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ABSTRACT 
Aerodynamic in industrial applications is used on a very wide range of Mach number, from very low to very 
high hypersonic flows. Induced physical phenomena deeply change and the associated numerical methods 
used to simulate these applications also change. The building of a Computational Fluid Dynamics (CFD) 
code, which can deal, reliably and accurately, with all kind of Mach numbers is still today a great challenge. 
Important effort has been done to widen as much as possible the range of applications but this is, to our 
knowledge, currently done only by the use of a toolbox of dedicated methods but not an All-Mach algorithm. 
As a first step in this bold goal, this current paper aims to benchmark three CFD codes from various origins 
and distinct numerical schemes: Concha [1], elsA [2], ANSYS-FLUENT [3] on a wide range of steady and 
unsteady test cases from very low Mach number 0.0001 to high 3. This benchmark allows to better define 
the limit of the domain of validity of each code and the respective benefits of associated numerical methods. 
This also allows to have further insights on necessary features of an all-Mach algorithm. 
 
 
1. INTRODUCTION AND CONTEXT  
 
Industrial aerodynamic applications obviously 
deeply rely on scientific computing and on the 
numerical tools used to solve the Fluid dynamics 
equations. The wide range of Mach number of 
every day industrial simulations is a challenge for 
numerical schemes that have to capture complex 
radically distinct physical phenomena. The 
constant evolution of numerical schemes originally 
dedicated to a given range of Mach number 
widens their relevance domain although their use 
outside this domain of validity is always uncertain. 
Despite these grey zones, the toolbox composed 
of the conglomerate of dedicated schemes 
achieves to cover now an impressive range of 
applications, but requires a sound knowledge of 
the software.  
The present study is issued from the three-way 
collaboration between the University of Pau and 
Pays de l'Adour (UPPA), ONERA and SAFRAN-
TURBOMECA. Its goal is to describe for three CFD 
softwares from various origins: Concha (an 

academic code), elsA (developed by an aerospace 
research centre) and ANSYS-FLUENT (FLUENT) 
(a commercial code), these grey zones via the run 
of a benchmark on five inviscid steady or unsteady 
test cases from very low Mach number 0.0001 to 
high 3. This benchmark is obviously far from 
exhaustive but already gives insights on scheme 
limitations. 
The paper is organized as follows. After a 
presentation in section 2 of the three chosen codes 
and their respective numerical methods, we 
present, in section 3 the five test cases and the 
obtained numerical results. Finally in section 4, we 
draw conclusions and future developments. 
 
2.  SOFTWARE PRESENTATIONS 
 
The three chosen software are issued from various 
origins and use distinct numerical methods to 
resolve fluid dynamics problems. 
 
Concha software [1] is an academic library 
developed at Pau University (UPPA). This code 



 

 
 

implements, among other finite elements solvers, 
the Discontinuous Galerkin Finite Element Method 
(DGFEM) for hyperbolic problem from fluid 
dynamics (see for example [4]). In this study, we 
will only consider the DGFEM with the HLLC flux 
scheme [5] and Tu limiter [6] and we present 
results approximated with piecewise constant (P0) 
and linear (P1) functions. These methods are from 
now on noted DG0 and respectively DG1. The time 
marching algorithm used is the implicit two-step 
Backward Differentiation Formulas (BDF2) coupled 
with a Newton iteration process.  
 
Since 1997, the elsA software is a multi-purpose 
CFD solver developed by ONERA, the French 
aerospace research centre. This software package 
capitalizes over time the innovative results of 
research and is simultaneously used as a basis for 
research, a tool for investigation and 
understanding of flow physics, and an industrial 
software for applied CFD and multiphysics. The 
elsA multi-application CFD simulation platform 
relies on the resolution of the compressible 3-D 
Navier-Stokes equations and covers a very wide 
range of aerospace applications:  turbomachinery, 
aircraft, helicopters, tilt-rotors, counter-rotating 
open rotors (CROR), unmanned aerial vehicles 
(UAV), missiles, launchers …  (see [2] and 
<http://elsa.onera.fr> for a exhaustive review of 
accomplishments both from research and 
industry). 
elsA software resolves here Euler equations with 
the Finite Volume Method (FVM) and a Riemann 
solver. For spatial discretization, two upwind 
schemes are used to compute the flux at the 
interface of each cell: the well known Roe scheme 
[7] and the AUSM+(P) MiLES [8] scheme more 
dedicated to low Mach computations (shorten as 
AUSM). In all cases, the AUSM parameters were 

the free stream flow condition. We also use a 
second order limiter called “minmod” (see Roe [7]) 
but no additional low speed preconditioner. All 
computations presented here are simulated with 
the version 3.3-p2 of the code.  
 
The last chosen code is ANSYS® FLUENT, 
release R15.0.7. FLUENT is a commercial CFD 
software developed by Ansys Inc. It allows to 
model flow, turbulence, heat transfer, and 
reactions for industrial applications via a large 
physical modelling capabilities. This software is 
widely used in industrial community as a 
multipurpose tool (more information is available on 
the company web site). The Euler equations are 
here also solved with a FVM solver with two 
distinct numerical schemes: the first one, 
dedicated to incompressible flow simulations, is 
the so-called Pressure-Based Method (PBM) with 
the associated SIMPLE [9] and PISO [10] 
algorithms. The second one is (like elsA) a 
Density-Based Method (DBM) designed for 
compressible flow simulations. The scheme used 
is called Roe Flux-Difference Splitting [7] (Roe-
FDS) and is, roughly speaking, the same Roe 
scheme as the one implemented in the elsA 
software (although additional in-house tunings are 
present).  
For each case the CFD is beginning with the same 
a priori mesh for all codes. In the case where the 
accuracy of computations is not satisfactory 
compared to the others, thinner meshes are then 
tested until the desired degree of accuracy is 
reached.     
Noticeable aspects of the three softwares are 
summarized in Tab. 1 entitled "Softwares 
overview". Two-dimensional meshes used to run 
the computation are composed of Triangle (Tri) or 
of Quadrilateral (Quad). 

 

Table 1.  Softwares overview. 
 Modelling Type method Type cells Numerical method 
FLUENT Incompressible FVM Tri or Quad Pressure-based 
 Compressible FVM Tri or Quad Density-based 
elsA Compressible FVM Quad Riemann solver (Roe, AUSM …) 
Concha Compressible DGFEM Tri or Quad Riemann solver (HLLC …) 
 
3. THE BENCHMARK: CHOSEN TEST CASES 
 
We have benchmarked the three previously 
presented codes on five 2D test cases. 
These cases cover a wide range of Mach number 
and they all highlight difficulties inherent to their 
velocity magnitude: shock waves (straight and 
oblique), expansion waves, rarefaction and 

vorticity zones ...  As much as possible, we have 
chosen cases that admit an analytical solution. 
Test cases are both steady and unsteady state 
inviscid simulations from Mach 10-4 to Mach 3 and 
all codes resolve the Euler equations. Main 
characteristics of these cases are summarised in 
Tab. 2. Second order numerical schemes are used 
for space and time discretizations, unless stated 
otherwise. 



 

 
 

We use UNAMALLA software [11] to generate high 
quality quadrangular structured meshes (case 1 

and 5).  
 

 
Table 2.  Summary of test cases. 
Test case Mach Compressibility Isentropic State Analytical solution 
Fraenkel test case 0.0001 Incompressible YES Steady YES 
Low-speed nozzle 0.036 Incompressible YES Steady YES 
Shock tube - Compressible NO Unsteady YES 
Isentropic vortex 2.39 Compressible YES Unsteady YES 
Cylinder M3 3 Strongly compressible NO Steady NO 
 

Table 3.  Discretisation time method of test cases 
Test case FLUENT elsA Concha 
Fraenkel test case Steady / PBM and DBM-explicit Implicit Implicit 
Low-speed nozzle Steady / PBM and DBM-explicit Implicit Implicit 
Shock tube Transient explicit Explicit Implicit 
Isentropic vortex Transient explicit Explicit Implicit 
Cylinder M3 Steady / DBM-explicit Implicit Implicit 
 
3.1. The Fraenkel test case (FTC)  
M 0.0001 - 2D - incompressible - steady 
 
In [12], Fraenkel obtains an analytical solution for 
an inviscid shear flow around a circular cylinder. 
The obtained flow contains recirculation zones 
near the front and rear of the cylinder as presented 
in Fig. 1. This test case belongs to the very 
incompressible domain and details about 
numerical parameters are given on Tab. 4. 
For FLUENT, we were not able to obtain a solution 
with the pressure-based method although it is 
supposed to be dedicated to incompressible flows. 
Our solution provided by the density-based 
algorithm for compressible flows is neither 
satisfactory as the simulation does not converge: 
residual stabilizes after losing only three orders of 
magnitude. 
elsA has been tested with two different schemes 
(Roe and AUSM) and three different grids (e1, e2 
and e3) (see Tab. 4 and 5). The history of 
residuals indicates the loss of more than eight 
order of magnitudes for both schemes. 
Nevertheless, only the AUSM scheme manages to 
capture the two-recirculation zones as shown in 
Fig. 2 and 3.  
Concerning Concha and its DGFEM solver, we test 
the first and the second order method on two 
meshes (c1 and c2). It is worth noticing that, as 
expected from the work of Guillard [13], the first 
order method, DG0, applied on triangular mesh 
(c1), achieves to capture the recirculation regions 
(see Fig. 4) while the use of a quadrangular mesh 
(c2) does not. Guillard demonstrates that for a 
FVM upwind scheme in the resolution of the Euler 

equations for a low Mach number regime, the lack 
of convergence toward the solutions of the 
incompressible system disappears with the use of 
a triangular mesh. This lack of convergence also 
disappears with the use of DG1, whatever the type 
of cell used and the recirculation zones are, in any 
case, well captured (see Fig. 5). 
 
Table 4. Methods and solution software (FTC). 
 Methods Satisfactory solution 
FLUENT PBM SIMPLE NO 
 DBM Roe-FDS NO 

elsA Roe + minmod NO 
 AUSM + minmod YES 
Concha HLLC + Tu YES 

 
Table 5.  Meshes details (FTC). 
 Type of 

elements 
Number of 
elements 

FLUENT Quad 108 960 
elsA mesh e1 Quad 10 192 
elsA mesh e2 Quad 40 000 
elsA mesh e3 Quad 6 400 
Concha mesh c1 Tri DG0 4 608 
Concha mesh c2 Quad DG1 6 400 
 

 
Figure 1. Streamlines (Fraenkel solution on mesh 
e2: 40 000-Quad) 



 

 
 

 

 
Figure 2. Streamlines with elsA (Roe - mesh e2:   
40 000-Quad). 
 

 
Figure 3. Streamlines with elsA (AUSM - mesh e3: 
6 400-Quad). 
 

 
Figure 4. Streamlines with Concha (HLLC – DG0 - 
mesh c1: 4 608-Tri). 
 

 
Figure 5.  Streamlines with Concha (HLLC – DG1 - 
mesh c2: 6 400-Quad). 
 
3.2. Internal low speed Nozzle (ILSN)  
M 0.036 - 2D - incompressible – steady 
 
In this test case, we simulate a subsonic steady 
state internal flow. The geometry of nozzle is 
known and analytical solutions are well-known in 
the subsonic regime [14]. All computations have 
been done on a 2D structured mesh of 1000 
quadrangular cells. Fig. 6 shows the Mach number 
along the centred axial direction of the nozzle 
(y=0). We observe a good agreement between 
every numerical simulations and the analytical one. 
It is worth noticing that FLUENT gives almost 
identical results with its incompressible and its 
compressible schemes. 

 
 
 
 
 
 

Table 6. Methods and solution software (ILSN). 
 Methods Satisfactory 

solution 
FLUENT PBM SIMPLE YES 

 DBM Roe-FDS YES 
elsA Roe + minmod YES 

 AUSM + minmod YES 
Concha HLLC + Tu YES 

 

 
 
Figure 6. Mach number along the centred axial 
direction (y=0) of the Nozzle with Concha, elsA 
and FLUENT. 
 
 
3.3. Shock-tube (ST)  
2D->1D - compressible – unsteady 
 
Among all the Sod shock tube problems, our 
unsteady test case is described in Tab. 7. As initial 
conditions, (ρ, p, u)L and (ρ, p, u)R are separated 
by a discontinuity in the middle of the 
computational domain (x=0). This test case is an 
1D quasi 2D simulation i.e. although it should 
theoretically be computed in a one dimensional 
domain, 2D simulations are led on a thin tube. All 
simulations are computed on a 2D structured mesh 
of 1580 quadrangular cells. In all this section, 
solutions presented here are 1D extraction along 
the longitudinal direction at y = 0.  
Solutions plotted in Fig. 7 demonstrate the good 
agreement of the computed densities with the 
analytical solution. DG1 method associated with 
HLLC + Tu scheme seems to be a little more 
diffusive than FVM–Roe + minmod around position 
x=2. 
 
 
 
 
 



 

 
 

Table 7. Shock-tube, initial conditions. 
Left condition Right condition 
ρ = 1.18 kg.m-3 ρ = 0.15 kg.m-3 
P=101 325 Pa P=10 132.5 Pa 

V=0 m.s-1 

 
Table 8. Methods and solution software (ST). 
 Methods Satisfactory solution 
FLUENT DBM Roe-FDS YES 
elsA AUSM + minmod YES 
 Roe + minmod YES 
Concha HLLC + Tu YES 
 

 
Figure 7. Solution with Concha, elsA and FLUENT, 
at time t =0.007s. 
 
3.4. Isentropic supersonic vortex (ISV)  
M 2.39 - 2D - compressible – unsteady 
 
This two-dimensional case is an unsteady vortex 
advection (see [15]). The analytical solution of the 
compressible Euler equations is given by the 
following Eqs (1)-(5): 
 

P=𝑃inf
𝑇
𝑇inf

!
!!!

 (1) 

𝑉! = 𝑢!"# −
5(𝑦 − 𝑦!)

2π
𝑒
!
!(!! !!!! !! !!!! !) (2) 

𝑉! = 𝑣!"# +
5(𝑥 − 𝑥!)

2π
𝑒
!
!(!! !!!! !! !!!! !) (3) 

𝑇 = 𝑇!"#(1 −
!"(!!!)!(!! !!!! !! !!!! !)

!!!!
) (4) 

𝑃!"# = 1  𝑃𝑎 
𝜌!"# = 1  𝑘𝑔.𝑚!! 
𝑢!"# = 𝑣!"# = 2  𝑚. 𝑠!! 

(5) 

 
It describes the isentropic advection of a vortex 
with the free stream velocity (uinf, vinf). Initially at 
(x0, y0) = (-10, -10) in a bounded domain Ω = [-20, 
20]2, the vortex is supposed to reach (10, 10) at 

time t=10s. Fig. 9 represents an extraction along 
the diagonal of the computational domain (i.e. y=x) 
of the density solutions and the analytical solution. 
All results presented are almost superimposed. 
Note that FVM-AUSM and FVM-Roe needed 2.4 
times more unknowns than DGFEM to get a 
solution with the same accuracy.   

Table 9. Methods and solution software (ISV). 
 Methods Satisfactory solution 
FLUENT PBM SIMPLE NO 
 DBM Roe-FDS YES 
elsA AUSM + minmod YES 
 Roe + minmod YES 
Concha HLLC + Tu YES 
 

Table 10.  Meshes details (ISV). 
 Type of elements Number of elements 
FLUENT Quad 63 504 
elsA Quad 63 504 
Concha Quad DG1 6 400 
 

 
Figure 8. Initial field of the ISV. 
 
 
 
 



 

 
 

 
Figure 9. Profile of the density along the diagonal 
of the domain at time t =10s. 
 
3.5. Cylinder Mach3 (CM3)  
M 3 - 2D - compressible – steady 
This case [16] is the only one which does not admit 
any analytical solution because of the complexity 
of the physical phenomena at stake: bow shock in 
front of the body and shocks with both recirculation 
and rarefaction zone in the rear part. Simulations 
options and meshes details are given respectively 
in Tab. 11 and 12. Fig. 10-13 show the iso-values 
of the Mach number for the three codes. While Fig. 
10 represents the FLUENT solution, that of elsA 
and Concha are respectively represented in Fig 
11, 12 and 13. We note a good agreement 
between all solutions and there is no carbunkle 
phenonenon. The streamlines comparisons seen 
in Fig.14-15 show a relative agreement between all 
the results as they all capture the re-circulations in 
the rear part of the cylinder. It is worth recalling 
that the same mesh is used for both FVMs and 
DGFEM. Despite this disadvantage in terms of 
number of degrees of freedom, FVMs solutions are 
really satisfactory. 

 
Table 11. Methods and solution software (CM3). 
 

Methods Satisfactory solution 
FLUENT DBM Roe-FDS YES 
elsA AUSM + minmod YES 
 Roe + minmod YES 
Concha HLLC + Tu YES 
 

Table 12.  Meshes details (CM3). 
 Type of elements Number of elements 
FLUENT  Quad 1 680 
elsA Quad 1 680 
Concha Quad 1 680 
 

 
Figure 10. Mach number (FLUENT Roe-FDS). 
 
 

 
Figure 11. Mach number (elsA AUSM+minmod). 
 



 

 
 

 
Figure 12. Mach number (elsA Roe+minmod). 
 
 

 
Figure 13. Mach number (Concha DG1). 
 

 
Figure 14. Streamline over the density with Concha (HLLC + Tu) in the upper part and elsA (AUSM + 
minmod) in the lower part.. 
 
 



 

 
 

 
Figure 15. Streamline over the density with Fluent (DBM Roe-FDS) in the upper part and elsA (Roe + 
minmod) in the lower part. 
 
 
4. CONCLUSION AND PERSPECTIVES 
 
In this study we benchmark three CFD codes from 
various origins: Concha (UPPA), elsA (ONERA) 
and FLUENT (ANSYS-FLUENT) on five inviscid 
steady or unsteady test-cases from very low Mach 
number 0.0001 to high 3. All codes resolve the 
Euler equations. Concerning FLUENT and despite 
our effort, neither the incompressible Pressure-
based solver nor the compressible Density-Based 
Roe-FDS scheme are able to give satisfactory 
results in all cases. The elsA FVM-Roe scheme 
leads to the same conclusion as it does not 
achieve to capture the two recirculation zones for 
the Fraenkel test case (very low Mach number). 
Both the elsA FVM-AUSM scheme (for structured 
mesh) and Concha DGFEM-HLLC scheme (for 
every cell type) provide for every case, reliable 
solutions in good agreement with the analytical 
solution (when available). 
 
These results should be reinforced on more test-
cases dealing with: viscous fluids, more (low) 
transient fluids where the time marching algorithm 
plays an important role… The use of the same flux 
computation scheme (AUSM or HLLC), for both 
the FVM and the DGFEM should also provide 
some interesting information to distinguish the 
respective advantages of the numerical method 
(FVM or DGFEM) to capture all-Mach phenomena. 
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