

Cold Atmospheric Plasmas in interactions with materials and liquids for biological applications

Franck Clement, Bernard Held, Kristacq Gazeli, Laurent Marlin, Erwan Morel, Fanny Girard-Sahun, Sylvie Blanc, Bruno Grassl, Stephanie Reynaud, Pierre Marcasuzaa, et al.

▶ To cite this version:

Franck Clement, Bernard Held, Kristacq Gazeli, Laurent Marlin, Erwan Morel, et al.. Cold Atmospheric Plasmas in interactions with materials and liquids for biological applications. 7 th International Symposium on Surfaces and Interfaces of Biomaterials, Jul 2019, Québec, Canada. hal-02191333

HAL Id: hal-02191333 https://univ-pau.hal.science/hal-02191333

Submitted on 24 Aug 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Cold Atmospheric Plasmas in interactions with materials and liquids for biological applications

Franck Clément¹ <u>franck.clement@univ-pau.fr</u>

<u>In collaboration with</u>: B Held¹, K Gazeli¹, L Marlin¹, E Morel¹, F Girard¹, S Blanc¹, B Grassl¹, S Reynaud¹, P Marcasuzaa¹, C Veclin¹, I Lebouachera¹, F Léonardi¹, Q Hoqui¹, C Nardin¹, X Callies¹, S Arbault², V Badets², P Lefrançois², N Sojic²

> ¹ Pau University – IPREM UPPA, France ² Univ. Bordeaux, ISM, CNRS UMR 5255, INP Bordeaux, 33400 Talence, France

> > Tuesday, July 23, 2019, 11h50-12h30

Québec City Convention Centre

1000, boulevard René-Lévesque Est Québec QC G1R 5T8 Canada

Univ Bordeaux, ENSCPB

Very nice <u>environments</u>

Wines libraries

UPPA – IPREM, Pau

béarnaise

Specialties: GARBURES

basque

UPPA – site Côte basque, Montaury

Why speaking about GARBURES ?

a bit like ...

Plasma Components:

- Neutral particles
- Electrons and lons
 - Electric fields

- Excited Particles: radiative and metastable, radicals, ROS, RNS

- Photons (UV, Visible, IR)

Because GARBURES contains

numerous energy components:

different vegetables (potatoes, pumpkin, leek, turnip, onion, tomato, ...) and different meat (pork, duck, ...)

J. Heinlin et al., Plasma applications in medicine with a special focus on dermatology, JEADV 2011, 25, 1-11

<u>DEFINITION</u> COLD PLASMA = WEAKLY IONISED GAS

Produced by <u>electrical discharges</u> between two electrodes and by using specific HV power supply

By introducing a dielectric material between the electrodes, and by using pulsed HV power supplies, it is possible to generate cold plasmas at <u>atmospheric pressure</u> and temperatures closed to <u>room temperature</u>:

COLD ATMOSPHERIC PLASMAS (CAPs)

Dielectric Barrier Discharges. Principles and applications Kogelschatz et al., J.Phys. IV France 7, 1997

Mechanisms in electrical discharges

Townsend laws: Electronic avalanches in the gap

Ionisation : $A + e^{-} => A^{+} + 2e^{-} \dots$

Examples of energy ionisation

Molécules	W_i (eV)
CO ₂	13,7
N_2	15,5
O_2	12,2
H ₂	15,4
H_2O	12,6

Two important coefficients depending on the nature of gases and electrodes used

1- Multiplication of charges in the gaseous volume characterized by electronic avalanches and defined by the first Townsend coefficient : α n=n₀.exp(αx)

2- Multiplication of charges due to secondary emission at the cathode and defined by the second Townsend coefficient : γ

Mechanisms in electrical discharges

After the formation of electronic avalanches, and when the space charge field becomes greater than the applied electric field, the space charge field controls the discharge and its dynamics.

We thus obtain an **ionization wave**, which propagates itself due to the space charge field. This ionization wave is called a **STREAMER**

The propagation velocity of streamers is higher than electronic avalanche velocity

10⁵ to 10⁸ cm.s⁻¹ at atmospheric pressure Electrons are hot in a cold plasma, allowing the production of numerous excited states

Potential energies and diagrams for N_2 and O_2

GUIDED IONIZATION WAVE

Gazeli, Clément et al., *Possibility* of controlling the chemical pattern of He and Ar "guided streamers " by means of N₂ or O₂ additives, J. Appl. Phys. **117**, 093302 (2015)

Gazeli, Clément et al., A study of helium atmospheric-pressure guided streamers for potential biological applications, Plasma Sources Sci. Technol. 22 (2013) 025020 (9pp)

IONIZATION WAVE

Bacteria E. Coli Sterilization

Clément et al., Study of Reactive Oxygen or/and Nitrogen Species Binding Processes on E. coli Bacteria with Mass Spectrometry Isotopic Nanoimaging, New Journal of Physics 13 (2011) 113040 (12pp)

Duday, Clément et al., NanoSIMS50 analyses of Ar/¹⁸0 plasma-treated Escherichia coli bacteria,

Plasma Processes and Polymers, vol 10, Issue 10, p 864–879, 2013

Dezest, Clément et al., Oxidative modification and electrochemical inactivation of *Escherichia coli* upon cold atmospheric plasma axposure, PLOS One, 2017, 0173618

IONIZATION WAVE

Parasites

Cryptosporidium parvum oocysts are composed of a capsid containing four infectious sporozoites. Cell integrity is well marked by a luminous crown around the oocysts.

AND TECHNOLOGY

Drs C. Penny, J-P Cambus, A. Valentin

IONIZATION WAVE

PLASMA-AIR and PLASMA-LIQUID INTERFACES

Collab. ENSCBP Bordeaux : S. Arbault, V. Badets, P. Lefrançois

12

Bordeau

ENSCBF

IONIZATION WAVE in interaction with air and water environments

Possible mechanisms

	In the gas	In the liquid (PBS: phosphate buffer saline)
H ₂ O ₂	$\begin{array}{l} \mathrm{HO}^{\circ} \ + \mathrm{HO}^{\circ} \ \rightarrow \mathbf{H_2O_2} \\ \mathrm{N_2} \left(\mathrm{A^3\Sigma_u}^+ \right) + \mathrm{H_2O_{(g)}} \rightarrow \mathrm{HO}^{\circ} \ + \mathrm{H}^{\circ} \ + \mathrm{N_2} \\ \mathrm{N_2(B^3\pi)} \rightarrow \mathrm{N_2} \left(\mathrm{A^3\Sigma_u}^+ \right) + \mathrm{hv} \\ \mathrm{N_2} \left(\mathrm{FPS} \right) \text{ observed in the plasma: N_2(A)} \end{array}$	$HO^{\circ} + HO^{\circ} \rightarrow H_2O_2$
NO ₂ -	$HO^{\circ} + NO^{\circ} + M \rightarrow HNO_2 + M$ M : collision partner	$HNO_{2} + HPO_{4}^{2-} \hookrightarrow NO_{2}^{-} + H_{2}PO_{4}^{-}$
NO ₃ -	$NO_2^{\circ} + HO^{\circ} + M \rightarrow HNO_3 + M^*$	$HNO_3 \leftrightarrows H^+ + NO_3^-$

Collab. ENSCBP Bordeaux : S. Arbault, V. Badets, P. Lefrançois

14

ENSCBP

When increasing O₂ %, decrease of OH and H, increase of O and O₂⁺

17

Electrochemistry

NO₂⁻ correlated with pH variation in buffered solution (PBS)

Bordeaux INP ENSCBP

Collab. ENSCBP Bordeaux : S. Arbault, V. Badets, P. Lefrançois

By changing pH, it is possible to measure unstable Species in solution

By changing pH, it is possible to measure unstable Species in solution

ENSCBP

Collab. ENSCBP Bordeaux : S. Arbault, V. Badets, P. Lefrançois

Helium plasma produces ROS and RNS including:

֍ H₂O₂
Abs. Spectroscopy
Electrochemistry
(20-30 μM.min⁻¹)*

ත **O₂°-**Electrochemistry (not quantified)

ନ୍ଦେ **ONOO**-

Abs. Spectroscopy

(0.2-1.2 µM.min⁻¹)*

ହ୍ୟ NO₂-

Abs. Spectroscopy Electrochemistry (30-45 μM.min⁻¹)*

NO₃⁻ Abs. Spectroscopy (30-45 μM.min⁻¹)*

Bordeaux

GAS-LIQUID INTERACTION in situ, during plasma exposure

Electrical fields implied in ionization waves are in the order of magnitude of **some 10kV.cm**⁻¹

Sretenovicí, G. et al., J.Appl.Phys. 452 2017, 121 (12), 123304. Razavizadeh, S. et al., Plasma Sources Sci. 454 Technol. 2018, 27 (7), 075016.

<u>Difficulties</u> to measure very low faradaic currents, in the **nA range**, in the presence of high electric fields used for plasma formation

Reactive oxygen species generated by cold atmopsheric plasmas in aqueous solution: Successful Electrochemical Monitoring in Situ under a High Voltage System, Girard, Clément et al., Analytical Chemistry, 2019

https://doi.org/10.1021/acs.analchem.9b01912

GAS-LIQUID INTERACTION in situ, during plasma exposure

GAS-LIQUID INTERACTION in situ, during plasma exposure

Possibility to follow long-lived and short-lived RONS produced in PBS during plasma exposure

IONIZATION WAVE in interaction with materials

These atmospheric plasmas can be used for polymer surface treatments

Exposition of Thermoplastic Polyurethane (TPU) Wettability analyses of the surfaces exposed

Exposure time (min)

Different types of polymers exposed...

He - N2 CAP

He CAP

He - O2 CAP

IR-ATR analyses of PLA substrates exposed

Another example IR-ATR analyses of PET substrates exposed

Another example IR-ATR analyses of PP substrates exposed

Another example IR-ATR analyses of PP substrates exposed

But ...

chemical characterizations are needed (XPS)

Surface aging must be controlled, which is linked to the gaseous media in which the samples are stored!

Work in progress...

Steel processing tests

The plasma bounces on the surface

First wetability tests Water drop spreading

Cleaning ?

Work in progress...

CONCLUSION

Ionization waves produced at atmospheric pressure are very interesting processes for the production of reactive species usefull for biomedical applications

Discharges mechanisms have to be studied for the production of these reactive species: charges, radicals and excited states, photons

Electrochemistry methods are very usefull to follow the production of chemical species produced in liquids during plasma exposures

The control of the environments (gas and liquid) is capital for a better understanding of the interactions mechanisms between plasmas and liquids or solid materials

Finally

« Garbures » are complex to analyse and difficult to reproduce, but we love to cook and we can sometimes find new recipes !

le ragoût de pattes de cochon « pig's leg stew »

The « POUTINE »

Merci To the organising committee To Cora Roy for her help and of course to Diego Mantovani

and THANK YOU FOR YOUR ATTENTION