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Abstract

A strategy concerning mesh refinements for thin shells computation is presented.

The geometry of the shell is given only by the reduced information consisting in

nodes and normals on its middle surface corresponding to a coarse mesh. The new

point is that the mesh refinements are defined from several criteria, including the

transverse shear stress which doesn’t appear in the mechanical energy, and enables

one to construct the unknown middle surface step by step. In fact, it can be inter-

preted as an optimum design algorithm where the control variable is the mapping

which defines the middle surface.

Key words: Shell, adaptive mesh refinement, geometry approximation, mixed

finite elements method, a posteriori error estimation
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1 Introduction

• The problem of adaptive mesh refinements on shells remains a seldom stud-

ied subject. Compared with more classical models like plates or bidimensional

elasticity problems, one has to deal with an additional difficulty which is that

the mesh to refine is not plane. For instance, the center of mass of a triangle or

of a quadrangle is generally not on the middle surface of the shell even if the

nodes are on it. It is the reason why it is often assumed that the exact shell

geometry is known, analytically or from a computer aided design program.

For example, in [1], [2], [3] and [4], the exact mapping defining the shell ge-

ometry is supposed to be known and a completely new mesh, based on spatial

distribution of new element sizes, is defined at each step of the refinement pro-

cedure. In another way, it is suggested in [5] to create a new mesh by moving

the vertices of the previous one, while isogeometric formulations used in [6],

assumes that the geometry is exactly known from NURBS. This enables one

to construct a mesh of ”NURBS elements”, which is easy to refine by rein-

dexation of the parametric space. Despite their interest, these two approaches

also need the knowledge of the exact geometry of the shell surface. Finally, in

the case of shell structures, [7] is one of the very few papers in which the initial

mesh is the basis of the next one, in the sense that some of its elements are

divided in order to obtain the new mesh. But again, these authors assume that

the exact shell geometry is known. In fact, they introduce in their numerical

experiments the idea of quality of the geometry approximation as a refinement

criteria. This one is expressed as a function of the errors on the added nodes

position and the unit normal vectors at these points.

∗ Corresponding author. Tel.: +33 5 59 40 71 59; fax: +33 5 59 40 71 60.

Email address: yann.moguen@free.fr (Y. Moguen).
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• In this paper, a new approach is suggested. A refinement strategy is intro-

duced in association with an approximation of the middle surface of the shell.

It is only assumed that (1) the positions of the vertices of a set of flat trian-

gular elements approximating the middle surface and (2) the normal vectors

at these vertices, are known from a coarse mesh of the middle surface of the

shell. Then, following a methodology developed in [8], it is possible to build

new vertices for each element which are closer to the middle surface than the

middle of the element edges.

• Concerning the choice of the refinement criteria, let us make few remarks.

The usual estimators, such as those of Zhu and Zienkiewicz (see [9] and [10])

for example, are appropriate for a global error control. Nevertheless, in some

papers (see for exemple [11] and [12]), the concept of variable of interest is

introduced in the definition of the error indicator. In the case of thin structures,

such as plates and shells, an obvious quantity of interest is the transverse shear

stress. By the way, among Kirchhoff–Love assumptions, one is the nullity of

the transverse shear strain (but not the shear stress). Moreover, the transverse

shear stress is considered as neglectible in front of the inplane stresses in

the constitutive relationship. But, it is precisely the stress component which

is necessary in order to satisfy the three-dimensional equilibrium equation

through the thickness of the shell. So, it can be pointwise very different from

zero (it can be a mathematical measure). Obviously, this phenomenon should

be taken into account in the refinement criteria. It is the basic point in the

definition of the error indicator described herafter.

• The plan of this paper is the following one. In section 2, few notations related

to shells are introduced. The finite element formulation used is described in

section 3, while section 4 concerns the mesh refinement strategy. In section

3
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5, one introduces the mesh refinement criteria and, finally, various numerical

examples are presented in the last section.

2 Geometrical aspects for shells

• Let us recall that a shell is a three-dimensional structure for which one

dimension, called the thickness, is very small compared to the other dimensions

(maximum length or local radius of curvature). In this paper, the middle

surface of the shell will be denoted by ω while half the thickness will be ε.

Finally, as a shell formulation is used, even if it is a mixed one, let us introduce

now some basic elements of differential geometry. For more details see [13], for

example.

• So, it is assumed that there exists a mapping, say φ, from an open set ω̂

onto the middle surface ω which is at least C3(ω̂). The plane IR2 containing ω̂

will be referred to coordinates (ξ1 , ξ2) while the space IR3 is referred to an

orthonormal system of coordinates (O; e1 , e2 , e3). Then, one has

ω = { m ∈ IR3 | m = φ(ξ1, ξ2) , (ξ1, ξ2) ∈ ω̂ } .

Corresponding to the mapping φ, a curvilinear system of coordinates is defined

on ω such that, at any point m = φ(ξ1, ξ2) of ω, the tangent vectors are (see

Figure 1):

a1 = φ,1 ≡ ∂φ

∂ξ1
, a2 = φ,2 ≡ ∂φ

∂ξ2
.

Let us assume that the vectors a1 and a2 are linearly independent and span

the tangent plane at each point m of ω. The unit normal vector at point m is

4
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then defined by

N =
a1 ∧ a2

‖a1 ∧ a2‖
.

For the sake of brevity, in the following, Greek indices are assumed to belong

to the set {1, 2} and the implicit summation convention over repeated indices

is adopted.

• Let us now define several quantities, which are necessary for the definition

of the shell model. The first fundamental form on surface ω is given by

gαβ = aα · aβ , (1)

where “·” stands for the euclidian scalar product. This tensor is also called

the metric tensor. Its determinant is |g| = g11 g22 − g2
12 and its inverse is

such that:

gαβ = aα · aβ , (2)

where {aα}, called the dual basis of {aα}, is defined with the vectors aα such

that: aα · aβ = δα
β (Kronecker’s symbol). Then, let us introduce aα,β, which

is the partial derivative of aα with respect to ξβ . One can write this vector

in the basis (a1 , a2 , N) and obtain aα,β = Γγ
αβ aγ + bαβ N , where Γγ

αβ

are the Christoffel’s symbols. bαβ is the second fundamental form on ω, also

called the curvature. One has

bαβ = N · aα,β , Γγ
αβ = aγ · aα,β . (3)

5
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3 A mixed variational formulation for the Koiter’s shell model

3.1 The Koiter’s shell model

• The Koiter’s shell model is used (see [14] and [15]). It is formulated using

the two following strain tensors. The first one represents the change of metric

on the surface ω due to a displacement. It is denoted by γαβ. The second one,

named ραβ, is the change of curvature suggested by Budiansky and Sanders

[15]. If v is a displacement vector field on the surface ω, expressed in local

coordinates by v = vα aα + v3 N , then γαβ(v) and ραβ(v) are respectively

given by





γαβ(v) = 1
2
(vα|β + vβ|α) − bαβ v3 ,

ραβ(v) = 1
2
(θα|β + θβ|α) + 1

2
(bλα vβ|λ + bλβ vα|λ) − bλα bλβ v3 ,

(4)

with bλα = gλβ bβα and vα|β = vα,β − Γγ
αβ vλ (covariant derivative). Finally,

the transverse section rotation θ can be expressed through the Kirchhoff–Love

kinematical relation by

θα = − bλα vλ − v3,α . (5)

An important point to notice is the following one. The expression of ραβ(v)

requires the derivatives of θα so of bλα . As bλα depends on the second derivatives

of the mapping φ (see (3)), such a model needs the third derivatives of φ.

• Hence, the classical shell model consists in finding a displacement field u

belonging to the set V of the admissible displacement fields, and such that for

6
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all v ∈ V ,

∫

ω

RMαβλµ γαβ(u) γλµ(v) +
ε2

3

∫

ω

RFαβλµ ραβ(u) ρλµ(v) = l(v) , (6)

where RMαβλµ and RFαβλµ are respectively the membrane and the bending

stiffness tensors. In the particular case of an homogeneous and isotropic ma-

terial,

RMαβλµ = RFαβλµ =
Eε

1 − ν2

(
(1 − ν)

(
gαλgβµ + gαµgβλ

)
+ 2ν gλµgαβ

)
,

where E is the Young’s modulus and ν the Poisson’s ratio. Finally, l(v) stands

for the mechanical loading.

3.2 Continuous mixed variational formulation

• The main ideas of the mixed formulation, introduced in [16], are the fol-

lowing. First of all, the transverse section rotation θ is introduced as a new

unknown. This is very usual in plate and shell theories. Second, the Kirchhoff–

Love relationship (5) is prescribed by means of a Lagrange multiplier. Let us

observe that this multiplier has the physical meaning of the resultant trans-

verse shear stress, which will be useful for the definition of refinement criteria.

• Let us now be more precise. We introduce the membrane stress tensor

nαβ = RMαβλµ γλµ(u), the bending moment mαβ = RFαβλµ ρλµ(u), where

γλµ(u) and ρλµ(u) are given in (4), and the resultant transverse shear stress,

say q = qα aα. The basic point of the method is to split q into the sum of

the gradient of a scalar function and the rotational of another one (Helmholtz

decomposition), like

7
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q = grad ϕ + rot ψ = gαβ ϕ,β aα +
1√
|g|

(−ψ,2 a1 + ψ,1 a2 ) . (7)

So, starting from the equilibrium relationships and writing (7) in a variational

form, we obtain the global mixed formulation:





find (Λ, X) ∈ M × V such that

∀ Y ∈ V , A(X, Y ) +B(Λ, Y ) = L(Y ) ,

∀ Ξ ∈ M , B(Ξ, X) = 0 ,

(8)

where the unknows are X = (uα , u3 , θα ) and Λ = (ϕ , ψ) associated with

the virtual fields Y and Ξ. Let us remark that, from now on, uα, u3 and θα are

considered as independent variables. Moreover, L(Y ) is the natural extension

of the linear form l(v) appearing in (6). The bilinear form A reads

A(X, Y ) =
∫

ω

RMαβλµ γαβ(X) γλµ(Y ) +
ε2

3

∫

ω

RFαβλµ ραβ(X) ρλµ(Y )

=
∫

ω

nαβ(X) γαβ(Y ) +
ε2

3

∫

ω

mαβ(X) ραβ(Y )

(9)

and gives the elastic energy of the shell while B, expressed by

B(Λ, Y ) =
ε2

3
[
∫

ω

gαλ ϕ,λ (µα + bβα vβ + v3,α )

−
∫

ω

ψ√
|g|

(µ2,1 − µ1,2 + (bβ2 vβ),1 − (bβ1 vβ),2 ] ,

(10)

ensures the Kirchhoff–Love constraint (5). As a matter of fact, displacement

fields X such that B(Ξ, X) = 0 for all Ξ ∈ M, are precisely Kirchhoff–Love

displacement fields. Finally, the functional spaces are defined by

V = Vt × V × Wt , M = V × L2
0(ω) ,

8
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with




Vt = {vt = vα aα | vα ∈ H1(ω); vα = 0 on γ0 ∪ γ1 } ,

V = {v ∈ H1(ω) | v = 0 on γ0 ∪ γ1} ,

L2
0(ω) = {ψ ∈ L2(ω) | ∫ω ψ = 0 } ,

Wt = {µ = µα a
α | µα ∈ H1(ω); µα = 0 on γ0; µt = 0 on γ1 } ,

where µt stands for the tangential component along the edge. Moreover, to

make the boundary conditions more precise, γ0 and γ1 are two parts of the

boundary γ of ω, where the shell is assumed to be clamped and simply sup-

ported respectively. The rest of the boundary of ω is free.

• To conclude this section, let us emphasize an advantage of this formulation.

We have observed that the classical variational formulation needs the use of the

third order derivatives of the mapping φ describing ω. Here, these derivatives

should appear in the bilinear form B. But a simple calculus leads to the

relation

(bβ2 vβ),1 − (bβ1 vβ),2 = bβ2 vβ,1 − bβ1 vβ,2 + (Γβ
µ2 b

µ
1 − Γβ

µ1 b
µ
2 ) vβ ,

and the third order derivatives disappear. This point will be of importance

when the geometry of the shell is not exactly known and one has to construct

an approximation.

3.3 Numerical discretization

• In the case of classical variational formulations, such as (6), the main condi-

tion, which ensures existence and uniqueness of a solution, is the ellipticity of

9
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the bilinear form. So, when a conformal finite element approximation is used,

which means that the discrete space is contained in the continuous one, this

ellipticity property is kept and the discrete model has also one and only one

solution (see [17]). Unfortunately, this condition of conformity of the discrete

spaces is not sufficient in the case of mixed formulations. This problem is well-

known in fluid mechanics and is due to the incompressibility condition. A long

time ago (for example, see [18]), efficient numerical schemes were suggested

to overcome this difficulty. In this case, where the main unknows are velocity

and pressure, the idea is to enrich the velocity. We follow this idea, keeping in

mind that the field which takes the place of velocity is the transverse section

rotation θ.

• Practically, first order degree polynomials are used for each unknown uα,

u3, θα, ϕ and ψ. But, in order to stabilize the numerical scheme, the rotation

θ is enriched with internal degrees of freedom. More precisely, if triangular

elements are used, which is the case in the following of this paper, a ”bubble”

function is added for each component of θ. With this scheme, we can prove

that the error estimate between the exact solution and the discrete one is of

order O(h), if h stands for the small parameter linked to the mesh size (see

[19]).

10
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4 Approximation of the middle surface of the shell and refinement

strategy

4.1 Approximation of the middle surface

Now, it is assumed that the middle surface ω of the shell is approximated by

flat triangular elements, the vertices of which are on ω. Moreover, it is assumed

that the normal vectors to ω at these vertices are exactly known (see Figure

2). Then, it is possible to build a local basis, i.e. depending on the element, of

the tangent plane at each vertex of the mesh. From an interpolation of these

”nodal” bases, one can obtain an approximation of the geometrical tensors

(1), (2) and (3), which are needed in the shell model. And it can be proved

that the error, due to this approximation, is also of order O(h) in energy norm,

which is the same as the error due to the finite element interpolation (see [20]).

4.2 Mesh refinement: basic aspects

Let us begin with the technical aspects of the mesh refinement, recalling that

we use meshes only made of triangles. In order to refine these meshes, an algo-

rithm proposed by Rivara is used (see [21]). Its mains ideas are the following

ones. In a first time, each triangle which has to be refined, is divided into four

sub-triangles, in the following manner (see Figure 3): the middle point of the

longest side is connected with its opposite vertex and with the middle points

of the two other sides.

Once this first refinement is achieved, a second one is done to ensure the

conformity of the new mesh. So, two cases may occur. If a new node is added

11
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on the longest side of a triangle, it is connected with it opposite vertex. If not,

it is connected with the middle point of the triangle longest side (see Figure 4).

This process is repeated until total conformity is obtained, which practically

occurs after a few iterations. Finally, let us emphasize a major advantage of

this technique: during the successive refinements, the final mesh has angles

which remain bounded away from zero (see [21]).

4.3 Mesh refinement: case of shell structures

• As far as refinement is concerned, we have to deal now with the fact that

the mesh to refine is not plane. Thus, the middle point of a triangle edge is

generally not on the surface. So, we shall use a methodology developed by one

of the authors and a coworker (see [8]). For autonomy of this paper, let us

describe this strategy hereafter.

• Let A and B be two vertices of the mesh, which are then on the middle

surface ω, and N(A) and N(B) the corresponding unit normal vectors. Points

A, B and the vector γ ≡ N(A) + N(B) define a plane Π which cuts ω

along a curve, say
⌢

AB, that we are aiming at defining an interpolation. First,

setting U = AB
‖AB‖

, a direct orthonormal basis (U , V ) of Π is defined. Then,

two vectors T (A) and T (B) are introduced, which belong to plane Π, and are

respectively orthogonal to N(A) and N(B), in such a way that the two vectors

T and N define a direct orthonormal basis (see Figure 5). So, they are tangent

to the curve we are trying to construct an interpolation. Now, let k be the

euclidian norm of vector AB. We build the third order polynomial function,

say P3 , from [0 , k] into IR, such that its curve in Π contains A and B, and

12
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has T (A) and T (B) as tangent vectors at these points. In other words,

P3(0) = P3(k) = 0 , P ′
3(0) =

Tv(A)

Tu(A)
≡ α , P ′

3(k) =
Tv(B)

Tu(B)
≡ β ,

where Tu and Tv stand for the components of vector T in the basis (U , V ).

Then, it is easy to calculate P3:

P3(x) = α x − 2α + β

k
x2 +

α + β

k2
x3 .

Finally, the new node C is introduced such that:

AC =
k

2
U + P3

(
k

2

)
V =

k

2
U +

k

8
(α− β) V . (11)

Remark. In general, the two vertices A and B, and the two normal vectors

N(A) and N(B) are not in the same plane. So, on Figure 5, Ñ(A) and Ñ(B)

stand for the projection of the exact normal vectors on the plane Π and are

given only for the understanding of the Figure. They are useless for building

the function P3. �

• Let us now assume that the exact curve
⌢

AB can be described by a mapping f ,

which is assumed to be C4([0 , k]). Then, the previous interpolation procedure

is reduced to the well-known Hermite interpolation, for which the error is

classical. For all x ∈ [0 , k], there exists ξx ∈ ]0 , k[ such that:

f(x) − P3(x) =
x2 (x− k)2

24
f (4)(ξx) .

Therefore, if M is a general node of
⌢

AB and Mh the node obtained by the

above interpolation, the two nodes being of same abscissa in (A; U , V ), one

has

‖MMh‖L∞([0,k]) ≤ ηk k
4 ,

13
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where ηk is a constant independent on k but depending on the maximum value

of |f (4)| on [0, k] (f (4) is the fourth order derivative of f). So, when we choose

for M the node of abscissa k/2, we have ‖MC‖ ≤ ηk k
4. Finally, introducing

the mesh parameter h, which is the maximum length of the edges in the mesh,

and assuming that the mapping is sufficiently smooth, we can conclude that

there exists a strictly positive constant η, independent on h and such that, on

the whole mesh:

‖MC‖ ≤ η h4 ,

where C stands for the added nodes corresponding to the ”exact” nodes M .

• Nevertheless, the geometrical approximation needs also the use of the normal

vector. So, we have to define a unit normal vector to ω at node C. For this,

the classical linear interpolation is used and we normalize the vector that has

been obtained:

N(C) =
N(A) + N(B)

‖N(A) + N(B)‖ . (12)

In order to obtain an error estimate between N(C) and the exact normal

vector N(M) (M is again the node of abscissa k/2, previously introduced),

let us recall a classical interpolation estimate, applied to our case:

‖N − π N‖L∞(ω) ≤ c h2 |N |W 2,∞(ω) , (13)

if π stands for the linear interpolation operator, under classical regularity

assumptions on the mesh and if the components of N belongs to W 2,∞(ω)

(see [17]). N represents the unit normal vector. It is homogeneous to the first

order derivatives of the mapping φ. Therefore, it is smooth enough because

the mapping which defines the surface ω has been assumed to be C3(ω̂). Let us

14
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also note that the normal vector is defined everywhere on the middle surface ω,

because the two tangent vectors have been assumed to be linearly independent

at each point of the surface ω. From the definition of M (”middle” point of
⌢

AB), one has

π N(M) =
N(A) + N(B)

2
.

Therefore

‖π N(M)‖= ‖N(M) − N(M) + π N(M)‖
≥‖N(M)‖ − ‖N(M) − π N(M)‖
≥‖N(M)‖ − ‖N − π N‖L∞(ω)

≥ 1 − c h2 |N |W 2,∞(ω) ,

or else

1 − ‖π N(M)‖ ≤ c h2|N |W 2,∞(ω) . (14)

Moreover, one has

‖N(M) − N(C)‖≤‖N(M) − π N(M)‖ + ‖π N(M) − N(C)‖
≤‖N − π N‖L∞(ω) + ‖π N(M) − N(C)‖ .

Let us remark now that

‖π N(M) − N(C)‖= ‖π N(M) − π N(M)

‖π N(M)‖‖

= | ‖π N(M)‖ − 1| = 1 − ‖π N(M)‖ ,

as

‖π N(M)‖ =
‖N(A) + N(B)‖

2
≤ 1 ,

because the normal vectors are unitary. Finally, using (14), we obtain

‖N(M) − N(C)‖ ≤ 2 c h2 |N |W 2,∞(ω) .

15
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• The previous method was applied on various surfaces, and the numerical

results coroborate the above estimates (see [8]).

Remark. Let us observe that this procedure only requires data which are

connected to the element edge (coordinates of the two vertices and the two

associated normal vectors). It doesn’t depend on the fact that the element is

a triangle or a quadrangle. So, it could be applied exactly in the same way for

refining meshes made of quadrangles. �

5 Mesh refinement criteria

We will now explain how we choose to refine the mesh. To make it short, the

method is based on the smoothing of the elastic energy of the shell. So, a

first step is to build new fields of stresses which are supposed to give a better

approximation of the true ones than the finite element ones. Then, a first

part of an error indicator can be obtained thanks to the difference between

smoothed and finite element fields. Nevertheless, as we work on shell models,

we have chosen to introduce in our indicator the transverse shear stress as a

quantity of interest, in a way which is described in the following. On the other

hand, though it could certainly be interesting in the framework of shells, in

the present paper, we have not introduced an indicator linked with the quality

of the geometry approximation, as it is suggested in [7]. Nevertheless, as it will

appear further, in most of our test cases, we have studied the effect of this

approximation.
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5.1 Stress smoothing

• First of all, let us notice that the finite element membrane stress nh and

bending moment mh are constant on each triangle, as first-order polynomial

functions are used for the displacements. Moreover, as they are given in a local

basis which depends on the element, they have to be expressed in the same

global basis (e1 , e2 , e3) before being smoothed. Then, let us denote by nh
kl(K)

and mh
kl(K) the values which are taken on triangle K by any component of

nh and mh respectively. Then, at any vertex S of the mesh, we define for any

component k and l:

nh
kl(S) =

∑
TS

|K| nh
kl(K)

∑
TS

|K| , mh
kl(S) =

∑
TS

|K| mh
kl(K)

∑
TS

|K| , (15)

where TS denotes the patch of S, which means the set of elements K which con-

tain the vertex S. Then, the smoothed membrane stress ñh
K and the smoothed

bending moment m̃h
K are defined as the tensors any component of which is

the first-order polynomial functions given on each triangle K by





ñK
kl =

∑3
i=1 nh

kl(Si) λ
K
i ,

m̃K
kl =

∑3
i=1 mh

kl(Si) λ
K
i ,

(16)

where λK
i stands for the i th first-order nodal function of K.

Remark. The values given by (15) are solution of

min
f ∈ IR

∫

TS

(f − fK(X))2 dX ,

where fK(X) is a generic function, which is constant on each element, as in

the case of nh and mh. Thus, our approach presents several analogies with

17
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the one developed by Zhu and Zienkiewicz in [9] and [10]. Let us note yet

that we minimize among constants while these authors use first-order degree

polynomials. �

5.2 Error indication

• Let us first recall some basic aspects on the elastic energy J of a general

shell model. Let ζ be the linearised strain tensor and σ the stress tensor. The

three-dimensional elastic energy is given by

J =
1

2

∫

Ω

σ : ζ . (17)

Now, the tensors σ and ζ can be splitted into tangential and normal compo-

nents. We have:

ζ = ζt + ζs ⊗ N + N ⊗ ζs + ζn N ⊗ N ,

and a similar equation for σ. Then, one derives the following decomposition

of the elastic energy:

J = Jt + Js + Jn , (18)

with

Jt =
1

2

∫

Ω

σt : ζt , Js =
∫

Ω

σs · ζs , Jn =
1

2

∫

Ω

σn ζn .

The two first quantities are respectively the inplane and the transverse shear

energies.

18
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• In order to recover error indicators homogeneous to an energy, the next

step we consider is to express some terms of the decomposition (18) using the

stresses we are dealing with. Let us first notice that the kinematical hypothesis

of the Koiter’s shell model leads to

ζt = γ + x3 ρ , (19)

x3 being the coordinate along the normal direction to the middle surface.

Then, we get for the inplane strain energy, which is the global elastic energy

for our shell,

Jt =
1

2

∫

ω

n : (RM)−1 : n +
ε2

6

∫

ω

m : (RF )−1 : m . (20)

• Such an expression is appropriate for the smoothing strategy presented in

the previous section, and leads naturally to a global error control. But here, we

have also chosen to enrich our error indicator with the transverse shear stress.

By the way, because of Kirchhoff–Love assumptions, there is no transverse

shear energy for the Koiter’s or/and Budiansky–Sanders’s models. This is

due to the fact that the transverse shear strain is zero. Let us observe that

Kirchhoff–Love assumptions can be justified thanks to asymptotic methods.

It means that the most the shell is thin, the most the transverse shear energy

is close to zero. Hence, introducing an energy for the transverse shear in the

framework of Kirchhoff–Love’s model could appear as not justified in a first

time. Nevertheless, first, the ”real” thickness of the shells on which engineers

work, doesn’t go to zero. The thickness can be very small but is not null. And

second, in our model, we can use the expression of the Lagrange multiplier to

give an indicator on the transverse shear energy. This quantity is of importance

when the transverse shear stress takes locally a big value: it is a way to mean

19
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that the shell model becomes questionable and a manner to overcome this,

is to refine the mesh locally there. So, from a three-dimensional constitutive

law, we define a resultant transverse energy by setting:

I(K) =
1 + ν

2Eε
‖ grad ϕ + rot ψ ‖2

L2(K) ≡ 1 + ν

2Eε
‖qh‖2

L2(K) , (21)

where ϕ and ψ are the two potential functions used in the definition of the

transverse shear stress (see (7)).

• The previous considerations lead us to define error indicators for each type

of stresses by





ηn(K) =
√

1 − ν2

2Eε
‖ñh − nh‖L2(K) ,

ηm(K) =
√

ε(1 − ν2)
6E

‖m̃h − mh‖L2(K) ,

ηq(K) =
√
I(K) .

(22)

In order to define a relative error indicator, we introduce the positive quantity

J0 =
∑

K∈T0

{
1 − ν2

2Eε
‖ñh‖2

L2(K)

+
ε(1 − ν2)

6E
‖m̃h‖2

L2(K) +
1 + ν

2Eε
‖qh‖2

L2(K)

}
,

where T0 is the mesh used for the initial computation. The local error indicator

is then

η(K) =

√√√√η2
n(K) + η2

m(K) + η2
q (K)

J0
. (23)
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• Finally, the refinement of a triangle K is effective when one has, for a given

positive or null α,

η(K) > ηmean + α s , (24)

where ηmean and s stand respectively for the arithmetic mean and standard

deviation of error indicators. In general, the larger is α, the more concentrated

will be mesh refinement. In fact, the values of this parameter influence the

decrease of the global estimation during the refinement process, as shown

later.

6 Numerical experiments

We present here some numerical results testing the approach previously de-

scribed. Among them are classical shell problems, for which reference solutions

are described in the literature (see e.g. [22]). They allow us to check the com-

putation accuracy when the number of elements increases while refining the

mesh. In particular, we will examine the following points, which we found

interesting in our approach.

• What is the effect of the geometry approximation on the compu-

tation accuracy after a few refinement iterations?

Thus, when it is possible, it will be worthwhile to consider the case of the

exact interpolation in order to compare the results with the approximated

interpolation ones.

• Are the error indicators of the different stresses such that each of

them can play a role in the refinement process?
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If it is, it will justify the weights chosen in (22).

• Is the error indicators behaviour close to the one of the “true“

errors?

This can be investigated when an analytical solution of the problem is avail-

able, as in the first case considered underneath. It should be noticed that the

effectivity index is classically used to answer to this question (see e.g. [23]). Let

us remember that the main goal of the indicator suggested here is to detect

where to refine in order to obtain a good accuracy for the transverse shear

stress. It is not designed to be close to the “true” error.

6.1 Cylinder under uniform pressure

• Let us begin with the case of a cylindrical shell, which is clamped on one side,

the opposite one being free. It is submitted to an internal uniform pressure

load P . Thus, the shell and the load are both axisymmetric. So, the solution

depends only on the abscissa along the shell axis, say ξ2 , in the case of the

mapping

φ(ξ1, ξ2) =




ξ2

R cos ξ1

R sin ξ1




, (25)

where R is the radius of the cylinder. The main interest of this example is

that the exact solution of the Koiter’s model can be easily obtained (see [24]).
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• In the local basis given by (25), the membrane stress tensor n is such that

n1
1 =

2Eε

R
u3 ,

its other components being zero, and the bending moments are





m1
1 = − 2Eε

1−ν2

(
1

R2 u3 + ν u3,22

)
,

m2
2 = − 2Eε

1−ν2

(
ν

R2 u3 + u3,22

)
,

while m2
1 = m1

2 = 0. Concerning the transverse shear stress, one has

q1 = 0 , q2 = m22
,2 .

Finally, the knowledge of the deflection u3 allows us to compute all these

stresses. This can be done by solving the following differential equation:





2Eε3

3(1 − ν2)

{
u3,2222 +

2ν

R2
u3,22 +

(
1

R2
+

3(1 − ν2)

ε2

)
u3

R2

}
= P ,

u3(L) = 0 , u3,2(L) = 0 , m2
2(0) = 0 , m2

2,2(0) = 0 ,

(26)

where L is the cylinder length. The settings for the computation are given in

Table 1.

• One observes in Figures 6 to 9 the very good accuracy of the numerical

solution versus the analytical one, after four refinements, even for the bending

moment and the transverse shear stress, especially near the clamped edge.

This case clearly illustrates the fact that the transverse shear stress doesn’t

vanish in the Kirchhoff–Love’s model: it is close to zero on most of the shell

but far from it near the clamped edge (see Figure 9).
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• Finally, one can derive an approximated ”true” error for this test-problem.

To achieve this, the difference between the analytical values of the stresses

at the vertices of the mesh and the finite element stresses is evaluated in a

similar way than in (21)–(22). More precisely, we set for each triangle K:





ña
K =

∑3
i=1 na

Si
λK

i ,

m̃a
K =

∑3
i=1 ma

Si
λK

i ,

q̃a
K =

∑3
i=1 qa

Si
λK

i ,

(27)

where the superscript a denotes the analytical solution. Then, the approxi-

mated ”true” error is defined as

e(K) =

√√√√e2n(K) + e2m(K) + e2q(K)

Ja
0

, (28)

where




en(K) =
√

1 − ν2

2Eε
‖ña − nh‖L2(K) ,

em(K) =
√

ε(1 − ν2)
6E

‖m̃a − mh‖L2(K) ,

eq(K) =
√

1 + ν
2Eε

‖q̃a − qh‖L2(K) ,

(29)

and

Ja
0 =

∑

K∈T0

{
1 − ν2

2Eε
‖ña‖2

L2(K)

+
ε(1 − ν2)

6E
‖m̃a‖2

L2(K) +
1 + ν

2Eε
‖q̃a‖2

L2(K)

}
.

Figure 11 allows one to compare the error indicators with the estimated ”true”

errors, as the mesh is refined. The decrease rate of the quadratic mean values
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of the errors is more important than the one of the indicators. This behaviour

is due to the fact that the tranverse shear stress is compared to zero in our

indicator. However, it is locally very large near the clamped edge (see Figure

9). Then, the mixed model introduced in Section 3 combined with our mesh

refinement criteria allows one to refine the mesh where the transverse shear

stress is important and to obtain a good accuracy on it. Moreover, Figure 11

illustrates also the efficiency of the mesh refinement compared to a uniform

mesh refinement.

• The comparison of Figures 10 to 14 shows how the selectivity parameter α

introduced in (24) influences the decrease rate of the error indicators and the

“true” errors. For large values of α, the decrease rate can be irregular.

• Finally, one can describe more precisely the effects of each part of the error

indicator. Thus, ηn/
√
J0, ηm/

√
J0, ηq/

√
J0 and the global indicator η along

the axis direction, for the initial computation and after 1,2 and 3 refinement

iterations, are shown in Figures 15, 16, 17 and 18. In all the cases, most

of the error concentrates near the clamped edge. Nevertheless, the effect of

each indicator doesn’t follow the same way. The membrane stress indicator

rapidly decreases near the clamped edge and remains dominant far from it.

Near the clamped edge, the transverse shear stress indicator becomes more

and more important, relatively to the two other ones, and finally select the

refinement area. The effect of the bending moment indicator is rather weak.

It also decreases rapidly near the clamped edge and increases near the free

edge. Let us observe that dropping the transverse shear stress indicator away

from the global indicator would completely change the refinement strategy as

the global error would concentrate far from the clamped edge.
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6.2 Pinched cylinder

• Here, a cylindrical shell is simply supported at its extremities by two di-

aphragms and loaded by two opposite pointwise forces F and −F in the

middle. Because of the problem symmetry, only one eighth of the cylinder

is generally considered where the force F/4 is applied (see Figure 19).

• An analytical solution, which is used as a reference one for this problem,

is obtained using a double Fourier series and the relations due to Flügge (see

[25]). But it doesn’t correspond exactly to the Koiter’s model, for which the

change of curvature tensor is slightly different. So, this so-called reference value

for the normalized deflection at the pinched point is 2Eεu3

‖F‖
= −164.24. When

starting from a uniform mesh of 400 elements, we get −164.21 at the 7th com-

putation (see Figure 20). Let us note that this value doesn’t vary significantly

when using finer meshes. Therefore, one can say that the convergence has been

obtained for our model.

Analogously, concerning the stresses, a reference normalized value of the com-

ponent n11 of the membrane stress in the absolute basis at the pinched point is

R n11

‖F‖
= −15.72, while we get −17.3. Keeping in mind that these results arise

from different shell models, the relatively small differences observed lead us to

consider our results as reliable, for both the displacements and the stresses.

• The approximated interpolation of vertices and normal vectors, described in

Section 4.3, generates a neglectible error for the deflection, as shown in Figure

21. It is worth to note that the conclusion is the same for the stresses (see

Figure 22).
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• Finally, the error indicators ηn/
√
J0, ηm/

√
J0, ηq/

√
J0 along

⌢

AB and the

global indicator η are shown in Figure 23. One observes that the membrane

stress indicator is dominant away from the pinched point, while near this point

the bending moment and the transverse shear stress indicators grow and finally

contribute to select the refinement area. The same features remain valid after

more refinement iterations (see Figure 24). For these computations, our goal

is reached because ηn, ηm and ηq are weighted in such a manner that none of

them masks systematically the others during the refinement process. A last

point that should be noticed is the efficiency of the mesh refinement versus a

uniform mesh refinement, as shown in Figure 25.

6.3 Pinched twisted ribbon

• Let us now consider another instructive classical example: the twisted can-

tilevered ribbon (see Figure 26). One extremity is clamped and the opposite

one is submitted to a concentrated unit shear-load in the thickness direction.

• The computed displacement for the pinched point A in the basis (e1, e2 , e3)

is (0. , 0.00175 , − 0.00171) at the 5th computation as the reference solution

given by [22] is (0. , 0.00175 , − 0.00179), this solution being derived from

the beam theory.

• The error indicators η, ηn/
√
J0, ηm/

√
J0 and ηq/

√
J0 along

⌢

DE are shown

in Figure 28. One observes that the transverse shear and the membrane stress

indicators lead to the same order of magnitude. Although the bending moment

drops back in this case, the weights of (22) are therefore satisfying.

• Finally, one observes in Figure 27 the good accuracy along
⌢

DE of the ap-
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proximated interpolation method proposed in [8], as Figure 29 reveals, at the

pinched point, the approximated interpolation gives slightly less accurate re-

sults than the exact one. To overcome this problem, it could be advantageous

to incorporate some shell geometrical informations to the error indicator (see

[7] for an example of such an approach).

6.4 Clamped hyperbolic paraboloid

• The middle surface is given by the mapping

φ(ξ1, ξ2) =




ξ1 − b

ξ2 − b

c
2b2

(
(ξ2)

2 − (ξ1)
2
)




, (30)

where b and c are two positive numbers and ω̂ =]0, 2b[×]0, 2b[ (see Figure 30,

where the frame Ox′y′ is obtained from Oxy by the rotation of π/4 radians

in this plane). The geometrical and mechanical settings are those of the case

described in e.g. [26].

• First, let us notice that the displacement of the center point O is close to

the reference solution given in [26]. For the clamped parabolic hyperboloid,

the refinement concentrates near the boundaries. The clamped boundary con-

dition, which creates a horizontal tangency along the edge, appears clearly

on the deformed configuration after few refinements, as shown in Figure 31.

Again, exact and approximated interpolations give very close results.
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• Figures 32 and 33 illustrate that the refinement process is strongly depen-

dant on the transverse shear stress indicator ηq for the clamped hyperbolic

paraboloid. This underlines again the importance of ηq in the expression (23)

of the error indicator.

6.5 A case of junction of shells: tank under uniform pressure

• As a more complex structure than the previous ones, we consider now a

shell which contains junctions between a cylinder and two hemispheres. The

mechanical load is an internal uniform pressure. The data are given in Tables

2 and 3. Due to the problem symmetry, only one eighth of the structure is

considered (see Figure 34).

• An analytical solution is available in [24] for the tank under uniform pressure.

However, the hemispheres are considered as two membranes and the shell

model of the cylinder is Novozhilov’s one, which is different from Koiter’s

model. Consequently, this analytical result is too different from ours to make

a relevant quantitative comparison. However, it indicates that the deflection

variation has to be located at the junction. This can be observed in Figure 35.

Furthermore, one can observe in Figure 36, as expected, the location of the

refinement in the vicinity of the junction. Correspondingly, the error indicators

concentrate on the junction during the refinement process (see Figure 37, the

results remain the same after several iterations). Finally, one observes in Figure

38 the good results of the approximated interpolation and the interest of a

refinement strategy versus a uniform mesh refinement.
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6.6 A case of cracked shell

• The last test-problem considered in this paper is a cracked cylindrical shell.

One quarter of a cylinder is clamped on all its boundary and submitted to a

uniform pressure. The settings are those of the Table 1. Let us note that the

crack was chosen so that its direction is not along the principal directions of

curvature of the middle surface (see Figure 39).

• It can be observed in Figure 40 that the refinement propagates partially in

an orthogonal direction of the crack.

• All error indicators decrease near the crack tip during the refinement process

(see Figure 41) and it is interesting to notice that, in this case, the membrane

stress indicator is highly dominant. In the studied case, the opening mode is

Mode I, for which the stresses are the most important in a direction which

is perpendicular to the crack: it explains the refinement propagation. Finally,

it can be observed that, as expected, the stresses increase near the crack tip,

which is in fact theoretically singular (see Figure 42). Here the stresses are

evaluated in L2 norm on the patch of the crack tip.

7 Conclusion

A fundamental problem arising in shell structure approximation, is the ge-

ometry. Even if it is known from an analytical expression, it implies a lot of

numerical difficulties in the approximation. A first step is to use the defini-

tion of a set of vertices displayed on the middle surface of the shell and to

assume that the exact normal are known at these points. A consistent numer-
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ical scheme can be developed from these reduced informations on the shell

geometry [16,20]. But, as in the non-linear analysis, when one tries to add

new points during a mesh refinement procedure, it becomes necessary to in-

troduce a local approximation of the surface along the edges of each element,

in order to define with precision the new points and the new normals at these

points. The important feature is that the true informations on the real middle

surface of the shell are not necessarily known. Therefore, it has been useful

to adapt the strategy introduced in [8] to adaptive mesh refinements. The

results obtained in this paper show that the method works with accuracy. As

illustrated on various different shells, the effect of geometry interpolation on

the mesh refinement procedure is neglectible. Moreover, the introduction, in

a more classical global indicator, of the transverse shear stress indicator, as

a quantity of interest in the case of shell structures, has been investigated.

Its influence can be determinant in the refinement strategy. A further step

would be to study more deeply this phenomenon and to introduce other mesh

refinement criteria.
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Ŝ2

ξ2

K̂

XXXXXXXX
@

@
@

@
@

@�
�
�
�

6

��1

���φ
-

K

S1

S2

S3

Fig. 2. Approximation of the middle surface geometry.

36



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

@
@

@
@

@
@

�
�
�

Fig. 3. First refinement of a triangle.

37



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

@
@

@
@

@
@

s -

@
@

@
@

@
@

�
�
�

@
@

@
@

@
@

s

s

-

@
@

@
@

@
@

�
�
�

@
@

@
@

@
@

s

s

s -

@
@

@
@

@
@

�
�
�

Fig. 4. Next refinements of a triangle to obtain conformity.

38



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

A B
��
�*
T (A)

T (B)
A
AAU

A
AAK

���*-U
6V
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Fig. 7. Cylinder under uniform pressure (α = 0.25) - Membrane stress n1
1 along the

axis direction.
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Fig. 8. Cylinder under uniform pressure (α = 0.25) - Bending moment m1
1 along the

axis direction.
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Fig. 9. Cylinder under uniform pressure (α = 0.25) - Transverse shear stress q2

along the axis direction.
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Fig. 10. Cylinder under uniform pressure (α = 0) - Quadratic means of the error

indicators and the ”true” errors.
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Fig. 11. Cylinder under uniform pressure (α = 0.25) - Quadratic means of the error

indicators and the ”true” errors.
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Fig. 12. Cylinder under uniform pressure (α = 0.5) - Quadratic means of the error

indicators and the ”true” errors.
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Fig. 13. Cylinder under uniform pressure (α = 0.75) - Quadratic means of the error

indicators and the ”true” errors.
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Fig. 14. Cylinder under uniform pressure (α = 1) - Quadratic means of the error

indicators and the ”true” errors.
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Fig. 15. Cylinder under uniform pressure - First computation - Error indicators η,
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J0 and ηq/
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J0 along the axis direction.
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Fig. 16. Cylinder under uniform pressure - First refinement (α = 0.25) - Error
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J0 along the axis direction.
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Fig. 17. Cylinder under uniform pressure - Second refinement (α = 0.25) - Error
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√

J0 along the axis direction.
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Fig. 18. Cylinder under uniform pressure - Third refinement (α = 0.25) - Error

indicators η, ηn/
√

J0, ηm/
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J0 and ηq/
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J0 along the axis direction.
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thickness 2ε = 0.03 m

radius R = 3 m

Young’s modulus E = 3 × 104 MPa

Poisson’s ratio ν = 0.3

force F = 1 N
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Fig. 19. Settings for the pinched cylinder.
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Fig. 20. Successive refinements of the pinched cylinder - α = 0.25.

54



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0

 0  20  40  60  80  100

no
rm

al
iz

ed
 d

ef
le

ct
io

n

arc length

1st computation
5th computation, approximated interpolation

5th computation, exact interpolation

-200

-150

-100

-50

 0

 50

 100

 0  20  40  60  80  100  120  140  160

no
rm

al
iz

ed
 d

ef
le

ct
io

n

arc length

1st computation
5th computation, approximated interpolation

5th computation, exact interpolation

Fig. 21. Pinched cylinder (α = 0.25) - Normalized deflection along
⌢

AB (top) and
⌢

AD (bottom).
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Fig. 22. Pinched cylinder (α = 0.25) - n11 component in the absolute basis of the

resultant stresses along
⌢

AB.
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Fig. 23. Pinched cylinder - First computation - Error indicators η, ηn/
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Fig. 25. Pinched cylinder (α = 0.25) - Relative error (%) of the displacement of

the pinched point, in logarithmic scale (Reference value: −164.24) - Refined and

uniform meshes with exact geometry.
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thickness 2ε = 0.32 m

width b = 1.1 m

Young’s modulus E = 29 MPa

Poisson’s ratio ν = 0.22

force F = 1 N

HHHHHHHHHHHHH

���

���:F

HHHj

6

���:r

e1

e2

e3

O

E

A

B

C

D

Fig. 26. Settings for the twisted ribbon.
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Fig. 27. Twisted ribbon (α = 0.5) - Deflection along
⌢

DE.
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Fig. 29. Twisted ribbon (α = 0.5) - Relative error (%) of the displacement of the

pinched point (Reference value: 1.7493 × 10−3) - Refined and uniform meshes with

exact geometry.
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geometrical parameters b = 0.5 m

c = 0.1 m

thickness 2ε = 0.008 m

Young’s modulus E = 2794.895 MPa

Poisson’s ratio ν = 0.4

pressure P = 980.665 Pa
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Fig. 30. Settings for the hyperbolic paraboloid.
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Fig. 34. Tank under uniform internal pressure - One eighth of the structure.
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Fig. 35. Tank under uniform internal pressure - Deflection along the axis direction

of the computational domain.The coordinates of the junction and the hemisphere

top are 0.0 and 15.8 respectively.
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Fig. 36. Tank under uniform internal pressure (α = 0) - Successive refinements.
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Fig. 37. Tank under uniform internal pressure - First computation. Error indica-
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Fig. 38. Tank under uniform internal pressure (α = 0) - Relative error (%) of the

deflection of the junction points (Reference value: 0.1319 m) - Refined and uniform

meshes with exact geometry.
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Fig. 39. Cracked cylindrical shell - Location of the crack on the initial mesh.
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Fig. 40. Cracked cylindrical shell (α = 0) - Successive refinements.
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Fig. 41. Cracked cylindrical shell - Indicators η, ηn/
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J0 near

the crack tip.
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Fig. 42. Cracked cylindrical shell - ‖q‖L2 , ‖n‖L2 and ‖m‖L2 near the crack tip.
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length thickness radius Young’s modulus Poisson’s ratio pressure

L = 100 2ε = 1 R = 100 E = 3 × 109 ν = 0.3 P = 3 × 105

Table 1

Settings for the cylinder under uniform pressure and the cracked cylindrical shell.
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length of the cylinder thickness radius of the cylinder and hemispheres

L = 25.132 m 2ε = 0.02 m R = 10 m

Table 2

Settings for the tank under uniform pressure - Geometrical aspects.
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Young’s modulus Poisson’s ratio internal pressure

E = 68.25 × 106 Pa ν = 0.3 P = 3 × 103 Pa

Table 3

Settings for the tank under uniform pressure - Mechanical aspects.
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