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Modelling of a Phase Change
Material melting process heated

from below using spectral
collocation methods

Jean Batina, Serge Blancher and Tarik Kouskou
Génie Thermique et Energie, IUT des Pays de l’Adour,

Pau, France

Purpose – Mathematical and numerical models are developed to study the melting of a Phase
Change Material (PCM) inside a 2D cavity. The bottom of the cell is heated at constant
and uniform temperature or heat flux, assuming that the rest of the cavity is completely
adiabatic. The paper used suitable numerical methods to follow the interface temporal evolution
with a good accuracy. The purpose of this paper is to show how the evolution of the latent energy
absorbed to melt the PCM depends on the temperature imposed on the lower wall of the cavity.
Design/methodology/approach – The problem is written with non-homogeneous boundary
conditions. Momentum and energy equations are numerically solved in space by a spectral
collocation method especially oriented to this situation. A Crank-Nicolson scheme permits the
resolution in time.
Findings – The results clearly show the evolution of multicellular regime during the process
of fusion and the kinetics of phase change depends on the boundary condition imposed on the
bottom cell wall. Thus the charge and discharge processes in energy storage cells can be
controlled by varying the temperature in the cell PCM. Substantial modifications of the thermal
convective heat and mass transfer are highlighted during the transient regime. This model is
particularly suitable to follow with a good accuracy the evolution of the solid/liquid interface in
the process of storage/release energy.
Research limitations/implications – The time-dependent physical properties that induce 
non-linear coupled unsteady terms in Navier-Stokes and energy equations are not taken into account in 
the present model. The present model is actually extended to these coupled situations. This problem 
requires smoother geometries. One can try to palliate this disadvantage by constructing smoother 
approximations of non-smooth geometries. The augmentation of polynomials developments orders 
increases strongly the computing time. When the external heat flux or temperature imposed at the 
PCM is much greater than the temperature of the PCM fusion, one must choose carefully some data to 
assume the algorithms convergence.
Practical implications – Among the areas where this work can be used, are: buildings where the 
PCM are used in insulation and passive cooling; thermal energy storage, the PCM stores energy 
by changing phase, solid to liquid (fusion); cooling and transport of foodstuffs or pharmaceutical 
or medical sensitive products, the PCM is used in the food industry, pharmaceutical and medical, 
to minimize temperature variations of food, drug or sensitive materials; and the textile industry, 
PCM materials in the textile industry are used in microcapsules placed inside textile fibres. The PCM
intervene to regulate heat transfer between the body and the outside.

Originality/value – The paper’s originality is reflected in the precision of its results, due to the use
of a high-accuracy numerical approximation based on collocation spectral methods, and the choice of 
Chebyshev polynomials basis in both axial and radial directions.

Keywords Phase Change Material, Charge and discharge processes, Energy storage cells, 
Convective heat transfer, Spectral collocation methods, High-accuracy numerical approximation,
Crank-Nicolson resolution in time
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1. Introduction
Currently, the protection of the environment and the energy consumption savings are
critical and inescapable areas of economic development. Smart materials, real
technological innovations, appeared on the market to solve this both ecological and
economic dual challenge: the Phase Change Materials (PCMs). Among the areas where
they are most used, we can mention:

. The building, where the PCM are used in insulation and passive cooling. Because
of global warming, energy consumption for air conditioning is increasing,
impacting highly the environment. PCMs have a definite advantage to reduce
cooling needs of buildings: placed in walls, they melt and absorb excess heat
when the outside temperature exceeds the PCM melting temperature (at day for
example) and they solidify, restoring the stored energy, when the temperature
decreases (at night for example).

. Thermal energy storage. The PCM stores energy by changing phase, solid to
liquid (melting). Then they restore heat by the phase change liquid to solid
(freezing). One can, for example, store the heat removed by a garbage incinerator
in PCM containers. The energy release is then recovered on suitable workstations.

. Cooling and transport of foodstuffs or pharmaceutical or medical sensitive
products. The PCM is used in the food industry, pharmaceutical and medical, to
minimize temperature variations of food, drug or sensitive materials such as in the
case of blood transportation. They occur mostly in the form of small plastic “bags”
containing suitable PCM, which are positioned closer to the product to be preserved.

. The textile industry. PCM materials in the textile industry are used in
microcapsules placed inside textile fibres, which absorb, store and release

Nomenclature

a thermal diffusivity (a¼ l/(rCP)) (m
2/s–1)

cp thermal capacity ( J/(kgK))

g acceleration of gravity (m/s2)

h liquid layer half thickness,

h¼ (HI�HL)/2 (m)

HI height of the solid-liquid interface (m)

HL height of the cell bottom wall (m)

HS height of the cell top wall (m)

L half-length of the PCM cell (m)

La latent heat ( J/kg)

Nu Nusselt number

Pr Prandtl number

Ra Rayleigh number

Ste Stephan number

T Chebyshev polynomial

t time (s)

V
!

¼ (u,v) velocity field

u z component of velocity (m/s)

v y component of velocity (m/s)

y vertical coordinate (m)

z horizontal coordinate (m)

Greek symbols

b coefficient of thermal expansion

(1/K)

FW cell bottom wall heat flux density

(W/m2)

y temperature (K)

l heat conductivity (W/mK)

m dynamic viscosity (Ns/m2)

v kinematic viscosity,

v¼ m/r (m2/s)

r density (kg/m3)

o vorticity function (1/s)

c stream function (m3/s)

Subscripts

M melting

I solid/liquid interface

L liquid

S solid

W bottom wall

top top wall

0 initial condition
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energy in a reactive way to warm in cold or cool when it is hot. The PCM
intervene to regulate heat transfer between the body and the outside.

In order to simulate numerically the temporal evolution of charge and discharge
energy in PCM, most of the studies are linked to:

. First, a simplified hypothesis, assuming a constant and uniform heat transfer
coefficient along the different interfaces of change phase and using quasi-steady-
state models. These studies use correlations for heat transfer coefficients during
freezing and melting.

. Second, studies that do not take into account natural convection (Cao and Faghri,
1991) assuming that heat transfer during the charge process is only due to
conduction.

. Third, studies that consider the whole phase change phenomenon, e.g. natural
convection and conduction (Cao and Faghri, 1991; Bejan, 1996; Badar and Zubair,
1995; Mithal and Yang, 1994; Charach and Conti, 1995). Most of them are based
on optimization procedures. Because of the problem complexity, the interface
that separate different phases is not determine with good accuracy.

Many experimental and numerical studies have been dedicated to convection-
dominated melting of PCM for various geometries, e.g. along a vertical wall, inside as
well as around a horizontal cylinder, etc. The situation of a PCM heated from below
was also the subject of numerical works. We can mention, for example, the studies of
Gong and Mujumdar (1998), Kousksou et al. (2010), Wintruff et al. (2001), Fteı̈ti and
Nasrallah (2004) and Jellouli et al. (2007). Experimental works, such as Dietsche and
Müller (1985) surveys have also been devoted to this case.

One could ask the question: does a practical reason exist to why one might want to
melt or to cool a PCM from below as opposed to from the side or above? Indeed, the
melting of a pure PCM in a rectangular container heated from below is used also to
control the temperature of the surface of electronic or electric components that release
instantaneous or periodic high-density heat flux, in order to moderate the need of
classical cooling devices. There has been an increasing interest for this type of passive
cooling when applied for electronic circuits as chipsets, processors of laptops or
graphics cards. These elements are continuously miniaturized and their heat release
densities are increasing, therefore, they require high performance but economic and
silent cooling systems. Often, the geometric disposition of the electronic component
surfaces requires a cooling from below. Sometimes, the heating or cooling from below is
necessary or more efficient on account of the electric or electronic environment.

It is well known that when a horizontal layer of fluid is heated from below, a cellular
form of natural convection may occur inside the liquid, similar to that observed during
classical Rayleigh-Bénard convection. As a result of the interaction between the
cellular convection and the melting process, the phase-change interface, which is
assumed to be at the equilibrium temperature, tends to get wavy. Yen and Galea (1968),
Yen (1980) and Seki et al. (1977) experimentally studied the melting of a horizontal ice
slab heated from below. Hale and Viskanta (1980) performed experiments for melting
from below and solidification from top of n-octadecane in a rectangular cavity. They
did not present flow patterns and phase change interface shapes, however, Gau et al.
(1983) presented flow visualization for melting from below of a n-octadecane slab in a
rectangular cavity. Diaz and Viscanta (1984) extended the experiments of Gau et al.
(1983) to morphology observation of the liquid-solid interface. To study the melting
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of a pure PCM in a rectangular container heated from below, Gong and Mujumdar
(1998) used the Streamline Upwind/Petrov Galerkin finite element in combination with
a fixed grid primitive variable method.

In the present paper we propose a high-accuracy model of the melting process in a
rectangular cavity heated from below, with a good approximation of the time evolution
of the liquid-solid interface. In the first stage of this work, we consider the dynamic and
thermal energy storage process of a PCM subjected to a uniform and constant heat flux
or wall temperature. In a second paper, the PCM will be submitted to a pulsed heated
flow located at the bottom of the PCM cavity.

A single cell is analysed to understand the mechanism of an entire system of cells.
The PCM is considered confined in a closed area, whose sidewalls are thermally
insulated, and whose lower wall is heated at constant and uniform temperature or heat
flux. During the charge and discharge time process, the material in the cell is in one or
two phases, solid/liquid. The interface separating the two phases is a critical unknown
of the problem. The unsteady dynamic and thermal phenomena will be presented
and discussed. In view to validate the present study, Section 9.4 is devoted to the
comparison between the present model results and some Benchmark solutions
proposed, for example, by Rubinstein (1971) (analytical survey), Wintruff et al. (2001)
(numerical validation of Dietsche and Müller, 1985 experimental work) or Gong and
Mujumdar (1998) (numerical study).

From a numerical point of view, the Navier-Stokes equations written in (o-c)
formulation and the energy equation are solved in space by spectral collocation
methods (Canuto et al., 1988; Bernardi and Maday, 1992; Gelfgat, 2004; Shen, 1994,
1995, 1997). The resolution in time is carried out by Crank-Nicolson scheme.

This work can be summarized as follows: in the first section, we give governing
equations and boundary conditions associated to the physical model. Next, we describe
the spectral numerical method to solve these equations. Then the numerical studies
focus on the thermal problem and its associated heat transfer. Finally in the last section,
numerical results obtained are analysed in the following order: study of the dynamic and
thermal fields, evolution of the interface solid-liquid, convergence of results according to
numerical parameters, validation tests. A discussion is given in conclusion.

2. Hypotheses and governing equations
We consider a two-dimensional (2D) section of a cell in Cartesian coordinates. Lateral
vertical walls are supposed to be parallel to the y-axis; in contrast, bottom and top
walls can be of any shape, defined by the shape functions HL and HS (Figure 1).

The material confined in this cell presents one or two phases: solid and/or liquid.
So, at each time t40, we have to solve the following problems:

Solid phase
In the solid domain, we solve the diffusion equation:

rSCPS

qyS

qt
þ u

qyS

qz
þ v

qyS

qy

� �

¼ lS
q
2yS

qz2
þ q

2yS

qy2

!

ð1Þ

Liquid phase
The temperature differences are assumed sufficiently low to justify the Boussinesq
approximation in the liquid phase flow of the PCM. The fluid is assumed Newtonian
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and isotropic, and we suppose that the flow is laminar and incompressible. With the
2D hypothesis, we use the vorticity-stream function formulation (o, c) for the
Navier-Stokes equations in which the incompressibility condition is automatically
satisfied. In fact, the essential advantage of this formulation compared to the primitive
variables (velocity-pressure formulation) is the reduction of the number of unknown
functions and the non-used of the pressure. On the other hand, Navier-Stokes equations
become a fourth-order Partial Differential Equations whose expressions in Cartesian
coordinates are:

qo

qt
� qc

qz

qo

qy
þ qc

qy

qo

qz
¼ n

q
2o

qy2
þ q

2o

qz2

!

� gb
qyL

qz
ð2Þ

It is important to note that we have only one unknown function, e.g.: c. The vorticity
function o is linked to c by the relation:

o ¼ � q
2c

qz2
þ q

2c

qy2

!

¼ �Dc ð3Þ

The energy equation is given by:

rLCPL

qyL

qt
þ u

qyL

qz
þ v

qyL

qy

� �

¼ lL
q
2yL

qy2
þ q

2yL

qz2

!

ð4Þ

The expressions of velocity components are:

u ¼ qc

qy
and v ¼ � qc

qz
ð5Þ

Interface solid/liquid
The temporal evolution of the interface solid-liquid height HI (x, t) is given by Guerrero
et al. (1999):

rSLa
qHI

qt
¼ aI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ qHI

qz

� �2
q ð6Þ

0 z

y

g

H SH I

H L

Solid Phase

Liquid Phase

(b)

(a)

(c)

(g)

(d)

(e)

(f)

2L

Notes: (a) Cell bottom wall; (b) interface solid/liquid; (c) cell top wall;

(d), (e), (f) and (g) vertical walls
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where aI traduces the heat transfer between the solid and liquid phases along the
interface:

aI ¼ lL
qyL

qy

� �

I

�lS
qyS

qy

� �

I

ð7Þ

3. Boundary conditions
At any time t40, all unknown functions must verify the imposed boundary conditions.
There are two types of boundary conditions: those related to the solid phase and those
associated to the liquid phase. According to Figure 1, they can be summarized as follows.

Interface solid/liquid
On the interface solid/liquid (b), the temperature is equal to the melting temperature of
the PCM: y¼ yM.

Solid phase
Thermal conditions. Vertical walls (e)-(g) are thermally insulated, then the temperature
normal derivative is equal to 0: qy

qn
¼ 0.

Liquid phase
Thermal conditions:

. As for solid phase, vertical walls (d)-(f) are thermally insulated, then we
have: qy

qn
¼ 0

. The bottom wall (a) is submitted to a constant and uniform given temperature
yW, y¼ yW or to a constant and uniform given heat flux FW, �l qy

qn
¼ FW

Dynamic conditions. For reasons of simplicity, the dynamic conditions will deal with
velocity, and one can deduce easily the corresponding boundary conditions on the
stream function c.

We impose: u¼ v¼ 0 on all solid boundaries of the liquid domain (a)-(b)-(d)-(f ).

4. Variables transformations
Each problem is solved by spectral collocation method. Consequently, each study
domain is to be transformed into square [�1, 1] � [�1, 1]. In order to obtain this
computational square domain permitting the use of 2D Chebyshev polynomials, we
carry out the space variables Landau transformation L (Canuto et al., 1988; Jellouli
et al., 2007; Batina et al., 2011). We summarize this method below.

For many 2D problems, the geometry of study is a complex domain shape. For
periodic geometries (Batina et al., 2009, 2011), the upper and lower walls are periodic
functions of the variable z. In order to deal with such geometries, we consider a general
2D-domain (D) as shown on Figure 2, with lateral edges parallel to y-axis; the two other
vertical edges are defined by functions a(z) and b(z).

Let us take any abscise zA[0, 2L], and assume that (z, y)A(D).
First, y must verify: a(z)pypb(z). Second, we define the Landau variable

transformations L:

x; rð Þ ¼ L z; yð Þ; with:
x¼ z

L
� 1

r¼ 1
h zð Þ y� k zð Þ½ �

�

ð8Þ
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where:

h zð Þ ¼ b zð Þ�a zð Þ
2

k zð Þ ¼ b zð Þþa zð Þ
2

(

ð9Þ

Then, the primary domain (D) is transformed into the square domain �1pxp1 and
�1prp1. Note that it may be easier to follow the Landau transformation if only the
phase front height was a function of z.

5. New system of governing equations
According to variables transformation (8), we have to rewrite the new system of
governing equations.

Energy equations
The energy equations become:

Lh2yþ h2u
qy

qx
þ h vL� rh0 þ k0ð Þu½ � qy

qr
¼ l

rLCP

Df y ð10Þ

where Df y represents the expression:

Df y ¼ Af x; rð Þ q
2y

qx2
þ Bf x; rð Þ q

2y

qr2
þ Cf x; rð Þ qy

qr
þ Df x; rð Þ q

2y

qxqr
ð11Þ

with:

Af x; rð Þ ¼ h2 ; Bf x; rð Þ ¼ L2 þ rh0 þ k0ð Þ2;

Cf x; rð Þ ¼ 2 rh0 2 þ k0h0
� �

� h rh0 0 þ k0 0ð Þ ; Df x; rð Þ ¼ �2 rhh0 þ hk0ð Þ
ð12Þ

Note that all derivatives like h0 or k0 are relative to the new variable x, e.g.:

h0 ¼ dh

dx
¼ L

dh

dz
and k0 ¼ dk

dx
¼ L

dk

dz
ð13Þ

0
z

y

g

2L

(z,y)

a(z)

b(z)
(D)

x

y
g

–1

1

r

1–1 0

(x,r)

Figure 2. Space variables Landau transformation L on a general 2D-domain (D)
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These equations are available for the both phases solid and liquid. Explicitly, for:
Solid phase, we have:

u ¼ v ¼ 0 and
hS ¼ HS�HI

2

kS ¼ HSþHI

2

(

ð14Þ

Liquid phase, one has:

hL ¼ HI�HL

2

kL ¼ HIþHL

2

(

ð15Þ

Navier-Stokes equations
For reasons of clarity, the subscript L will be omitted in the functions hL and kL.
With the above variables transformations, the Navier-Stokes equations become in the
liquid phase:

Lh2
q�o

qt
þh

qc

qr

q�o

qx
� qc

qx

q�o

qr

� �

� 2h0
qc

qr
�o

¼ n
_
Dg �o� gbL2h2 h2

qy

qx
� h rh0 þ k0ð Þ qy

qr

� � ð16Þ

where:

n
_ ¼ n

L
ð17Þ

Dg �o ¼ Ag

q
2 �o

qx2
þ Bg

q�o

qr2
þ Cg

q�o

qr
þ Dg

q
2 �o

qxqr

 !

þ Eg

q�o

qx
þ Fg �o ð18Þ

Ag ¼ h2; Bg ¼ L2 þ rh0 þ k0ð Þ2; Cg ¼ �h rh0 0 þ k0 0ð Þ þ 6h0 rh0 þ k0ð Þ

Dg ¼ �2 rhh0 þ hk0ð Þ; Eg ¼ �4hh0; Fg ¼ 2 3h02 � hh0 0
� �

8

<

:

ð19Þ

The new vorticity function �o is written by the mean of the stream function c
as follows:

�o ¼ L2h2o ¼ �Dfc ð20Þ

The operator Df is given by the relations (11)-(12), and the heights h and k are relative to
liquid phase (Equation (15)).

After division by Lh2, Equation (10) can take the following form:

q�o x; r; tð Þ
qt

¼ f �oð Þ ð21Þ
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with:

f �oð Þ ¼ � 1

Lh

qc

qr

q�o

qx
� qc

qx

q�o

qr

� �

� 2

Lh2
h0
qc

qr

� �

�o

� 	

þ n
_

Lh2
Dg �oþ ST ð22Þ

where ST is the source term:

ST ¼ �Lgb h2
qy

qx
� h rh0 þ k0ð Þ qy

qr

� �

ð23Þ

6. Numerical resolution of the dynamic problem
6.1.Time-integration using Crank-Nicolson scheme
We need a time-integration scheme to solve Equation (21). We chose the e-method,
reduced here to Crank-Nicolson method corresponding to e¼ 1/2. The main advantages
of this method are its unconditional stability and its second-order accuracy. It leads
to the scheme below:

�onþ1��on

Dt
¼ ef �onþ1

� �

þ 1� eð Þf �onð Þ
�on ¼ �Dfc

n; 8n

�

ð24Þ

where Dt is a given time step and nX0 is the time step number. The initial condition c0

is taken here equal to 0 on the whole domain of study.

6.2 Space-resolution using spectral collocation method
6.2.1 Trial functions and development orders. The spectral methods consist in
projecting any unknown function j(x, r, t) on trial functions as follows:

j x; r; tð Þ ¼
X

Nx

k¼0

X

Nr

l¼0

jklðtÞPl rð ÞQk xð Þ ð25Þ

where Nx and Nr are the development orders according to the axis x and r, respectively
(Batina et al., 2009). The bases functions Pl(r) and Qk(x) are generally trigonometric or
polynomial (Chebyshev, Legendre, etc.) according to boundary conditions situations.
The time dependant coefficients jkl(t) are the unknowns of the problem. For our
equations, the function j represents c or y.

Note that it is necessary to study the influence of the physical parameters such as the
Raleigh number to remain in 2D hypothesis. From a numerical point of view, we will
show the influence of the polynomials degrees particularly for the thermal problem.

6.2.2 The choice of bases functions. Because no symmetry condition is imposed at
the boundaries of our domain of study, we choose bases functions constructed from
Chebyshev polynomials (Bernardi and Maday, 1992; Canuto et al., 1988) instead of
trigonometric trial functions. Then, Pl(r) and Qk(x) are written as linear combination of
Chebyshev polynomials. Their expressions depend on the boundary conditions.
According to Gelfgat (2004) and Shen (1994, 1995, 1997), we set:

Pl rð Þ ¼ Tl rð Þ þ
X

n

i¼1

aiTlþi rð Þ and Qk xð Þ ¼ Tk xð Þ þ
X

m

i¼1

biTkþi xð Þ ð26Þ
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where n (respectivelym) is the number of boundary conditions according to the vertical
direction r (respectively the axial direction x) and Tk is the Chebyshev polynomial
of degree k.

6.2.3 The stream function spectral development. According to the general
formulation (25), the stream-function c is projected on trial functions as follows:

cðx; rÞ ¼
X

Nx

k¼0

X

Nr

l¼0

cklPl rð ÞQk xð Þ ð27Þ

The Chebyshev polynomials Pl (r) and Qk(x) are given by (26). Because of the
condition u¼ v¼ 0 on all solid boundaries and the flow-rate conservation condition,
we have:

P 0
l rð Þ ¼ Pl rð Þ ¼ 0 at r ¼ �1 and Q0

k xð Þ ¼ Qk xð Þ ¼ 0 at x ¼ �1 ð28Þ

The Neumann conditions are taken into account in the expressions of Pl(r) and Qk(x),
but the Dirichlet conditions are introduced directly in the matrix systems. So, we have
n¼m¼ 2. Finally, one can determine all coefficients al and bk in Equations (26).
We obtain:

Pl rð Þ ¼ Tl rð Þ � l2

lþ2ð Þ2 Tlþ2 rð Þ
Qk xð Þ ¼ Tk xð Þ � k2

kþ2ð Þ2 Tkþ2 xð Þ

8

<

:

ð29Þ

The vorticity function can be written as follows:

�o ¼
X

Nx

k¼0

X

Nr

l¼0

Akl x; rð Þckl ð30Þ

where:

Akl x; rð Þ ¼ afPl rð ÞQ0 0
k xð Þ þ bfP

0 0
l rð ÞQk xð Þ þ gfP

0
l rð ÞQk xð Þ þ dfP

0
l rð ÞQ0

k xð Þ

af ¼ h2; bf ¼ r2 þ r2h02; gf ¼ r 2h02 � hh0 0
� �

� L2

r
; df ¼ �2rhh0

(

ð31Þ

6.2.4 The spectral collocation method. The collocation method consists to write the
equation (24) on specific points x ¼ xi; r ¼ rj

� �

0pjpNr

0pjpNx

of the square [�1, 1] � [�1, 1],

called collocation points: (Nxþ 1) points according to the axial direction x and
(Nrþ 1) points according to the vertical direction r. We chose the collocation points
of Chebyshev-Gauss-Lobatto (Batina et al., 2009, 2011), defined by:

xi ¼ � cos ip=Nxð Þ and rj ¼ � cos jp=Nrð Þ ð32Þ

with 0pipNx and 0p jpNr
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Then, the Navier-Stokes Equation (24) is written at each collocation point (x¼ xi) and
(r¼ r j). At last, we have to solve the non-linear system:

Fij �oð Þ ¼ ��onþ1
i; j þ Dt

2
f �onþ1

i; j


 �

þ Si; j ¼ 0 ð33Þ

with Si, j the source term given by:

Si; j ¼ �on
i; j þ

Dt

2
f �on

i; j


 �

� �

ð34Þ

�os
i; j ¼

X

Nx

k¼0

X

Nr

l¼0

Akl xi; rj
� �

cs
kl ð35Þ

where s¼ n or s¼ nþ 1 is the time-step number.
At each time step, the unknowns ckl are obtained by solving the non-linear system

(33) with Newton algorithm.

7. Numerical resolution of the thermal problem
7.1 Choices of the bases functions
The choice of the temperature bases functions is made in the same way as in the
dynamic problem. The temperature y, truncated at development ordersNx according to
the axis x and Nr according to the radius r, is projected on the trial functions as follows:

y x; r; tð Þ ¼
X

Nx

k¼0

X

Nr

l¼0

ykl tð Þqk xð Þpl rð Þ ð36Þ

where pl(r) and qk(x) are built from Chebyshev polynomials as in Section 5. According
to temperature boundary conditions, we obtain at last:

qk xð Þ ¼ Tk xð Þ and pl rð Þ ¼ Tl rð Þ ð37Þ

7.2 Resolution of the thermal unsteady problem
The thermal Equation (10) is numerically integrated in time by using the second-order
Crank-Nicolson scheme in the same way as in the dynamic problem.

By projecting Equation (10) in the collocation basis (qi(x) pl(r))ij, one obtains at each
time step a system of linear equations solved by the classical Gauss method.

8. Convective heat transfer
In view to analyse the influence of the PCM melting process on the cell bottom wall
heat transfer, especially during the convective phase, we introduce the local convective
heat transfer coefficient tW as follows:

tW x; tð Þ ¼ FW

Dyref
ð38Þ
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where Dyref is a typical difference temperature reference. That one depends on the wall
boundary conditions hypotheses. The main difficulty with convective unsteady heat
transfer lies in the temperature reference choice. Because the PCM cell is heated from
below and with the presence of the liquid phase, we have chosen:

Dyref ¼ �yW � yM ð39Þ

where �yW is the space-averaged bottom wall temperature, given by the curvilinear
integral:

�yW ¼ 1

LW

Z

BottomWall

y Mð ÞdM ð40Þ

with LW the curvilinear length of the bottom wall. One can notice that Dyref is generally
time-dependent, except when the bottom wall is heated at constant temperature.

So, the instantaneous convective heat transfer at the cell bottom wall can
formally be defined by the local Nusselt number NUW(x,t) based on the half thickness
hL¼ (HI – HL) /2 of the liquid domain. Its expression is given by the relation:

NuW x; tð Þ ¼ hL x; tð ÞtW x; tð Þ
lL

ð41Þ

With the variables transform (Section 4), we have:

FW ¼ lL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ H 0
L

� �2
q

hL
� qy

qr

� �

W

þ hLH
0
L

L 1þ H 0
L

� �2

 �

qy

qx

� �

W

8

<

:

9

=

;

ð42Þ

Then, the Nusselt number can be written as follows:

NuW x; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ H 0
L

� �2
q

Dyref
� qy

qr

� �

W

þ hLH
0
L

L 1þ H 0
L

� �2

 �

qy

qx

� �

W

8

<

:

9

=

;

ð43Þ

9. Numerical results
9.1 Initial conditions and numerical parameters
The results presented below correspond to a PCM whose physical properties are
similar to water properties (determined at a mean temperature equal to 101C), initially
in the form of an ice block (Figure 3) at a uniform temperature yS0 ¼ �1�C, and whose
2D rectangular dimensions are: Length ¼ 2L ¼ 2:10�2m and Height ¼ HS ¼ 10�2m.
We assumed that the coefficient of thermal expansion b is temperature free. At time
t¼ 0, the cell lower wall is heated to a uniform temperature yW¼ 101C, the other walls
of the cell (top wall and vertical walls) are assumed to be adiabatic.

Note that this work focused on the numerical analysis of the melting process inside
a 2D cavity by using the spectral collocation method. To simplify the present study, we
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have considered that the density varies linearly with temperature. Numerical analysis
shows that all parameters, time-steps and polynomials developments orders are linked
and have to be chosen carefully to assume optimal accuracy results. Unlike normal
liquid PCMs, pure water exhibits maximum density near 41C at atmospheric pressure.
In such case, the problem becomes even more complex because the assumption that
the density varies linearly with temperature cannot be applied. Future work will focus
on that issue.

Moreover, to avoid numerical aberration at the instant t¼ 0, we suppose that:

(1) There exists initially a very few quantity of liquid, of height HL0
¼ 10�3m, at

initial uniform temperature yL0 ¼ 0�C, parallel to the cell lower wall (Figure 3).

(2) The uniform temperature or heat flux imposed to the heated bottom wall is
reached gradually, from zero to the imposed value, within a short time interval,
less or equal to ten seconds. Therefore, all results are analysed since this moment.

In order to follow the temporal evolution of the thermal field, particular control points
are chosen in the study domain as shown in Figure 3. We chose five control points
situated to the mid-height of the liquid phase and symmetrical in relation to the
central Point 3 and whose abscissas are, respectively: Point 1: x1¼L/8; Point 2:
x2¼L/2; Point 3: x3¼L.

The computations were performed with suitable orders of Chebyshev polynomials
developments and an optimal time step Dt. We present the results obtained with
Nx¼ 62, Nr¼ 18 and Dt¼ 0.2s. A discussion concerning numerical results accuracy
and convergence according to those different truncature orders and time steps will be
presented farther, at the end of this chapter.

Note that the melting process into the PCM cell is governed by three classical
dimensionless numbers: the instantaneous Rayleigh number Ra(t) based on the mean
thickness Hm(t) of the liquid layer, the Prandtl number Pr and the Stephan number Ste:

Ra tð Þ ¼ gbH 3
m tð Þ yW � yMð Þ

aLn
ð44Þ

Pr ¼ n

aL
ð45Þ
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0
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0.008

0.01
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(b)(d)

Notes: (a) Cell bottom wall: � = �w = 20°C; (b), (c) and (d) adiabatic

vertical walls 1–5, control points

Figure 3. Initial conditions in the PCM cell with a few liquid phase and a solid phase
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Ste ¼ CPL yW � yMð Þ
La

ð46Þ

with aL the liquid thermal diffusivity:

aL ¼ lL

rLCPL

ð47Þ

For our problem, one has: Pr¼ 9.40 and Ste¼ 0.23. The instantaneous Rayleigh
number is crucial to determine the critical threshold of convection apparition in the
liquid phase. We analyse below the evolution of dynamic and thermal field in the PCM
as a function of the temperature imposed on the heated cell lower wall, the temporal
variation of Nusselt number and the evolution of liquid-solid interface.

9.2 The PCM melting process
9.2.1 Notations used for the streamlines and the isotherms. About the streamlines and
the isotherms, we define on each figure the following parameters: Nc the number of
streamlines, Ny the number of isotherms, cmin and cmax the minimum value and the
maximum value of the stream function c, respectively, ymin and ymax the minimum
value and the maximum value of the temperature y, respectively. The step size from
the minimum value to the maximum value is chosen constant. For streamlines, we
indicate the direction of rotation of the first vortex located leftmost.

9.2.2 The conductive phase. At the beginning of the PCM melting process, when the
liquid phase appears, the heat transfer in the cell is governed only by conduction
phenomenon. The liquid-solid interface remains straight and parallel to the cell lower
wall. The isotherms are straight lines, as we can verify it in Figure 4 that presents the
instantaneous streamlines and isotherms. No flow is detected in the liquid region
except a very small residue, of the order of 10�16, situated close to the left and to the
right lower wall corners.

The fluid layers adjacent to the interface, colder and denser, are located above
warmer and lighter layers situated in the vicinity of the cell lower wall. This is a
potentially unstable stratification, which represents essentially the classic problem
of Rayleigh-Bénard. As long as the temperature gradient in the cell remains purely
vertical, the Boussinesq source expression (qyL)/(qz) in the Navier-Stokes Equation (2)
is equal to zero.

(aa)

Solid Domain

0 0.005 0.01 0.015 0.02
0

0.002

0.004

0.006

0.008

0.01

(a)
Y

ZZ

Solid Domain

Notes: N� = 14 , �min = −9.10−7, �max = 9.10−7; N� = 4, �min= 0°C, �max = 6.7°C

Figure 4. (a) Temporal evolution of streamlines and (aa) corresponding isotherms in conductive 
phase, at time t ¼ 20 s
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9.2.3 The convective phase. As the interface height increases, the Rayleigh number
Ra grows with the thickness of the liquid layer. Stratification becomes unstable when
Ra reaches the critical threshold of Racrit¼ 4,575 representing the higher limit of the
pure conduction regime without flow, so that any slightest mechanical or thermal
disturbance amplifies and initiates the convection phenomenon by breaking the
horizontal thermal equilibrium.

In Figure 5, we note that the presence of the flow distorts the isotherms, but the
interface remains still straight for a moment before starting to warp as a result of the
temperature non-uniformity due to the presence of convective vortex. It is interesting
to notice that to the beginning of the interface distortion, at time t¼ 330 s, there were
seven Bernard-vortexes in the liquid region whose rotation alternates from one
to another. We observe that the dynamics of these vortexes is the consequence of the
liquid fraction increasing, and thus the dynamics of the interface evolution. This
phenomenon is due to the rotation of convection vortexes, forcing the liquid to absorb
heat along the bottom wall of the cell before transferring this energy to the interface.
A qualitative comparison shows that these results are in good agreement with the
literature survey, those obtained by Guerrero et al. (1999), for example. As time
increases, the number of convective vortexes in the cavity decreases gradually.

The temporal evolution of the PCM interface solid/liquid (Figure 6) confirms
the transition from conductive to convective phase: the interface remains straight in
conductive region, before starting to warp under the convective vortexes influence,
at tE330 s.

Figure 7 shows the time evolution of the Rayleigh number. After a regular evolution,
we observe a sudden changing behaviour related to the presence of convective
vortexes. We deduce that we reach the critical Rayleigh number Racrit, and we obtain
with this Figure 7:

Racrit ¼ 4; 575 ð48Þ

So, with this critical Rayleigh number value, one can deduce the corresponding critical
mean thickness value of the fluid layer Hcrit:

Hcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aLnRacrit

gb yW � yMð Þ
3

s

� 3:46:10�3m ð49Þ

This value corresponds to the value obtained with Figure 6, and is reached at the time:

t ¼ tcrit � 330s ð50Þ

We also clearly notice an increase of Ra(t) in the convective regime, accompanied by a
decrease of vortexes number in the liquid phase. The maximum value Ramax¼ 108,990
of Ra(t) is reached at the melting process end, at the time t¼ tendE1,190 s. Past this
time, the Rayleigh number is constant.

Figure 7 shows also the Nusselt number temporal evolution at the bottom of the
cavity. In conductive regime, the Nusselt number is constant: Nu(t)¼ 0.54. This
behaviour is typical of all problems related to phase change dominated by conduction.
An abrupt transition from conductive to convective regime at t¼ 330 s is clearly visible
on this figure. As for Rayleigh number behaviour, we observe an increase of Nu(t) in
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the convective regime, with a maximum value Numax¼ 2.38 reached at the melting
process end time t¼ tendE1,190 s, followed by a constant time-evolution.

The total (reduced) thermal energy in the PCM is given by:

Etot ¼ ELiq þ ESol ð51Þ

where ELiq and ESol represent the (reduced) PCM energies in the liquid and the solid
phases, respectively, given by:

Eliq ¼
ZZ

DL

rLCpLdyLdzdy; ESol ¼
ZZ

DS

rSCpSdySdzdy ð52Þ
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Figure 6. Temporal evolution of the PCM interface solid/liquid
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where dyL and dyS represent the difference between the mean temperature at the
current instant t and the mean temperature at the initial instant t¼ 0 in the liquid and
the solid domains, respectively:

dyL ¼ ymð ÞL tð Þ � ymð ÞL 0ð Þ; dyS ¼ ymð ÞS tð Þ � ymð ÞS 0ð Þ ð53Þ

Note that a mean temperature ym(t) in any domain D is given by:

ym tð Þ ¼
RR

D
y y; z; tð Þdydz
RR

D
dydz

ð54Þ

To quantify the dynamics in the liquid domain, we define the reduced kinetic energy
in the liquid phase by the Euclidian norm of the velocity vector V

!
on the collocation

points:

Ekin ¼ V
!
















¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

Nx

i¼0

X

Nr

j¼0

u2 xi; rj
� �

þ v2 xi; rj
� �� �

v

u

u

t ð55Þ

Figure 8 shows its temporal evolution and confirms the existence of the critical time
indicating the transition from conductive to convective phase. We see in Figure 8 that
kinetic energy and mean temperature behaviours in the liquid phase are of course in
opposite evolution: when the kinetic energy increases, particularly at t¼ tcrit, the mean
temperature decreases in the fluid, and conversely.

We also clearly notice a second and sudden short gap of the both kinetic energy and
mean liquid temperature time-evolution in the convective regime, characterized by
short-lived fluctuations of high amplitudes, starting at tE1,100 s and stopping at
t¼ tendE1,190 s. Past this melting process time-end t¼ tend, kinetic energy and mean
liquid temperature keep a constant value. This second critical time t¼ tcontactE1,100 s
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Figure 8. Temporal evolution of the kinetic energy and the liquid mean temperature
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is due to the existence of the first points achieving their melting process and then
coming in contact with the insulated top surface cell.

Figure 9 shows the temporal evolution of the liquid fraction, the total energy and the
mean temperature on the whole PCM cell. The liquid fraction behaviour allows us to
verify the global evolution of the heat transfer between the two phases: solid and
liquid. The general evolution of this curve is also classical. We notice that in the purely
conductive phase, the liquid fraction evolves as ta law, with aE0.53 here. As for
Equation (74) (see also Gong and Mujumdar, 1998), the exact value of a is: a¼ 0.5. The
slight difference between the exact value and the value provided by this model is
probably due to the hypothesis of the presence of a few quantity of liquid at the initial
instant t¼ 0 in our model (Section 9.1). Past the time t¼ tcritE330 s, in the convective
phase, this evolution remains almost linear. The total energy and the PCM mean
temperature curves are similar to the liquid fraction evolution, except at time tE900 s
where these curves begin to increase.

To understand the thermal fluid behaviour in relation to the PCM melting process,
Figure 10 presents the temporal evolution of the unsteady temperature at the control
points, indicated in Figure 3. We observe that this evolution is uniform in the
conductive phase. A sudden increase or decrease happens at the critical time
t¼ tcritE330 s, depending on the position of the control point. Past this moment and
after a transient stage characterised by some oscillations closed to the critical time, the
fluid temperature temporal evolution at all points seems almost stationary, except
during the second slight and short disturbance occurred at t¼ tcontactE1,100 s due to
the first points achieving their melting process and then coming in contact with the
insulated top surface cell, as mentioned above. Although the five control points are
geometrically symmetrical in relation to the central point 3, Figure 10 shows that their
thermal and dynamic behaviours are not symmetrical.

9.2.4 The end of the melting process. The end of the melting process proceeds as
follows: after the disruptions generated by the transition from conductive phase to
convective phase and as long as the liquid domain has not yet reached its maximal
height, the number of vortexes in the liquid domain remains stable (Figure 11).
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However, gradually as the solid layers complete their melting process, the number of
vortexes decreases in time. Some adjacent vortexes merge together to form a single
vortex. This process continues until total solid mass melting. In the present case, it
remains only three vortexes at the end of this melting process. When all the solid mass
has melted (Figure 12), the dynamic and thermal fields in the liquid domain tend
progressively towards a steady state.

9.3 Study on numerical results accuracy
To ensure the accuracy of our results from the numerical point of view, we try
several orders of truncature in the Chebyshev basis developments and different time
steps (Batchi, 2005). Except express mention of the opposite, all this survey concerns
the liquid domain. First, we give some definitions relative to Chebyshev standard
spaces.

9.3.1 Chebyshev standard spaces and truncature errors definitions. For two given
polynomial functions c(x, r) and f(x, r), one defines their Chebyshev scalar product by:

c;fh i ¼ 4
p2

ZZ

D

c x; rð Þf x; rð Þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p :

1
ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p dxdr ð56Þ

where D is the square: D¼ [�1, 1] � [�1, 1].
For our discretized unsteady stream functions, we have:

c x; r; tð Þ ¼
X

Nx

k¼0

X

Nr

l¼0

ckl tð ÞPl rð ÞQk xð Þ and

f x; r; tð Þ ¼
X

Nx

i¼0

X

Nr

j¼0

fij tð ÞPj rð ÞQi xð Þ
ð57Þ

Time (s)

T
e
m

p
e
ra

tu
re

 (
°C

)

500 1,000 1,500
0

1

2

3

4

5

6

7

Point 1
Point 2
Point 3
Point 4
Point 5

Legend

Figure 10. Temporal evolution of the control points temperature

20



t = 1,000 s t = 1,030 s

t = 1,050 s t = 1,060 s

t = 1,065 s t = 1,070 s

t = 1,075 s t = 1,100 s

Notes: For t�1,065 s: N� = 12 , �min = −1.10−6, �max = 1.10−6; for t�1,070 s: N� = 30,

�min = −5.10−6, �max = 5.10−6

Figure 11.
Temporal evolution

of streamlines showing
the end of the
PCM melting

0 0.005 0.01 0.015 0.02
0

0.005

0.01

Notes: N� = 20 , �min = −4.10−6, �max = 4.10−6; N� = 10, �min= 0°C, �max = 9°C

Figure 12.
Streamlines and
corresponding

isotherms past the
total PCM melting

21



Then, their scalar product (56) becomes:

c;fh i ¼
X

Nx

k¼0

X

Nr

l¼0

X

Nx

i¼0

X

Nr

j¼0

ckl tð Þfij tð Þ Pl ;Pj

� �

Qk;Qih i

¼
X

Nx

i¼0

X

Nr

j¼0

fij tð Þ
X

Nx

k¼0

X

Nr

l¼0

ckl tð Þ Pl ;Pj

� �

Qk;Qih i
" #( ) ð58Þ

Let us write:

C
j
i
tð Þ ¼ c;PjQi

� �

¼
X

Nx

k¼0

X

Nr

l¼0

ckl tð Þ Pl ;Pj

� �

Qk;Qih i ð59Þ

Then, the Chebyshev scalar product in the space of discretized stream functions
becomes:

c;fh i ¼
X

Nx

i¼0

X

Nr

j¼0

fij tð ÞCj
i
tð Þ ð60Þ

The Chebyshev norm of the stream function c is given by:

ck k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

c;ch i
p

ð61Þ

This analyse is also available for the temperature field, by substituting the Chebyshev
polynomials P and Q by p and q, respectively.

For reasons of simplicity, our numerical errors studies will concern only the
temperature field. The same analysis applied to the stream function field lead to
identical conclusions.

The different truncature errors are linked to three parameters: the polynomial
developments truncature orders Nx and Nr and the time-step Dt. For numerical
tests, we define three sets: the truncature order Nx (respectively Nr) is chosen in a
set of increasing integer values SNx

(respectively SNr
) and the time-step Dt is chosen in

a set of decreasing real values SDt (given in seconds). Because of the difficulty
to represent the three parameters varying simultaneously, we have chosen to fix two
parameters and to let the third parameter free. So, we consider three kinds of numerical
errors:

Numerical study according to Nx parameter. DtASDt and Nr 2 SNr
being fixed, let

ENx
Nr;Dtð Þ be the time-dependent truncature error calculated between two

consecutive temperature fields, when Nx increases in SNx
. To define the expression

of ENx
Nr;Dtð Þ, we rewrite differently the expression of the temperature field y given by

Equation (33). Because the temperature Chebyshev coefficients ykl depend also on the
time-step Dt, we write:

y x; r; Dtð Þ ¼ yNrNx Dtð Þ ¼
X

Nx

k¼0

X

Nr

l¼0

ykl Dtð Þqk xð Þpl rð Þ ð62Þ
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Then, ENx
Nr;Dtð Þ is defined by:

ENx
Nr;Dtð Þ ¼

yNr

N�
x
Dtð Þ � yNr

Nx
Dtð Þ













yref








ð63Þ

where N�
x represents the previous value of Nx in the set SNx

. For example, if we choose
SNx

¼ 10; 15; 20f g, then the couple N�
x ;Nx

� �

can take the values (10, 15) and (15, 20). yref
is a reference temperature, chosen here equal to the imposed bottom cell temperature.

For a cell whose bottom wall is subjected to a uniform given heat flux, one can take
Tref equal to the time-averaged expression of the mean bottom cell temperature ym(t)
given by Equation (69).

Numerical study according to Nr parameter. In the same manner as the previous
study, DtASDt and Nx 2 SNx

being fixed, we study the behaviour of the numerical
error ENr

Nx;Dtð Þ defined by:

ENx
Nr;Dtð Þ ¼

y
N�
r

Nx
Dtð Þ � yNr

Nx
Dtð Þ













yref








ð64Þ

where N�
r represents the previous value of Nr in the set SNr

.
Numerical study according to Dt parameter. To study the accuracy of the numerical

solution according to the time-step parameter, we fix Nx 2 SNx
and Nr 2 SNr

, and we
study the behaviour of the numerical error EDt(Nx, Nr), with:

EDt Nx;Nrð Þ ¼
yNr

Nx
Dt�ð Þ � yNr

Nx
Dtð Þ













yref








ð65Þ

where Dt� represents the previous value of Dt in the set SDt.
We give below the main truncature orders and the different time-steps that we

tested:

SNx
¼ 10; 15; 20; 30; 32; 34; 36; 38; 40f g ð66Þ

SNr
¼ 10; 12; 14; 16; 18f g ð67Þ

SDt ¼ 1:6s; 0:8s; 0:4s; 0:2s; 0:1s; 0:05sf g ð68Þ

The numerical errors ENx
Nr;Dtð Þ, ENr

Nx;Dtð Þ and EDt Nx;Nrð Þ are time-dependent.
So, it is necessary to fix an interval of time [0, tcomp] for comparisons. Let us define
tfusion as the necessary time to achieve the PCM melting process. On the one hand, tcomp

must verify: tcompptfusion. On the other hand, tcomp must be chosen far from the
critical time tcrit representing the beginning of the convective phase. Our results give:
tcritE330 s and tfusionE1,194 s. In view to reduce computational time and because it is
not necessary to have tcomp¼ tfusion, we took approximately:

tcomp � 800s: So :
tcomp

tfusion
� 67% ð69Þ
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Moreover, to have a general overview of any given truncature error E, it is useful
sometimes to define its averaged expression on the interval [0, tcomp] as follows:

�E ¼ 1

tcomp

Z

tcomp

0

Edt ð70Þ

where E represents ENx
Nr;Dtð Þor ENr

Nx;Dtð Þ or EDt Nx;Nrð Þ.
We can now study the behaviour of our computed solutions when the main

numerical parameters Nx, Nr and Dt vary.
9.3.2 Numerical study according to Nx parameter. Let us fix Dt¼ 0.1 s for the time-

step and Nr¼ 18 for the truncature order in the vertical direction. Our aim is to
determine approximately one or several values of Nx assuring the best accuracy and
the best convergence of numerical results, i.e. for which ENx

or �ENx
is minimal.

In Figure 13, when Nxo30, we observe first that the truncature errors
ENx

Nr ¼ 18;Dt ¼ 0:1 sð Þ(or more shortly ENx
) depend mainly on the parameter Nx.

Second, we note that these curves are quite stable in the conductive phase, in which the
truncature errors ENx

are negligible, about 1 per cent, but oscillate highly past the
critical time tcrit. The first curve with weak fluctuations occurs at Nx¼ 30. Therefore, to
ensure the stability and the convergence of numerical results for Dt¼ 0.1 s and Nr¼ 18,
we have to increase Nx beyond 30.

The aim of Figure 14 is to explore more finely the region 30pNxp40. The
numerical results convergence is clearly highlighted in this figure: the critical time tcrit
doest not depend anymore on Nx; the different curves ENx

are almost identical when
Nx432. Therefore, it is suitable to choice Nx¼ 40. It is important to note that the
critical time tcrit representing the transition from conductive phase to convective region
is independent of the Nr parameter.
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9.3.3 Numerical study according to Nr parameter. With reference to the previous study,
our aim is to verify that, for Dt¼ 0.1 s and Nx¼ 40, a suitable order of Chebyshev
polynomials developments according to the axis r is Nr¼ 18, for which a good
accuracy of numerical results, represented by the truncature error ENr

is assumed.
But, unlike our hypothesis, we observe in Figure 15 that the truncature errors

ENr
increase with the values of Nr included between 12 and 14, so that the best choice of

Nr seems to be Nr¼ 12. This inconsistent result leads us to refine our analysis.
Parametric studies according to Nr of dynamic and thermal liquid phase behaviours
(Figures 16 and 17) show that Nr¼ 12 or Nr¼ 14 are not suitable truncature orders.

Indeed, these weak values are not sufficiently high to take into account the
second sudden increase of the thermal energy

yk k
yrefk k (Figure 16) or the kinetic energy

Ekin (Figure 17), located at t¼ 630 s. Consequently, a good numerical approximation

of dynamic and thermal fields is clearly obtained for Nr414. In fact, Figure 15
shows that optimal accuracy is obtained for Nr¼ 18. One can notice that the
transition time tcrit from conductive phase to convective region does not depend on
Nr parameter.

9.3.4 Numerical study according to time-step parameter. Finally, we have to study
the truncature errors EDt Nx ¼ 40; Nr ¼ 18ð Þ for different time steps Dt in the set SDt.
We recall that our aim is to find approximately one or several values of Dt leading to
the best numerical results accuracy, i.e. for which EDt Nx ¼ 40;Nr ¼ 18ð Þ is minimal.

As for Nx parameter study, we observe in Figure 18 first that the truncature errors
EDt depend strongly on the parameter Dt, and second, truncature errors decrease with
Dt, until Dt¼ 0.1 s. We note also the stability of EDt in the conductive phase, where its
values are negligible, about 1 per cent. We deduce from this figure that the time step
optimal value is obtained about DtE0.1 s. This result is confirmed by the study of
the time-averaged truncature errors �EDt (Figure 19). This study shows once again that
the transition time tcrit from conductive phase to convective region is not affected by the
time-step parameter.
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In conclusion, to assume optimal numerical accuracy, we have selected for this problem
the following numerical parameters: Nx¼ 40, Nr¼ 18 and Dt¼ 0.1 s.

9.4 Validation tests
In view to test and validate the numerical accuracy of the present modelling of a
PCM melting process heated from below using spectral collocation methods, the
numerical procedure is submitted to the three tests described in the following analysis.
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These problems have been chosen because they are closed to the present study. The
case of particular PCM materials like some liquid metals such as the pure gallium (see
e.g. Fteı̈ti and Nasrallah, 2004) will be the subject of a second survey because their
temporal physical behaviours require some particular precautions in the numerical
simulation procedures.
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9.4.1 Test 1: the classical Stefan problem. The numerical accuracy of the temporal
evolution of the interface solid/liquid algorithm used in this paper is tested on to the
classical Stefan problem (Rubinstein, 1971), proposed by Wintruff et al. (2001). It
consists to study the temporal evolution of the solid/liquid PCM boundary in a 1D half-
space cell zX0. Initially, the cell is filled with a liquid at a constant temperature
y24yM. At time t¼ 0 the boundary z¼ 0 is cooled to a temperature y1oyM. The solid
phase domain increases with time. According to general hypothesis and physical PCM
properties discussed in Wintruff et al. (2001) work, this problem is governed by the
unsteady 1D heat conduction equations in the solid and liquid phases, respectively:

rSCPS

qyS

qt
¼ lS

q
2yS

qz2
ð71Þ

rLCPL

qyL

qt
¼ lL

q
2yL

qz2
ð72Þ

In both solid and liquid phases, all physical parameters r, l and CP are assumed to be
constant in space and time. The interface solid/liquid (subscript I) is at a constant
temperature yM and its position zI is governed by the equation:

rSLa
qzI

qt
¼ lL

qyL

qz

� �

I

�lS
qyS

qz

� �

I

ð73Þ

Analytical solution of this problem is given by:

zI tð Þ ¼ 2x
ffiffiffiffiffiffiffi

aSt
p

ð74Þ

∆t

ti
m

e
-a

v
e

ra
g

e
d

 t
e

m
p

e
ra

tu
re

 r
e

la
ti
v
e

 e
rr

o
r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.02

0.03

0.04

0.05

Figure 19.
Time-averaged
relative error
�EDt Nx ¼ 40; Nr ¼ 18ð Þ

28



where x is the solution of the non-linear equation:

e�x2

erf xð Þ �
lS

ffiffiffiffiffi

aS
p

lL
ffiffiffiffiffi

aL
p y2 � yMð Þe�aSx

2=aL

yM � y1ð Þerfc x
ffiffiffiffiffiffiffiffiffiffiffiffi

aS=aL
p� � ¼ xLa

ffiffiffi

p
p

CPS yM � y1ð Þ ð75Þ

The unsteady temperature field is given by:

y z; tð Þ ¼
y1 þ yM�y1

erf xð Þ erf
z

2
ffiffiffiffiffi

aS t
p


 �

if zozI

yM if z ¼ zI

y2 � y2�yM

erf x
ffiffiffiffiffiffiffiffiffi

aS=aL
p� � erfc z

2
ffiffiffiffiffi

aLt
p


 �

if z4zI

8

>

>

<

>

>

:

ð76Þ

We solved numerically this problem is in a 2D cell with an aspect ratio A¼ 0.1,
using spectral-collocation and Crank-Nicolson methods described in Sections 6
and 7, with the same physical PCM parameters as in Wintruff, summarized in
Table I.

Results and discussion. Let us consider a fixed point zP located at the fixed position
zP¼ 0.1 � Lz, where Lz is the total length of the cell. Figure 20(a) and (b) show
comparisons between analytical and numerical solutions of the temporal evolution of
the solid/liquid interface zI and the temperature of the point zP respectively.

In Figure 21, we can follow the numerical versus analytical solutions of the
temperature profiles temporal evolutions along the cell axis at fixed times.

Aspect ratio A¼ 0.1
Melting temperature yM¼ 01C
Cooling temperature y1¼�101C
Initial temperature y¼ y2¼ 21C
Mass density rS¼ rL¼ 1 kg/m3

Heat conductivity lS¼ lL¼ 2W/mK
Specific heat CPS

¼ CPL
¼ 2:5� 106J /kgK

Latent heat La¼ 1 � 108 J/kg
Stefan number Ste¼ 0.25

Table I.
Physical properties

and non-dimensional
parameters used in
the simulation of a
two-phase Stefan

problem

Present model

Present model

Time (h)

T
e
m

p
e
ra

tu
re

 (
°C

)

0 10 20 30 40

–2

–1

0

1

2

Analytic

(b)

Time (h)

z
/ 
L

z

0 10 20 30 40

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Analytic

(a)

Figure 20.
Comparison between

analytical and numerical
solutions of the temporal
evolution of the (a) solid/

liquid interface zI;
(b) fixed point
temperature

zP¼ 0.1 � Lz

29



All these results show an excellent agreement between analytical and numerical
solutions. The maximum error is about 0.7 per cent for the front position and 0.5 per
cent for the temperature profiles.

9.4.2 Test 2: the paraffin melting in Gong study. In the second problem used to test
the accuracy of our numerical procedures, we compare numerical results obtained by
Gong and Mujumdar numerical work (Gong and Mujumdar, 1998) and the present
model. It concerns the melting of a PCM (paraffin) in a rectangular cell heated from
below. The top and the two vertical walls are assumed to be adiabatic. The used
physical parameters are in Table II.

Results and discussion. In the conductive zone (to200 s), our results are similar to
those obtained by Gong. However, in the convective regime (Figure 22), the present
model provides the same results as Gong model, but at time sections slightly shifted.
For example, streamlines and isotherms obtained by Gong for t¼ 342.5 s are identical
to those obtained by the present model at time tE420 s (Figure 22(c) and (C) for
streamlines, Figure 22(f ) and (F) for isotherms). The temporal evolution of the
dimensionless heat flux distribution along the heated wall obtained by the two models
is almost identical, as shown in Figure 23.

9.4.3 Test 3: an experimental Benchmark problem. To achieve the present model
validation, we consider the natural PCM melting, heated from below, studied
experimentally by Dietsche and Müller (1985) and numerically byWintruff et al. (2001).
The experimental PCM cell is a 2D rectangular box with an aspect ratio larger than
1:10. Due to this parameter and other physical data, as mentioned by Winturff, “a
numerical simulation that exactly reproduces the history of the transient experiments
was not possible”. So, numerical study of this problem is only a first approach of the
physical situation. However, we can carry out some significant conclusions dealing
with experiments results. The used PCM is the cyclohexane (Pr¼ 18) in a cell whose
bottom wall is heated at constant temperature y ¼ yW ¼ 8:5�C while the top wall
is cooled at a constant temperature y ¼ ytop ¼ 5:46�C. The two vertical walls are
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Figure 21.
Comparisons between
analytical and numerical
temperature profiles at
fixed times

Aspect ratio A¼ 1
Raleigh number Ra¼ 2.844 � 106

Prandtl number Pr¼ 46.1
Stefan number Ste¼ 0.138
Bottom temperature yW¼ 29.961C
Melting temperature yM¼ 171C
Initial temperature y¼ 16.71C
Ratio of solid/liquid specific heat CPS

/CPL ¼ 0:964
Ratio of solid/liquid conductivity lS/lL¼ 2.419

Table II.
Physical properties
and non-dimensional
parameters used in the
simulation of the paraffin
melting in Gong study
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t = 228.325 s(a) t = 274 s(b) t = 420 s(c)

t = 228.325 s(d) t = 274 s(e) t = 420 s(f)

(B)

(E)

(A) (C)

(D) (F)

t = 228.325 s t = 274 s t = 342.5 s

t = 228.325 s t = 274 s t = 342.5 s

Notes: Small letters: present model; capital letters: Gong model. Streamlines: N� = 14 ,

�min = −4.10−7, �max = 4.10−7; Isotherms: N� = 12, �min= 19°C, �max = 29°C

Figure 22.
Streamlines ((a), (b), (c),

(A), (B), (C)) and
corresponding isotherms

at different time steps
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assumed to be adiabatic. The cell aspect ratio varies from 1:4 to 1:8. The aim of the
experimental work is to characterize the flow structure in steady state regime. The
used physical parameters are summarized in Table III.

Note that Bi is the Biot number, defined by:

Bi ¼ lS

lL

yM � ytop

yW � yM
ð77Þ

Results and discussion. The obtained results are qualitatively in agreement with the
general expected results: multicellular flow in the convective region, modal flow
structure in the neigh borrows of vertical walls, steady state flow obtained before
the total PCM melting, etc. According to the liquid fraction temporal evolution
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Figure 23.
Local dimensionless
heat flux distribution
along the heated surface
at different time steps

Aspect ratio A¼ 1:4 and A¼ 1:8
Raleigh number Ra¼ 10,700
Prandtl number Pr¼ 18
Biot number Bi¼ 1.386
Top temperature ytop¼ 5.461C
Bottom temperature yW¼ 8.51C
Melting temperature yM¼ 6.851C
Initial temperature y¼ 6.71C
Ratio of solid/liquid specific heat CPS

/CPL
¼ 0:96

Ratio of solid/liquid conductivity lS/lL¼ 1.02

Table III.
Physical properties
and non-dimensional
parameters used in the
simulation of an
experimental Benchmark
problem

32



(Figure 25(d)), the steady state regime seems to be reached. But the local bimodal flow
structure is not detected by the present model. Indeed, Figures 24 and 25 show that the
bimodal flow structure phenomenon depends on the PCM cell aspect ratio and appears
far from the vertical walls because of the presence of boundary conditions. For this
reason, to simulate correctly this physical flow structure, the numerical accuracy of
the used scheme must be excellent in the cell central region. Unfortunately, the
Gauss-Lobatto spectral method is not adapted to this situation, except if we increase
greatly the polynomial Chebyshev degrees in the axis direction, and consequently the
CPU time calculations. Moreover, according to Wintruff discussion, the numerical
solution in the steady state regime depends on:

. the initial solution used;

. the method used to increase the Raleigh number;

. the aspect ratio of the PCM domain; etc.

Wintruff conclusion is: “A large variety of patterns that seem to be stationary and
stable during the time scale resolved by the numerical simulation can occur”. The
present work agrees this analysis.

In a final conclusion of all these comparisons, our numerical model is validated by
these Benchmark exercises and its accuracy is in good agreement with the numerical
methods used by the authors like Gong and Mujumdar (1998) or Wintruff et al. (2001).

10. Conclusions
In this paper, numerical studies have been carried out on a modelling of melting
process in a cell containing a PCM. Thus, the study emphasizes on the heat and mass
transfer modifications. During the melting time process, the material in the PCM cell is
in one or two phases, solid/liquid. The interface separating the two phases is a critical
unknown of the problem. The physical model and the numerical method chosen to
study the both conductive and convective liquid phase of the PCM on the one hand and
the time-evolution of its liquid-solid interface on the other hand, have given entirely
satisfactory, in accordance with the almost well-known literature surveys. The results
have clearly shown the transition from a multicellular regime with several vortexes
into a multicellular regime with a few vortexes number during the melting process.
The critical Rayleigh number based on the mean thickness of the liquid layer and
characterizing the vortexes apparition is established at Racrit ¼ 4; 575. The numerical

Present model

Wintruff model

Notes: N� = 15 , �min = −4.10−7, �max = 4.10−7

Figure 24.
Comparison between

the present model
and Wintruff model:
streamlines for the

aspect ratio 1:8 in the
convective zone
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solutions was performed using spectral collocation methods whose main features were
recalled. The study on numerical results accuracy shows that:

. All parameters, time-steps and polynomials developments orders are linked and
must be chosen carefully to assume optimal accuracy results.

. The critical time tcrit representing the transition from conductive phase to
convective region is independent of time-steps and polynomials developments
orders parameters. This result is of great importance and confirms the high
precision and the good stability of our numerical methods.

Compared to models based on classical methods such as finite differences, finite volumes,
finite elements, etc., the present numerical method leads to the following remarks:

. The accuracy of the present model is high.

. The computational code is easier to build compared to the finite elements codes,
for example.
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. If we consider the CPU time, the present model needs few minutes to compute
the numerical equations. This result traduces the efficiency of our model, easier
and more adapted to solve this particular problem.

Nevertheless, compared to some industrial codes, our model has some disadvantages,
such as:

. The time-dependent physical properties that induce non-linear coupled unsteady
terms in Navier-Stokes and energy equations are not taken into account in the
present model. In view to include this feature, the present model is actually
extended to these coupled situations.

. This problem requires smoother geometries. One can try to palliate this
disadvantage by constructing smoother approximations of non-smooth
geometries.

. The augmentation of polynomials developments orders increases strongly the
computing time.

. When the external heat flux or temperature imposed at the PCM is very greater
than the temperature of the PCM melting, we must choose carefully some data to
assume the algorithms convergence, for example some convergence conditions
impose small time steps, and the CPU time on classical computers can make the
present code prohibitive.

In a final analysis, this numerical method based on a suitable spectral method is of a
good accuracy. One of its originality is the choice of Chebyshev polynomials basis in
both axial and radial directions, and the good approximation of the interface solid/
liquid. The automatic construction of these polynomials basis is of a great interest.
These particular mathematical and numerical tools have permitted the resolution of
this non-obvious problem.

In a second paper, we will study the effect of some boundary conditions, such as
temperature or heat flux modulations, on the development of unsteady vortexes and its
consequences on the charge and discharge processes in energy storage cells.
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