

1

* 2 n n—
;" = B — (pf+1/2 - pf_uz) + ;(Qv)i - Z(Q’U)i '
where
3
a; = A + —o.
27

Linear interpolation of the rati® /« yields:

1 * *
U;lji-l/2 = 5(%* +v)

+ [2% (pi+1/2 - pi—l/2) + —204i+1 (pi+3/2 - pi+l/2) - —Oéi+1/2 (i1 — p; )}
2 1 n 1 n 1 n T n
T r {2%(91))@- + 20 (ev)ia i1z 0i'1/2(Vig1)2) }
1 -1 1 -1 1 -1 (T -1
o P - —o L 25
" 27 [2(1@' (ou)i™+ 20011 (QU)ZH Qit1/2 QZH/Q(UZH/Q) } (25)

where

1 1.1 1
Qit1/2 2 0 Qg .

Obviously in this case, the steady state, if it exists, ietstep dependent.

13



Table 1
Scalings of the transporting velocity coefficients for lovadh number acoustic problems

Convection term Pressure term  Inertia term Time consigtenc
Refs. [6,11] 1 (14 %)~} M2+ M= (14 M)t yes
Refs. [2,15] 1 (14 =)~} (M2 +M)=1 (1 + M)t no

3.2.3 Low Mach number aspects

It is important to check if the transporting velocities cimiesed in section 3.2.2
preserve the low Mach number scaling of the discretized nmbame equation (21).
Let us introduce a reference lendthpressure,, densityo,, velocity v, and time

t.. We choose the length of the flow domain as reference lengtth&r reference
values are the pressure, density and convective velociby the background low

Mach number flow. We consider the veloci\t,%r/gr, which is of the same order
as the velocity of sound in the mean flow. The reference Machbau is thus
defined asM = v,/4/p:/0.. Our purpose is to study acoustic propagation in low
Mach number flow. Therefore, the reference time is of theroflthe time needed
by an acoustic wave to travel over the reference length,thusi,/./p./o.. The
non-dimensional form of the discretized momentum equg2dn becomes

25

25¢ oy 4 35
:

(ov)i! + 5 (ov)i* (26)

S

. 1 k k
B, = Aﬂ}i* + W(pi+1/2 _pi—l/Z) - 2T

whereS; = (I, /v;)/t, is the reference Strouhal number. The Mach number scaling
of the transporting velocities considered in section 3f@@es to be identical.
As an illustration, the use of the linear interpolation giva (17) (f. Lien and
Leschziner, 1994 [6]) leads to the following expressiorheftransporting velocity:

Ugrl/g = K¢Bijt1)2 — KP(pZ-l - pf)

7 n 1 n— n—
+ KI[29i+1/2(Uz'T+1/2) - §Qi+11/2(UiT+1/2) 1] (27)
where
3St .. K¢ St
Ko = (Ait12 + o o)t Kp= e Ky = Kc? (28)

are the coefficients of the convection, pressure and inertmas. For acoustic prob-
lems in low Mach number flow, the reference timeiis= M, /v, (cf. e.g.Ref.
[19]), so that the reference Strouhal numBgbelongs ta® (1/M). Thus, the scal-
ing behaviour of coefficients (28) can be expressed in tefmsamd M only. This
corresponds to the scaling given term by term in Table 1. The tonsistency
property refers to the ability of the methods to obtain adesdate independent of
the time-step.
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The previous non-dimensional formulation evidences thatMach number scal-
ing properties of the discretized momentum equation (2&)paeserved by the
transporting velocities considered in section 3.2.2. &fuee, these Mach number
scaling properties will be referred to as th®perones.

The pressure-velocity coupling coefficient, which is thegsure term in Table 1,
second column, consists in a steady scaling termifnand an unsteady scaling
term inM /7. The steady scaling must be recovered when a steady stagcised
after a transient phase, that is, as soon as we cantake 1Az — +o0o. Let us
emphasize that this condition is immediately satisfied Wittmentum Interpola-
tion methods.

For the AUSM-up scheme, the proper steady scaling is obtained throwgbct-

ing function f, such thatf(M) € O (M) whenM 0 (see Eg. (4)). Notice that
the steady scaling is solely accounted for by the AUShp scheme, which is de-
rived from an analysis of steady equations. However, fouatio simulation in low
Mach number flow, it is demonstrated by Dellacherie [3] thatpressure-velocity
coupling in the AUSM-up scheme is suitable to avoid spurious acoustic waves,
and this is not the case, unleds: € O (M), for the AUSM or AUSM™ schemes
(see [8]), which do not involve the proper steady scalingeréfore, for acoustic
simulations in low Mach number flow, we shall consider the AU'Sup scheme,
with the pressure-velocity coupling that involves the sapfunction given in Eq.

(4).

The comparison between the AUSMip scheme and the Momentum Interpolation
methods will reveal the role of the unsteady low Mach numbalisg. As the scal-
ing properties are the same for all the Momentum Interpatatiethods considered
in this study, the comparison of the methods on unsteady noah@xperiments
will make clear the practical importance of the time coresisy property.

4 Numerical experiments

A series of numerical test cases is performed with the irgertb investigate a

suitable choice of the transporting velocity allowing wasty calculations, with

the possibility of acoustic features. Practically, fiveateons per time-step are suf-
ficient.

4.1 Boundary treatment

A characteristic-based treatment is applied to the boyndalfowing Thompson
[17] and Poinsot and Lele [12]. The primitive variables andp are calculated at
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the inlet and the outlet by solving the LODI (for Locally Onéniznsional Inviscid)
eqguations, written as

d, S
S

B0 + Q—QC(El L)+ Lo = —ov

1
8131) + 5(,53 - £1) =0

C d,S
O + %(51 +L3) = —00027

where the quantities

1

L= (v— c)(@ﬁxp — 0yv)
1

£2 = U(axQ - ga:cp)

1
L3 = (v+ c)(—0up + 0yv).

oc "

are interpreted as the temporal rate of change of the wavétadegs [12]. At the
outlet, the amplitude of the incoming acoustic wave is writas

Ly = ky(p—p) (29)

where the superscrigtdenotes a target value. At the inlet, the amplitudes of the
incoming convective and acoustic waves are written withstimae convention as

Ls=k,(v—2") | Ly=k,(0— o). (30)

The filtering level of the boundary is tuned through the rataa coefficientst,,
k, andk,, following Selleet al.[14].

4.2 Steady low Mach number flow

As a preliminary test, before considering numerical experits involving an un-
steady flow and acoustic features, let us check the abilitiyeélgorithm described
in Sec. 2 to calculate steady low Mach number solutions, vihetransporting ve-
locity is one of the four given in Sec. 3. For this test, a oretenlong converging-
diverging nozzle is considered. Its section (dimensiomaéter) is given by

0.1, 0<z<2/28
11 2 11 4
S(z) =14 0.1 {0.9 +0.1 lz (*"f) — (“""f) H ,2/28 < x <20/28
28 28
0.1, 20/28 <z <1
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The fluid is air. The initial conditions are:

0" = 1.2046 kg m—3
,UO =0 (31)
20 = 101 300 Pa

The boundary conditions are given by (see Egs. (29)-(30)):
ol =1.2046kgm™ |, o' =0.30886ms! , p'=101300 Pa. (32)

At convergence, the Mach number at the throat of the nozzléisand is around
9 10~* at the inlet and the outlet of the nozzle, where the secti@momstant. This
latter value is chosen for the cut-off Mach numbég, in Eq. (3) and the AUSM-
up construction described in Sec. 3.1. The convedii¥é, number is0.1. Thus,
the acousticCFL number is around00. The axis of the nozzle is divided ini®0
cells with a constant mesh spacifg. For this test only, the MinMod slope limiter
is used. The Bounded Central limiter is used elsewhere.
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Nozzle axial coordinate (m) Nozzle axial coordinate (m)
(a) Egs. (7) and (14)f. Liou, 2006 [8]. (b) Eq. (23),cf. Lien et al,, 1994 [6].

Fig. 1. Steady low Mach number flow through a convergingfdivey nozzle.

The solutions are shown in Figs. 1-2 (s=g.Ref. [1] for the exact solution). As
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Exact solution Exact solution
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(a) Eq. (24)cf. Pascau, 2011 [11]. (b) Eq. (25),cf. Shenet al.,, 2001 [15].

Fig. 2. Steady low Mach number flow.

expected, the pressure correction method of Sec. 2 combiitiethe various trans-
porting velocities of Sec. 3 gives results free of checkarbalecoupling oscilla-
tions. All variants of the face velocity expressions have alility of calculating
accurately the steady low Mach number flow solutions.

4.3 Unsteady low Mach number flows

A series of distinctive unsteady test cases is investigatedis section. We first
consider a low Mach number flow in which unsteadiness is &eli¢hrough a
time-varying inlet velocity. For this first unsteady tesie frequency of the sollic-
itation is kept constant. Secondly, the advection of an sitopulse is addressed.
The choice of a narrow signal, that possesses a broad spectepace, is suitable
to reveal the dispersive features of a scheme ésgdRef. [18]). Finally, the inter-
ference of two acoustic pulses is considered, as an illistraf the capability of
the method selected from the previous test cases. In eddates the data are cho-
sen in order to obtain linear acoustic features, allowingractlcomparison with
the exact solution.
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4.3.1 Inlet velocity oscillation

To evidence the suitability of a definition of the face vetgevith time-step depen-
dency of the pressure-velocity coupling, the propagati@awave forced at the left
boundary of a nozzle with constant section (a pipe) is novsictamed. The pipe is
one-meter long and divided int®0 cells. The cut-off Mach numbeé.,, is9 10~*.
The initial conditions are:

0" = 1.2046 kg m 3
v¥ = 0.30886 m s~ !
p° = 101 300 Pa

The simulation length is chosen such that no wave reachesuthet before the
timet; = 2 ms. The inlet velocity is specified to oscillate about a mean&dl, as

vl (t) = V1 + Asin(27 ft)]

whereV = 0.30886 m s™!, A = 1072 and f = 2 10® Hz. The other target val-
ues required at the boundary agé: = 1.2046 kg m— andp' = 101 300 Pa.

The convectiveCFL number is chosen a$)~*. With this value, the acousticFL
number is around.1 in the domain reached by the wave. Thus, the acoustic waves
generated through the sinusoidal variations of the inl&ior, can be accurately
calculated.

Results at; = 2 ms shown in Fig. 3 demonstrate that the transporting velocity
given through the Rhie-Chow interpolation in Egs. (23) (Let al, 1994), (24)
(Pascau, 2011) and (25) (Shehal.,, 2001) are very close to each other. As ex-
pected, these methods properly take into account the ist@li@tions. Moreover,
the velocity of the wave front propagation is very close te ¢time obtained from
the linear acoustic theory. Acoustics is involved sincedseéllating inlet velocity
corresponds to the oscillation of the incoming wave amgétd; (see Eq. (30)).
Finally, the density, velocity and pressure profiles otgdivhen AUSM -up in-
terpolation is used do not reproduce correctly the osmlhat (see Fig. 3, bottom).
The pressure-velocity coupling of this scheme is not titeg-dependent and there-
fore, can not capture the variations imposed at the inlspitethe small time-step
chosen. Moreover, the position of the wave front is not walitalated. Thus, the in-
adequation of the AUSNtup interpolation to accurately calculate acoustic waves
in a low Mach number flow is evidenced. This scheme will, tfaes not be con-
sidered in the following numerical experiments.

4.3.2 Acoustic pulse propagation

A narrow acoustic pulse is generated through an initial ato@aussian pertur-
bation superimposed onto a mean flow, with constant demngjtyelocity v, and
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Fig. 3. Propagation of a wave forced at the left boundary.s®ne distribution,
t = 21073 s. Exact solution (linear acoustic theory):

pressure, in a five-meter long pipe. Thug,= p, + dp, where at = 0,

(x —m)

252

dp = Aexp(— ).

By taking dv = dp/(0oco) anddo = dp/c?, a pulse that propagates to the right
(downstream) is obtained. In this case, the initial posit®given bym = 0.2 m.

To obtain a pulse travelling to the left (upstream), initialues are such thafv =
—dp/(00co) @anddo = dp/ci. In this casen = 4.8 m. The dimensional numerical
settings for the wave generation are given in Table 2.
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APa)| s(m) | m(m) | po(Pa)| vo(m/s)| co(kg/m?)
200 2 | 0.20r4.8 | 101300 | 0.30886 1.2046

Table 2
Settings for the acoustic pulse generation.

250 t=233ms t=6.7ms t=13.4ms
200} ' '
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VTTby Shen et al. 2001~~~
v' by Lien etal. 1994
Exact solution

100
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Pressure perturbation (Pa)

0 1 2 3 4 5
Nozzle axial coordinate (m)

Fig. 4. Acoustic pulse propagation - Downstream propagaiwoessure distribution (results
using Lien and Leschziner [6] and Pascau [11] formulatiarinaide).

A pipe divided intoN = 2 500 cells is considered. The boundary conditions are
those given by (32). The Mach number of the mean flow 194, which is also
the value chosen fdvl.,, and the convectiv€ FL. number is5 107> (except in Fig.

8 where several values are compared). The acoUsticnumber is around.055.

The downstream propagation of the pulse is shown in Fig. 4. dbserved that
its advection velocity is basically correct when the traoréipg velocities used are
those given in Egs. (23) (Lieet al,, 1994) and (24) (Pascau, 2011). Moreover, the
shape of the Gaussian pulse is conserved. On the contrang, the transporting
velocity given in Eq. (25) (Sheet al,, 2001) leads to a large error, both in position
and shape. In case of upstream propagation of the acoussie, @uglance at the
Fig. 5 suffices to demonstrate that only the transportingorgés given by (23)
(Lien et al, 1994) and (24) (Pascau, 2011) give satisfying results ey the
amplitude and position of the pulse.

In order to quantify the errors associated to the differéoices of the transporting
velocities, we follow here the procedure introduced by Taa6]. Say that, and

q. are exact and computed values of a quantitynder consideration. At a given
time ¢, the mean square error can then be defined as:

where the sum extends over tNenodes of the grid. Further, we define mean values
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and variances of the quantities by

_ 1 _ 1
Qe—NZQe ) QC—NZQC
PR SO A N S o PR
e N & e Y C N C C
Then, the mean square error can be written as

1

52 = N ZKQe - (7@) - (QC - CYC) + (CYe - CYC)]z
Sl @) a8 (@ - 20— o Y~ ) 7)
=07 + 07+ (Ge — G)* = 2 cov(ge, ) (33)

wherecov(q., g.) is the covariance of the two signals. The correlation caeffic
between the two signals is then

COV({ge, 4c
R(Qm QC) = #

Oe0c

The error (33) can further be written as
82 = ((je - (jc)Q + (Ue - 00)2 + 2Ueac[1 - R(Qm QC)] (34)

The different error components can now be recognized. Tifereince between,
andg,. is the conservation error as the mean values of the signptegxthe con-
tent of the signals. With the conservative discretizatisacuhere, this error is zero.
The difference betwees, ando, is the dissipation error as the variances express
the energy of the signals with respect to their mean valules.r&maining compo-
nent was considered by Takacs [16] as the dispersion estoy &xact correlation
between the signals, the only error that can occur is duessigdition. This way
of denoting the error does not conform completely with thes mommonly used
concept of the modified wave number to express dissipatidrdespersion errors.
In order to see the relation with the modified wave number epy@ Fourier com-
ponent may be substituted into (34). This then reveals (eoved here) the rather
obvious result that non-dimensional measures of dissipathd dispersion errors
may be defined by

Oe — O¢

5 ‘c:.dispersion = 1-— R(Qm QC) (35)

gdissipation — o,
For exact solutions, the error measures are zero. The egasume for dissipation
becomes unity when all energy dissipates away in the cortipog result. The
error measure for dispersion becomes unity when the ctioelaetween exact and
computational solutions disappears completely. The ematysis with (35) of the
results shown in figures 4 and 5 reveals that the dispersion @minates, which
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Fig. 5. Acoustic pulse propagation - Upstream propagaftvassure distribution (results
using Lien and Leschziner [6] and Pascau [11] formulatiariaaide).
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Fig. 6. Acoustic pulse propagation - Downstream propagatiDispersion error vs.
time-steps (results using Lien and Leschziner [6] and Raddd formulations coincide).

is already obvious when inspecting the figures. The evalutibthe dispersion
errors in shown in figures 6 and 7. For a correct interpretadiothe results, we
should keep in mind that the dispersion error in the time donsaa quantity that
grows with time according to (35). The nowadays common medlifiave number
analysis, on the other hand, produces error factors per gieye (so not for the
evolved time in the computation), that depend on the wavebaunn figures 6 and
7, itis clearly demonstrated that the dispersion errorh thié transporting velocity
given by (25) (Sheet al, 2001) are extremely large.

Suppose that, based on the above considerations, an aglé@ursporting velocity

is chosen, for instance the one given in Eq. (24) (Pascau,)20hen, the simu-
lation can still be useless, unless a carreful choice oftlig parameter has been
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Fig. 8. Acoustic pulse propagation - Downstream propagafisansporting velocity given
in Eq. (24) (Pascau, 2011). Pressure distributioh-at8 ms.

made, as shown in Fig. 8. With a convectVEL less thari 03, which corresponds
in this test case to an acousti¢'L less than unity, the advection of the pulse is cor-
rectly simulated. With higher values, the simulation is satisfying. In particular,
the advection velocity is overestimated.

4.3.3 Interference of two acoustic pulses

A one-meter long pipe divided inty = 500 cells is considered. The initial con-
ditions are obtained through the method used for the acopstse propagation in
Sec. 4.3.2, but now, two pulses are generated in the sameflo@aone propagat-
ing to the right (downstream) and one to the left (upstredmgir initial positions
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are given bym; = 0.2 m andm,; = 0.8 m. For both pulsesA = 200 Pa and
s = 2 m. The mean flow is given by the values:

00 =12046kgm™> , v, =3.088610"ms"' , py= 101300 Pa.

The Mach number of the mean flowdd0~%. The convectiv&®FL number is10~>
and the transporting velocity" is the one given in Eq. (24), following Pascau [11].

In Fig. 9, left, the two pulses, denoted by A and B, move towarach other. Their
meeting is shown in Fig. 9, right. The interference is cangtve for the density and
the pressure, and destructive for the velocity. In Fig. b8,dulses are completely
overlapping. As expected, the resulting shape of the pregswa pulse with the
amplitude of400 Pa (twice the amplitude of the individual pulses). In Fig. 11,
the pulses are not altered by the interference. Thus, tineiphke of superposition
of the pulses is correctly simulated. The results obtainghd &g. (23), following
Lien and Leschziner [6], are quasi identical to those ole@iwith Eq. (24) (not
shown here).
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Fig. 9. Interference of two acoustic puls€&'L, = 107°.
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4.3.4 Two-dimensional acoustic pulse propagation

Up to this point, only one-dimensional test cases were dansd. In order to con-
vince the reader about its simplicity and effectiveness,dinggested approach is
considered in this section for a two-dimensional test aaemely a two-dimensional
acoustic pulse propagating in a low Mach number uniform floveartesian coor-
dinates, the construction of the transporting velocityrfihe momentum equation
can be obtained dimension by dimension. For example, thecbraponent of the
transporting velocity can be constructed as follows. Tist iomponent of the mo-
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Fig. 11. Interference of two acoustic puls€¥L, = 107°.

mentum equation reads:
di(ou) + 0, (ou* + p) + 9, (ouv) =0

whereu andv are the velocity components inandy directions, respectively. Fol-
lowing the discretization procedure explained in Sec23\®e obtain, with obvious
notations:

2Ax Az 3Ax
u ** AU k k n n—1 Sk ok
Bij = Uy, Aij T Piv1j25 — Pic1/2 — As ﬁt(gu)ij + AL ﬁt(@“)ij + BN ”Qij Uy

where

Az
u *x [k k
Al = 07 (Wi oy + A—yvi,j+l/2)
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and

Bl = [1wij<<gu>k>[<@u>¢; — (o) s
—{o” 1, Wi 13 + ;wz 13((@“) )[(Qu>f—1,j - (Qu)f—Zj]}u?—l/Zj}
- Gl - (e, et

1
- {Q” 1u2j 1t iwi,j—l((Qu)k)[(Qu)ﬁj—l - (Qu)ﬁj—Z]Uzk,j—l/Z}]
The linear interpolation (see Eg. (19)),

(23 (52
A i+1/2,j_ 2 \ A}, A2+1,]

[

leads to thec—component of the interface velocity,

ul _:# Biuj_|_Bzu+1]
P25 21 Ay Ay

i+1/2,5 1j
1 1 2Ax
- i (Plr =Pl + u 01 ja (Ui o)
2+1/2]A2+1/2] +1,5 J 2+1/2]Az+1/2] At +1/2,5 +1/2,j
ag+1/2,yAz+1/23 2At g J J
where
1 1,1 1
and
1 3 1

u _
Uitrjey = 1+ A S
i+1/2,5 ¢T Qit1/2,5

The correction step of the suggested algorithm consistslinng the following
pentadiagonal system:

Cic10i 1+ Cijorbij 1 + Cijpi; + Cixr 01 + Cijerbi o = Zi; (36)

where At -2 A
Ci1y = AL l3 T V2 Ay jPJF(Mzu*ly i 1/23}
Cij-1= —2—; % Zj_1/2§; + ﬁer(M;’]* 1 7,] 1/2}
Covrs = = 3ty = g P (Ml o]
Ci,j—i—l = _2—; :2H2j+1/2§—; - #P (sz;l-l zy+1/2}
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@t=0. (b) t = 0.15 ms.

(c)t = 0.30 ms. (d) ¢t = 1.00 ms.

Fig. 12. 2-D acoustic pulse propagating in a uniform flow. &iavolution of the pressure
perturbation field (Pa) in a square of one-meter long sidet:lfeft and bottom sides of
the square; outlet: right and top sides of the square. Vditizeamean flow Mach number
(equal in both horizontal and vertical direction8):0~%. Regular cartesian mes#)0 x 500
cells. Value of the acousti€FL number:20. The black circle indicates the radial propa-
gation of the black disc located in the center of the pulse-at0, with the radial velocity

co = \/Ypo/oo = 343.121 m/s.

Cyj = ﬁ + % g Lumg - #7”(1\4;].)@“/2,]-
+ gHi*-l/zJ% N %P_(M"*’j)u?‘”z’j}
+ 2—; EHZM@% " %PJF(M&)WTJH/?
+ gHifj_l/Qi—; - #P_(M:j)vgj—lﬂ}

29



and

3 * n 1 n—
2 = _{§<QE)U - Q(QE)ij + §(QE)ij !
At . .
+ E[(QH)iH/Q,jUiTH/Q,j - (QH)i—1/2,juiT—1/2,j]

At . .
+ A—y[(QH)i,jH/zviT,jH/z - (QH)z,j—1/2UiT,j—1/2]}-

With the dimension by dimension decomposition of the nagdinal coefficients
of the pentadiagonal system (36), an alternate directiprogeh procedure to solve
it is straightforward and effective. This approach was eypedl for the simulation
presented in Fig. 12, where a radially propagating two-disienal acoustic pulse
is considered. The pulse is generated by a pressure pditurbba and a density
pertubationyp of a uniform flow which corresponds to

00 =12046kgm™> | uy=1wvy=0.3088610"2ms"' , p, =101 300 Pa.

Entropy fluctuations are set to zero by imposdag= dp/c2 wherecy, = \/vpo/ 0o-
The initial conditions are:

0" = 0o+ do
UOIUO y UOI’UO
P’ =po+dp

where the initial pressure pertubation is givenPi) by

(x —0.5)*+ (y — 0.5)2]

op = 200 exp { — (0.05)2

With an acousticCFL number much larger than unitFL, .. = 20, and a Mach
number of the background flow around—°, the suggested numerical method is
able to capture the acoustic wave propagation, with theecbradial velocity (see
Fig. 12).

5 Conclusion

A pressure correction algorithm allowing unsteady calioihes, including acous-
tics, in low Mach number regime, has been presented. Sdweenas of the required
pressure-velocity coupling have been compared. The ex@ephsidered suggest
that the strategy succeeds only if the pressure-velocitplany, carried out through
the construction of the transporting velocity, satisfiesftillowing properties:
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e The time-step is explicitly introduced in the pressuresedly coupling coeffi-
cient.

e The transporting velocity is defined such that the steadg staime-step inde-
pendent.
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