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RayleigheB�enardeMarangoni convection in an open cylindrical
container heated by a non-uniform flux

Rachid Es Sakhy, Kamal El Omari*, Yves Le Guer, Serge Blancher
Laboratoire des Sciences de l'Ing�enieur Appliqu�ees �a la M�ecanique et au g�enie Electrique (SIAME), F�ed�eration IPRA-CNRS, Universite� de Pau et des Pays de l'Adour (UPPA), Bat. 

d'Alembert, Avenue Jules Ferry, 64075 Pau Cedex, France

The numerical work presented in this paper concerns the three-dimensional simulation of the natural convection in a liquid film contained in a cylindrical 
container with a bottom of solid substrate heated from below by a non-uniform heat flux. Both buoyancy and thermocapillarity are considered in addition 
to heat conduction within the solid substrate. The NaviereStokes and energy equations are solved by a 3D finite volume method. Original morphologies of 
stationary convective cells (type and number) are observed. The flow patterns were found to depend on several studied dimensionless numbers, which 
are Rayleigh, Biot and Marangoni numbers, and on the ratio of the thermal conductivities of the solid substrate and the fluid.

1. Introduction

In the literature concerning convective instabilities within hor-

izontal liquid layers, the destabilizing temperature gradient across

the layer is often assumed to be directly controlled from the outside

of the system, through the boundary conditions below and above

the layer. The instability due to gravity and density variations is

called RayleigheB�enard (RB) instability, while B�enardeMarangoni

(BM) instability refers to the case where the surface tension vari-

ations are the driving force. RayleigheB�enardeMarangoni (RBM)

instability refers to the case where both effects are coupled.

The RayleigheB�enardeMarangoni convection is now widely

recognized for its practical importance due to its presence in awide

variety of processes. In the area of chemical engineering applica-

tions, one example is the flow inside distillation columns [1,2] for

which the mass transfer across an interface is strongly influenced

by surface tension effects. The role of surface tension is also

important in silicon crystal growth by the float zone technique [3]

and film coating processes [4]. RBM convection also plays an

important role in the drying process by evaporation. Thus, many

studies have been performed to understand the phenomena

involved in this process, among them those of Chen et al. [5],

Buffone et al. [6], Toussaint et al. [7], Touazi et al. [8] and Machrafi

et al. [9].

Since the work of Nield [10] published in 1964, the theoretical

limit (for an infinite layer) beyond which the thermally stratified

state of a fluid is destabilized under the effect of a vertical tem-

perature gradient is known in the case of coupled thermogravity

and thermocapillarity effects. Several authors have developed

experimental studies taking into account this coupling. For

example, Koshmeider et al. [11] have shown the influence of the

container geometry and the aspect ratio on the number of

convective cells and their form. Schatz et al. [12] gave a review of

experimental studies of instabilities in free-surface flows driven by

thermocapillarity for both large- and small-aspect-ratio geome-

tries. Pasquetti et al. [13] studied B�enardeMarangoni flows with

predominant buoyancy effects in a cylindrical vessel of a high

Prandtl number fluid. Rahal et al. [14] studied the influence of Biot,

Prandtl, and Marangoni numbers on convection in small cylindrical

containers.

To better understand the phenomena underlying these flows,

other authors used numerical simulation. We cite, for example, the

work of B�eckle et al. [15] in which 2D simulations of combined

buoyant and thermocapillary convection are compared to experi-

mental results [16]. Kuhlmann et al. [17] simulated numerically the
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thermocapillary convection alone in systems of finite size, while

M�edale et al. [18] and Kuhlmann et al. [19] simulated both ther-

mocapillary and buoyancy convection in small aspect-ratio con-

tainers. Several studies have been made in this context. For

example, Kulhmann et al. [20] and Leypoldt et al. [21] modelled

numerically the thermocapillary flows in two geometries, namely, a

rectangular cavity and a cylindrical liquid bridge. The case of un-

steady three-dimensional numerical simulation in an annular pool

has also been addressed by Li et al. [22] and Hoyas et al. [23]. RBM

convection is also very dependent on boundary conditions and

geometry.

Other studies investigated how the system is heated, andwe cite

as an example the works of Koschmieder [24] and Rapier [25], who

used a non-uniform heat flux at the cavity bottom. In contrast,

Kuhlmann et al. [19] heated the liquid pool from above by a heat

flux with a parabolic radial profile. Another way to apply a tem-

perature gradient to a liquid film is to heat it through a solid sub-

strate placed beneath it. Applying a non-uniform heating or using a

substrate with a non-uniform thermal conductivity [26] both result

in a non-uniform temperature profile at the substrate-liquid (S/L)

interface. Furthermore, this profile is intimately related to the flow

within the liquid, since they are closely dependent one another.

The RBM cellular flow patterns can be obtained for both cases of

vertical or horizontal temperature gradients. The latter case can

arise when the vertical walls of a cavity are differentially heated,

while the former case can be obtained for a liquid cavity heated

from below. In this case, thermocapillarity forces appear as soon as

the temperature at the free surface has a non-uniform distribution.

The particular case of thermocapillary convection driven by a hor-

izontal temperature gradient was studied by several authors. Zebib

et al. [27] and Ben Hadid et al. [28] presented numerical results

concerning thermocapillary flows in cavities with different aspect

ratios, while Mercier and Normand [29] and Peng et al. [30] per-

formed numerical simulations for rectangular and annular pools,

respectively. The features of two- and three-dimensional thermo-

capillary convection were investigated by Xu and Zebib [31]. A

linear stability analysis was presented by Kuhlmann and Alben-

soeder [20] for the buoyant-thermocapillary flow in an open rect-

angular cavity with various aspect ratios: a stationary 3D cellular

flow was obtained for a small aspect ratio, while, for large aspect

ratio, hydrothermal waves appeared.

Frequently, both horizontal and vertical temperature gradients

coexist, which makes RBM convection more complicated. Few

studies have considered this combination of temperature gradients.

To study the influence of the buoyancy effect on the formation of

thermocapillary convective patterns under such a temperature

gradient, a broad range of liquid layer thickness was considered by

Ueno et al. [32] and Mizev and Schwabe [33].

Another difficulty in the study of BM convection or RBM con-

vection is the consideration of possible deformation of the upper

free surface, which was addressed by Cerisier et al. [34], El-Gamma

et al. [35] and Bjøntegaard et al. [36].

In this paper, we present a numerical study of the RBM flow of a

liquid film in a cylindrical container with a free upper surface,

heated from below by a heat flux applied non-uniformly to a solid

substrate forming the bottom of this container. This non-uniform

heat flux leads to a combined action of a horizontal and vertical

temperature gradient and to the formation of original flow patterns

and convective cells.

First, we describe the physical configuration studied and the

mathematical model (equations governing the flow with adequate

boundary conditions) and assumptions used in the study. After a

thorough mesh size dependence study, we present and discuss the

obtained results for flows with a large range of parameters, such as

Biot, Rayleigh or Marangoni numbers. The effect of the conjugated

heat transfer through the conductive bottom is also discussed.

2. Physical and mathematical models

2.1. Basic assumptions and governing equations

We consider an incompressible Newtonian fluid layer of thick-

ness e contained in an open cylindrical container of aspect ratio

G ¼ R/e. The side walls are assumed to be adiabatic, and a uniform

heat flux q is imposed to the central part of the bottom of the solid

substrate (Fig. 1). Heat conduction in this substrate creates an

axisymmetric bell-shaped temperature distribution on the sub-

strate/liquid interface (S/L). Buoyancy and thermocapillary forces

give rise to convective cells whose shape depends on the geometry

(aspect ratio) and the thermal conductivities ratio K ¼ ks/kf.

The equations governing the flow are the mass, momentum and

energy conservation equations. To address the conjugate heat

transfer, the equations are solved over a computational domain

covering both fluid and solid regions. In the solid zone, we prescribe

a very high viscosity value to obtain a zero velocity field. This so-

lution procedure ensures the conservation of heat flux at the

Nomenclature

Bi Biot number, Bi ¼ he/kf
d thickness of the solid substrate, m

e depth of the liquid layer, m

g gravitational acceleration, m s�2

h heat transfer coefficient, W m�2 k�1

k thermal conductivity, W m�1 K�1

K conductivities ratio, K ¼ ks/kf
Ma Marangoni number, Ma ¼ e DT

ma
vs
vT

p pressure, Pa

Pr Prandtl number, Pr ¼ n/a

q heat flux density, W m�2

R container radius, m

Ra Rayleigh number, Ra ¼ gbDTe3=na

t time, s

T temperature, K

V velocity, m s�1

Greek symbols

a thermal diffusivity, m2 s�1

b volumetric expansion coefficient, K�1

DT temperature difference, K

G aspect ratio, G ¼ R/e

m dynamical viscosity, kg m�1 s�1

n kinematic viscosity, m2 s�1

r density, kg m�3

s surface tension, N m�1

q reduced temperature, q ¼ (T�T0)/DT

Subscripts

0 reference value

f fluid

l local value

m mean value

s solid

S/L substrate/liquid interface
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solideliquid interface. For a simpler formulation of the problem, we

consider a few approximations. We assume that the thickness of

the fluid remains constant and the free surface is kept flat. The

deformation of the free surface can be neglected if the Crispation

number Cr ¼ ma/se≪1 and the Galileo number Ga ¼ ge3/na[1 [8],

which is the case for our study because Cr ¼ 5 � 10�6 and

Ga ¼ 3.7 � 107 for a typical flow configuration of our study (for

example for a e ¼ 10 mm layer of silicon oil with the following

typical properties: m ¼ 2 � 10�2 Pa s, n ¼ 2.1 � 10�5 m2/s,

a¼ 10�7 m2/s and s ¼ 20 � 10�3 N/m). The flow of RBM convection

is due to the thermocapillary forces (an effect of the variation of

surface tensionwith temperature) and buoyancy forces (an effect of

the variation of density with temperature). It is assumed that the

physical properties of the fluid are constant except for the surface

tension (s) and the density (r), which depend on the temperature.

The fluid density variation is taken into account via the Boussinesq

approximation. The following relations are considered:

r ¼ r0ð1� bðT � T0ÞÞ (1)

s ¼ s0

�

1�
vs

vT

�

�

�

�

T¼T0

ðT � T0Þ

�

(2)

With the above assumptions, the flow and heat transfer equa-

tions are expressed in a non-dimensional form as follows:

V
/

$V
!

¼ 0 (3)

vV
!

vt
þ V
/

$
�

V
!
5V

!�

¼ �V
/

pþ RaPr q z
!

þ PrDV
!

(4)

vq

vt
þ V
/

$
�

V
!
q
�

¼ Dq (5)

The non-dimensional form of the equations results from scaling

the lengths, velocities, time and temperature by the fluid layer

thickness e, the thermal diffusion velocity a/e, the diffusion time e2/

a, and the temperature difference DT¼ qe/kf, respectively. The non-

slip boundary condition is applied to the velocity at all the solid

walls:

Vx ¼ Vy ¼ Vz ¼ 0 (6)

while the thermal boundary condition for the lateral adiabatic walls

is

vq

vn

�

�

�

�

r¼G

¼ 0 (7)

where n is the normal direction to the boundary. The thermal

boundary condition at the solideliquid interface is

K
vq

vz

�

�

�

�

z¼0�

¼
vq

vz

�

�

�

�

z¼0þ

(8)

At the free surface (z ¼ 1), the kinematic condition of mechan-

ical equilibrium and the impermeability condition must be

satisfied:

vVx

vz
þMa

vq

vx
¼ 0 (9)

vVy

vz
þMa

vq

vy
¼ 0 (10)

Vz ¼ 0 (11)

The thermal boundary condition at the free surface is a Robin

condition:

vq

vz
þ Bi q ¼ 0 (12)

where Bi ¼ he/kf is Biot number. h is the heat transfer coefficient

between the free surface and the surrounding medium kept at a

temperature T0. The thermal condition at the central part substrate

bottom is a prescribed heat flux of density q:

K
vq

vz
¼ 1 for z ¼ �d=e ¼ �1=4 and x2 þ y2 � ð0:3GÞ2

(13)

The conservation equations (3)e(5) with their boundary con-

ditions (6e13) were solved using an in-house parallel CFD code

(Tamaris) developed in our laboratory (SIAME). This code has a

three-dimensional unstructured finite-volume framework with

hybrid meshes. More details about the numerical methods used

here are given in Refs. [37e39]. Several validation studies of this

code have been conducted in different flow situations and have

been presented in previous authors' papers. Successful validations

have been obtained for forced and natural convection [38,40,41], as

well as for mixed and Marangoni convection [37].

All the computations were started from zero-velocity (rest) and

isothermal (T ¼ T0) conditions.

2.2. Mesh size dependence study

The RBM flow is a highly non-linear phenomenon. The flow pat-

terns that result for a predefined configuration are determined by a

complex interaction between heat transport by convection, temper-

ature gradients creation or destruction, surface thermocapillary

forces andvolumebuoyancy forces. Thus, thenumerical simulationof

suchflows requiresa sufficientlyfinemeshallowingagoodresolution

for the temperature gradients that are the driving force of Marangoni

flows. To define the size of a mesh that gives a good compromise

between accuracy and CPU cost, a study of the dependence of the

computational results to themesh size has beenperformed. The flow

configuration used within this study corresponds to a flow in our

studied geometry (Fig. 1) with Ma ¼ 2000, Ra ¼ 1000, Bi ¼ 100 and

K¼ 100. Fivemesheswith increasing size from5�105 to 2�106 cells

have been studied. All these meshes are refined at the boundaries,

especially near the free surface. The relative error has been calculated

by reference to the results given by the finest mesh. The compared

quantities are the total kinetic energy EC of thewhole fluid volumeUf,

computed as.

Fig. 1. Sketch of the physical system.
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EC ¼
1

2Uf

Z

Uf

�

V
!
$V
!�

dv (14)

The mean Nusselt number at the solid/liquid interface S(S/L) is

computed using the following:

Num ¼
1

SðS=LÞ

Z

SðS=LÞ

Nul ds at z ¼ 0 (15)

where Nul is the local Nusselt at this interface defined by

Nul ¼
V
/

q$ z
!

q

�

�

ðS=LÞ
at z ¼ 0 (16)

Two other local extrema quantities are also used for this mesh

size dependence study, which are the maximum velocity and the

maximum temperature at the free surface (z ¼ 1).

The relative error of these four quantities in reference to the

results of the finer mesh are displayed in Fig. 2. We observe a

substantial variation of most of these values for low size grids due

to a change in the structure of the computed flow patterns. As can

be seen in Figs. 3 and 9 convective cells has been captured by the

106 computational cells mesh, while only 8 cells has been captured

by the 5 � 105 and 7.5 � 105 meshes. Again, 8 cells have been

calculated by finer meshes (1.6� 106 and 2� 106). It is possible that

the 9 convective cells pattern obtained by the 106 mesh would be a

secondary solution of a flow situation presenting multiple solu-

tions. However, it is likely to be a numerical artefact related to a non

sufficiently refined mesh, since both of the finer meshes didn't

detect this solution and that their results are quite similar. From

these results, the crucial importance of the use of a sufficiently

refined mesh is clearly highlighted, not only for the achievement of

a good approximation of the global values but also for capturing all

the features of the flow (convective cells). According to the results

of this study, the chosen mesh for our study has been the mesh of

1.6 � 106 cells because the relative error for this mesh was found

below 5% for all the monitored (local or global) quantities. (Fig. 4)

3. Results

As for the case of a uniformly heated fluid layer, the important

flow parameters for the present case are the Ma, Ra, Bi and Pr

numbers. Additionally, in our case, the ratio of the thermal con-

ductivities K ¼ ks/kf is another relevant parameter. For this first

work, we have restricted our study to the effect of the Biot, Ray-

leigh, Marangoni and ratio of thermal conductivities non-

dimensional parameters. The effect of the Prandtl number is not

included in the present paper as well as the one of the aspect ratio

parameter G. They were fixed to Pr ¼ 100 and G ¼ 5. Unless spe-

cifically indicated, all the studied flow situations are steady. Thus,

the results have been searched using a steady solver. The conver-

gence was declared reached when the RMS of the residuals was

below 10�6 for velocity, temperature and pressure. Nevertheless,

the steady character of the flow has been verified for some

particular situations by conducting unsteady computations to

ensure that they give results identical to those of steady compu-

tation and that they do not evolve in time. These particular cases

were those that showed a low convergence rate. Other particular

cases were found to be unsteady flows, which will be indicated in

the results, even if the present study focuses on steady situations.

3.1. Effect of the Biot number

In this first section we investigate the impact of the free surface

cooling on the fluid flow and on the heat transfer at the solid sur-

face. Thus, the Bi number has been varied while the other

Fig. 2. The relative error of local (Vmax,Tmax) and global (Nu, EC) quantities vs. the mesh

size.

Fig. 3. Velocity field at the free surface of the liquid for different mesh sizes [Ma ¼ 2000, Ra ¼ 1000, Bi ¼ 100, Pr ¼ 100 et K ¼ 100].

Fig. 4. The computational mesh used in the present study composed of 1.6 � 106 cells

of hexahedral and prismatic shapes. Both the liquid and the solid substrate are

meshed.
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parameters have been kept constant (Ma ¼ 2000, Ra ¼ 1000,

Pr ¼ 100 and K ¼ 100).

Fig. 5 shows the velocity and temperature distribution at the

free surface of the liquid for different Biot numbers. For the lowest

Bi value studied (Bi ¼ 10), we obtain a large convective cell at the

center of the container surrounded by 10 peripheral cells. When the

heat exchange at the free surface is increased by increasing the Bi

number, the size and the number of the cells decrease progressively

to reach 7 cells for Bi ¼ 200, while the overall intensity of the ve-

locity becomes weaker. At approximately Bi ¼ 50, the large central

toroidal fluid recirculation breaks into three weaker convective

cells. The augmentation of the heat exchange (i.e., of the Bi) results

in a decrease of the temperature level at the free surface (Fig. 5).

However, the decrease of the velocity observed in the same figure is

Fig. 5. Velocity (top) and temperature (bottom) fields at the free surface for different Biot numbers [Ma ¼ 2000, Ra ¼ 1000, Pr ¼ 100 and K ¼ 100].

Fig. 6. (a) Kinetic energy of the fluid and average Nusselt number, (b) averaged temperatures of the fluid (Tm), the solideliquid interface ðTmS=L
Þ and of the free surface ðTmfs

Þ, for

different Biot numbers [Ma ¼ 2000, Ra ¼ 1000, Pr ¼ 100 and K ¼ 100].

Fig. 7. Local Nusselt number (Nul) for different Biot numbers at the substrate-liquid interface [Ma ¼ 2000, Ra ¼ 1000, Pr ¼ 100 et K ¼ 100].
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explained by a global decrease of the temperature tangential

(horizontal) gradients at the free surface.

These observations agree with the linear stability analysis re-

sults of Nield [10] and Pearson [42] where they showed that

increasing the heat transfer at the free surface stabilizes the flow.

Thus higher capillary forces are needed to trigger the flow which

corresponds to a higher critical Marangoni. Similar observations

were made by Touihri et al. [43] in the case of an open cylindrical

container heated uniformly from below. They showed that when

capillary and buoyancy forces act in the same direction, a higher

critical Rac number is needed to destabilize the flow when the Bi is

increased for a fixed Ma.

The overall diminution of the fluid agitation is clearly shown in

Fig. 6(a), which gives the variation of the globally averaged kinetic

energy EC as computed by Eq. (14) and that shows a steep decrease

of EC for low Bi values, followed by a stabilization for Bi > 100.

Indeed, with the Biot increase, the thermal boundary condition at

the free surface tends towards an imposed and uniform tempera-

ture condition, what suppresses gradually the Marangoni convec-

tion and weakens the heat transfer from the bottom plate as shown

in Fig. 6(a) that gives the global heat transfer at the substrate-liquid

interface quantified by the average Nusselt number (Eq. (15)) and

which shows a strong decrease with the augmentation of the Biot

number. The evolution of the Nusselt number with the Biot number

follows relatively well the evolution of the kinetic energy (on the

same figure). Again, we can explain the decrease of heat transfer at

the bottom of the pool by the decrease of the fluid motion when

higher cooling is applied at the free surface. In Fig. 6(b), the

Fig. 8. Velocity (top) and temperature (bottom) fields at the free surface for different Rayleigh numbers [Ma ¼ 0, Bi ¼ 100, Pr ¼ 100 and K ¼ 100].

Fig. 9. Velocity at the free surface for different Rayleigh numbers [Ma ¼ 2000, Bi ¼ 100, Pr ¼ 100 and K ¼ 100].
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examination of the average temperatures of the fluid Tm and of the

fluidesolid interface (the pool bottom) TmS=L
, shows an increase

with the increase of the Bi number, while the free surface tem-

perature Tmfs
decreases. The augmentation of Tm and TmS=L

is due to a

less efficient heat transport by convectionwithin the fluid layer as a

result of the weakening of the thermocapillary forces and fluid

velocity. Thus, for such a thermocapillary-driven flow with a

moderate Rayleigh number (Ra ¼ 103), enhancing the heat transfer

at the free surface worsens the heat transfer at fluidesolid inter-

face. Since a fixed heat flux is imposed at the bottom of the pool as a

thermal boundary condition, the same heat flux rate needs to be

transferred through the liquid layer when the Bi is changed. Thus,

when the heat transfer coefficient is increased at the free surface

(higher Bi), the temperature at this surface ðTmfs
Þ approaches the

surrounding temperature T0. In a purely conductive layer, such a

decrease of Tmfs
comes along by a decrease of the bottom temper-

ature TmS=L
to preserve the same heat flux rate. In the case of a

convective liquid layer (our case), we observe, contrarily to the

conductive case, an increase of TmS=L
. This is due to the above-

mentioned weakening of the convection within the liquid layer.

We can give a global picture of this behaviour by considering hc to

be a global convective heat transfer coefficient between the bottom

of the liquid and its free surface, while h being the coefficient at the

free surface. The conservation of the heat flux q writes:

q ¼ h
�

Tmfs
� T0

�

¼ hc

�

TmS=L
� Tmfs

�

thus:

TmS=L
¼ Tmfs

þ
q

hc
¼ T0 þ

q

h
þ

q

hc

From the latter expressionwe can conclude that the effect of the

decrease of hc (convection in the liquid) is stronger than the effect

of increase of h (i.e. of Bi), since TmS=L
increases.

The distribution of heat transfer at the solideliquid interface is

examined in Fig. 7 by plotting the distribution of the local Nusselt

(Eq. (16)) for different Bi numbers. In this figure, we see that the Nul
distribution shows different patterns with Bi variation. High Nul
value spots correspond to zones where the fluid is descending from

the free surface at lower temperature, while low Nul value spots

correspond to zones of ascending hot fluid. For Bi ¼ 10, we can

observe the formation of numerous high Nul spots including in the

regions near the lateral walls. For Bi ¼ 200, few of these spots are

present and lower Nul value spots are larger and cover the entire

peripheral region. For the case of Bi ¼ 50, the presence of three

convection cells at the pool center results in the highest observed

Nul value (Nul z 13), located at the center of the container. For all

other values of Bi, Nul reach its lowest value (Nul z 2) at this po-

sition (and at the cell centers).

3.2. Effect of buoyancy (Rayleigh number)

Prior to studying the coupled effects of thermocapillarity and

buoyancy, we will analyse the flow features in the absence of the

Marangoni effect. This preliminary study will allow us to better

understand the effect of thermocapillarity on the flow. In the

following sections, the value of the Biot number is fixed to a value of

100. It is a rather high value, corresponding to a conceptual specific

situation were the temperature of the surrounding medium is

almost imposed uniformly at the free surface of the liquid. Such a

situation can be approached inside a specific device containing for

example a liquid layer of e ¼ 10 mm thickness and whose con-

ductivity is equal to kf ¼ 0.1 W/m K, covered by a fine layer of he-

lium (eh ¼ 150 mm and khz 0.15W/m K). Thus, considering the sole

thermal conduction through the gas layer (neglecting radiation),

the Biot number would be Bi ¼ (e/eh)$(kh/kf) ¼ 100.

3.2.1. Absence of thermocapillarity at the free surface

In this section, theMarangoni number is set to zero (Ma¼ 0) and

Ra is varied from Ra¼ 500 to 5000. Fig. 8 shows the velocity and the

temperature of the fluid at the free surface. For the low Ra value

(500), the fluid is almost at rest while the temperature at the center

of the surface is slightly above the reference temperature (T0),

which is mainly due to thermal conduction in the fluid. In this case,

very weak but non-zero velocities are observed. On the contrary to

the classical RayleigheB�enard flow, for which the critical value of

Ra is 1707.76 [44], no such a threshold holds for our case, and this is

due to the presence in the fluid of a horizontal component of the

temperature gradient, consequence of the non-uniform heating

[45].

For Ra ¼ 1000, a weak convection cell forms at the container

center and the temperature field at the free surface suggests the

presence of a second weaker toroidal cell around the central one.

These dissipative structures have been experimentally highlighted

for the first time by Koschmieder [46]. For Ra ¼ 2000, parallel

elongated rolls are formed (stripes). When Ra is fixed to 5000, this

roll structure is destabilized and the flow is organized in fingering

patterns and becomes unsteady. The flow in this case has no plan of

symmetry, and the temperature and velocity fields showed in Fig. 8

are instantaneous ones and their patterns are similar to those

observed experimentally and discussed by Croquette et al. [47].

They identified them as crossing and competitive sets of rolls. The

multiplication of these sets of rolls attempts to release more ther-

mal energy from the liquid as Ra is increased.

3.2.2. Buoyancy and thermocapillarity coupled effects

Fig. 9 shows the flow patterns for various Ra values in the case of

significant thermocapillary forces. Thus, the Marangoni number

was fixed at a rather high value, Ma ¼ 2000 (the relative impor-

tance of this value will be discussed in Section 3.3).

The particular case of zero gravity has also been considered

(Ra ¼ 0). The thermocapillarity is clearly the effect responsible for

the formation of the cellular flow patterns because this pure Mar-

angoni flow situation presents five convective cells regularly

distributed around a central cell (no concentric rolls observed

here). The velocity field shows that this latter cell has a pentagonal

shape, and the whole pattern has 5 planes of symmetry. The su-

perposition of the buoyancy effect for Ra ¼ 100, gives rise to two

supplementary peripheral convection cells. The flow pattern now

has 7 planes of symmetry. This very low Ra value, which does not

trigger the flow in the case of Ma ¼ 0 (Fig. 8), significantly changes

the flow structure when Ma ¼ 2000. The interaction between

Marangoni and buoyancy forces is observed even when the latter

forces are weak. Thus, when the convection is triggered by ther-

mocapillarity, a weak buoyancy can play a significant role.

From Ra ¼ 100 to 1000, the number of convective cells does not

change, whereas their size increases. At Ra ¼ 2000, the central cell

is replaced by 3 cells with lower velocity level. A number of 12

convective cells are now present in the container and the flow

pattern has only one plane of symmetry. The central cells become

now of hexagonal shape and the peripheral ones are of irregular

shape due to the confinement imposed by the circular geometry of

the boundary. For Ra¼ 3000, we observe the birth of a new cell and

two incomplete ones due to the effects of the lateral boundary. For

Ra ¼ 5000, these incomplete cells merge with other neighbouring

cells and the flow shows 13 large well defined convective cells (3

central and 10 peripheral). Again, for Ra¼ 3000 and 5000, only one

plane of symmetry is present. The hexagonal shape of the cells is

7



the dominating structure when the velocities at the surface are

high (i.e. in the central part of the container).

The continuous birth and reorganization of new convective cells

is a consequence of the augmentation of the kinetic energy in the

fluid with the increase of Ra number. This augmentation is shown

in Fig. 10(a) for bothMa ¼ 0 andMa ¼ 2000. The evolution of Ec vs.

Ra is almost linear with a slightly higher slope for Ma ¼ 2000. As

expected, Ec values are higher for Ma ¼ 2000, since stronger

capillary forces are involved. Again the evolution of the Nusselt

number, given in 10(b), follows roughly the evolution of EC, since it

is a consequence of the fluid agitation, particularly in the vicinity of

the bottom plate. For stationary patterns, the continuous genera-

tion of kinetic energy results from an equilibrium between

continuous release of potential energy due to the localized heating

at the bottom plate and the cooling at the free surface and the

viscous dissipation within the fluid.

3.3. Effect of thermocapillarity (Marangoni number)

In this section, we analyse the effect of the Marangoni number

on flow and heat transfer. To vary the Ma number of the flow, we

modify the value of the quantity vs=vT jT¼T0
, while the values of the

other parameters remain unchanged (Ra¼ 1000, Bi¼ 100, Pr¼ 100

and K ¼ 100).

In Fig. 11, we show the velocity fields obtained for Ma values

ranging from 500 to 2500. The flow situation of Ma ¼ 0 can be

found in Fig. 8 (Ra ¼ 1000). For the lowest studied value Ma ¼ 500,

we can see that the Marangoni effect is responsible for the for-

mation of 6 peripheral convective cells around a central hexagonal

cell. However, the velocity of the fluid is relatively weak. From

Ma ¼ 1000 toMa ¼ 2000, there are 7 peripheral cells with growing

velocity as the Ma increases, and their sizes also increase. At

Ma ¼ 2500, the higher thermocapillary forces are responsible for

the subdivision of the central cell into 3 cells and the appearance of

3 more peripheral cells. The cells fill now completely the container.

The pattern observed is quite similar to the one observed for

Ra ¼ 5000 and Ma ¼ 2000 in Fig. 9. For this Ma value, only one

plane of symmetry is clearly identified for the pattern of the flow. In

all these flow situations, the central cell exhibits higher values of

both velocity and temperature (Fig. 11) at the fluid surface than

those exhibited by peripheral cells:x�3 for temperature andx�2

for velocity. This is due to the combined effect of the centred

heating and the constraint imposed by the lateral circular wall.

As for Ra number, the augmentation ofMa results in a significant

increase in the kinetic energy of the fluid (Fig. 12 (a)). This

Fig. 10. (a) Kinetic energy of the fluid, and (b) average Nusselt number for various Rayleigh numbers and two Ma values [Bi ¼ 100, Pr ¼ 100 and K ¼ 100].

Fig. 11. Velocity (top) and temperature (bottom) fields at the free surface for different Marangoni numbers [Ra ¼ 1000, Bi ¼ 100, Pr ¼ 100 and K ¼ 100].
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augmentation of the fluid agitation induces a diminution of the

mean temperature of the fluid and the substrate-liquid interface, as

seen in Fig. 12(b). The temperature of the free surface does not

evolve with the increase of Ma because of the high value of the Biot

number. The distribution of the temperature over this lower surface

of the pool is axisymmetric and has a bell shape for the thermal

conduction ratio studied here (K ¼ 100). Fig. 13 shows this distri-

bution along an axis of the liquidesolid interface. We can see in this

figure that when the Ma value increases, the temperature curve

translates downwards while keeping almost the same shape. The

temperature profile is slightly spread for the case Ma ¼ 2500. The

notable modifications of the flow patterns related to the change of

the Marangoni number observed in Fig. 11 do not affect the form of

the temperature profile at this interface, but only its level. However,

the downward shifting of the temperature profile does not vary

linearly with Ma: it is more important between Ma ¼ 500 and

Ma¼ 1000 when the cells appear and also betweenMa¼ 2000 and

Ma ¼ 2500 when the pattern of cells completely filled the

container, indicating a better heat transfer towards the fluid in

these cases. The general trend is that the global parietal heat

transfer increases with the strengthening of the thermocapillarity

forces and kinetic energy, as showed by Fig. 12(a).

Fig. 12. (a) Kinetic energy and Nusselt number and (b) averaged temperatures of the fluid (Tm), the solideliquid interface ðTmS=L
Þ and the free surface ðTmfs

Þ, for different Marangoni

numbers [Ra ¼ 1000, Bi ¼ 100, Pr ¼ 100 and K ¼ 100].

Fig. 13. Temperature at the substrate-liquid interface along the x-axis for different Ma

values [Ra ¼ 1000, Bi ¼ 100, Pr ¼ 100 and K ¼ 100].

Fig. 14. Velocity at the free surface for different conductivity ratios K and for Ra ¼ 1000 [Ma ¼ 2000, Bi ¼ 100 and Pr ¼ 100].
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3.4. Influence of the thermal conductivities ratio K

The presence of thermally conductive walls is known to affect

the temperature distribution at the boundaries of a studied system.

It was frequently observed that some of the discrepancies that arise

between the experimental and numerical simulation results are

due to the heat transfer by conduction along the walls during

experimentation [26,48]. Therefore, by taking into account the

conjugated heat transfer in the flow simulation, the obtained nu-

merical results are found to be in better agreement with experi-

mental observation and measures [49]. In this section, we

investigate the role played by the solid substrate at the bottom of

the container. Indeed, the difference between the thermal con-

ductivities of the fluid and the solid substrate determines the

temperature distribution at the container bottom and changes the

flow patterns. Different values of the ratio K¼ ks/kl, ranging from 10

to 104 (i.e. low to very high thermal conductivity substrate for the

same fluid), have been studied. According to the value of K, the heat

flux boundary condition applied at the center of the bottom of the

substrate will be perceived differently at the solideliquid interface

(the more K is high, the more the heat will be transferred radially

within the substrate).

In Figs. 14 and 15, we present the velocity distribution, at the

free surface for two different Rayleigh numbers, Ra ¼ 1000 and

Ra ¼ 100, respectively, and for different values of K. For the case of

Ra ¼ 1000 (Fig. 14), significant changes in the flows patterns are

observed for 10 < K < 5000, and above approximately K ¼ 5000, no

substantial differences are observed. Thus, for K ¼ 10, only a large

convective cell is observed, located at the container center. This

behaviour is due to a temperature distribution at the S/L interface

exhibiting a high centered peak, as seen in Fig. 16, while the pe-

ripheral zone is relatively cold. At a higher value (K ¼ 50, Fig. 14),

eight peripheral cells appear. The peak of the temperature distri-

bution at the fluid bottom is shorter (Fig. 16). For K ¼ 100, seven

large peripheral cells are visible, while for K ¼ 500, a new flow

configuration takes place in the container with three central

convective cells, and the flow pattern fills all the extent of the

container. This configuration changes slightly for higher values of K

(500, 1000, 5000, 104), with the formation of an additional pe-

ripheral cell between K ¼ 1000 and K ¼ 5000, because the tem-

perature distribution at the fluid bottom for these K values is almost

flat (Fig. 16). Thus, beyond K > 5000, increasing the thermal con-

ductivity of the solid substrate does not significantly change the

temperature distribution at the S/L interface, and, as a consequence,

the flow pattern remains unchanged. These types of flow patterns

obtained for high K values are similar to some of those obtained

experimentally by Rahal et al. [14] in a cylindrical container with an

aspect ratio G ¼ 6, uniformly heated from below but for different

values of flow parameters.

For a rather small Rayleigh number (Ra ¼ 100), the thermoca-

pillary force is the only force responsible for the formation of the

flow patterns. Thus, for K ¼ 10 and K ¼ 50 (Fig. 15), only a large

convective cell is observed in the container center. Beyond Kz 100,

peripheral cells appear, but, for each conductivity ratio K, the cells

organization is different. Seven peripheral cells are found around a

central one for K ¼ 100, and one more peripheral cell is found for

K ¼ 500. From K ¼ 500, the cell pattern fills the overall surface of

the container. The fact that flow patterns do not fill the container

for K < 500 is caused by the combination of a rather high Bi at the

free surface and of a centred temperature profile at bottom. New

Fig. 15. Velocity at the free surface for different conductivity ratios K and for Ra ¼ 100 [Ma ¼ 2000, Bi ¼ 100 and Pr ¼ 100].

Fig. 16. S/L interface temperature along the x-axis for different conductivity ratios K.

Top left inset: a zoom of the area around r ¼ 0 [Ma ¼ 2000, Bi ¼ 100, Pr ¼ 100 and

Ra ¼ 1000].
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flow configurations are observed for the final three conductivity

ratios (K ¼ 1000, K ¼ 5000 and K ¼ 104): the central cell is replaced

by four cells in the center for K ¼ 1000, while for K ¼ 5000, one

central cell disappears and one peripheral cell appears. For K ¼ 104,

an additional peripheral cell forms. From this study, we can

conclude that the effect of buoyancy forces on the flow patterns is

more significant for low and moderate values of K, since strong

buoyancy ascendant fluid currents form above the central hot spot

of the substrate. However, for global quantities, the effect of K is not

noticeable beyond Kz 100, which corresponds to the formation of

cellular flow pattern for both Ra values, as we can see in Fig. 17. The

volume averaged kinetic energy Ec and fluid temperature, as well as

the surface averaged Nu and S/L interface temperature, exhibit

almost unchanged values for K > 100. For K¼ 10, the kinetic energy

reaches a rather high value related to a strong convection in the

narrow zone above the hot spot that forms at the substrate center,

while the remaining fluid in almost at rest. For higher K values,

even if a large number of additional convective cells form, the ki-

netic energy of the fluid is approximately 5 times lower than for

K ¼ 10. We recall that Ma, Ra and Bi are kept unchanged. In the

previous sections of this study, when these parameters were varied,

the formation of new flow structures or convective cells always

goes along with an increase in EC. When varying K, the spread over

the substrate of the supplied heat flux to the fluid, creates multiple

convective cells of moderate velocities whose global kinetic energy

is lower than that generated by the concentrated heat flux

injection.

4. Conclusion

A series of 3D numerical simulations of thermocapillary-

buoyancy convection in an open container, heated from below by

a non-uniform heat flux, were achieved using the finite volume

method and taking into account the presence of a conductive

bottom. From the obtained results, the following conclusions can be

formulated:

� The flow structure is affected by thermocapillary effects acting

on the free surface and by the buoyancy effect. However, the

regular convective cells are mainly due to the thermocapillarity

effect. Nevertheless, even weak buoyancy noticeably affects the

flow patterns generated by thermocapillarity.

� The flow depends on the substrate to fluid conductivity ratio.

Thus, for small conductivity ratios, the temperature profile at

the container bottom forms a narrow peak and only one cell is

observed in the container center. For larger conductivity ratios,

the peripheral convective cells appear, due to a flat parietal

temperature profile.

� The heat exchange at the free surface (Bi) has a significant effect

on the flow patterns, specifically for low or moderate Biot

numbers for which the kinetic energy of the fluid is high

because of the non uniform temperature distribution at the free

surface, that causes high thermocapillary forces. Thus a high Bi

results in a weak Marangoni convection and a global augmen-

tation of the liquid temperature.

� All these effects appear as changes in the number of convective

cells and their distribution in the container. The augmentation

of the kinetic energy EC always manifests itself by an increase of

the number and extent of the convective cells, except for the

case of the augmentation of the conductivities ratio, for which

EC is lower when more convective cells are observed (for flat

temperature profiles at the bottom).
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