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We present the first linear stability analysis of a Poiseuille–Bénard–Marangoni flow, which refers to a horizontal infinite liquid film flowing in one direction
with uniform heating from below. This study concerns the two limiting cases of pure buoyancy effect (Ma = 0) and pure thermocapillary effect (Ra = 0). The 
stability thresholds of the flow and their variation with the control parameters (Biot, Reynolds and Prandtl numbers) are given and compared with those for a
Poiseuille–Rayleigh–Bénard flow. The spatial structures of the flow are presented, and it is shown that the centers of the rolls are shifted upwards compared to 
the PRB case and that there is a loss of symmetry with respect to the vertical axis for the transverse rolls. These effects are directly linked to thermocapillary 
convection.

1. Introduction

The development of longitudinal rolls has long been observed in dif-

ferent fluid flow configurations. The formation of cloud streets in plan-

etary boundary layers [1] and the Görtler vortices that appear along

concave boundary layers [2] are samplemanifestations of these longitu-

dinal rolls. Another flow that leads to the formation of such patterns has

received extensive attention in the literature: the Poiseuille–Rayleigh–

Bénard (PRB) flow. This system results from the combination of the

buoyancy instability of a confined horizontal fluid layer heated from

belowand ameanflow [3]. The introduction of ameanflow to the buoy-

ancy thermocapillary instability (i.e. the Rayleigh–Bénard–Marangoni

flow [4,5]) leads to a novel system called the Poiseuille–Bénard–

Marangoni (PBM) flow, which is the subject of the present study. This

system is not only of a great interest for industrial applications such as

the cooling by liquid films; but it may also serve as a framework for

the study of the formation of such flow instabilities. Various linear and

weakly nonlinear stability analyses of PRB flow have been conducted

in channels of both infinite and finite transversal extensions [6,7]. The

onset of a secondary flow, in the form of longitudinal rolls, occurs at a

critical Rayleigh number of approximately Rac = 1708 [8]. The critical

Rayleigh number Rac and the critical wave number ky in the spanwise

direction are shown to be independent of the Reynolds number Re.

The existence of unsteady transverse thermoconvective rolls with axes

perpendicular to the main flow has been demonstrated by Luijkx et al.

[9]. For smaller Reynolds numbers, the critical Rayleigh number corre-

sponding to the onset of transverse rolls has been found to be a function

of both the channel aspect ratio and the Prandtl number [10,6]. When a

free liquid surface is present, the surface tension variation resulting

from the temperature gradient along the surface may induce motion

within the fluid, called thermocapillary flow. The investigation of the

thermocapillary effect has been mostly considered in thin liquid layers

flowing down an inclined, uniformly [11] or non-uniformly [12] heated

plate. In our previous numerical simulation study [13], we showed that

the introduction of the thermocapillary effect on the mixed convection

changes the rotation direction of the rolls near the side walls of the

channel and promotes heat transfer.

Most of the studied flow situations involving thermocapillary forces

are those where no forced convection (main stream) is present. These

flows, referred to as Bénard–Marangoni flows, have been extensively

studied in the literature [14–17]. Pearson (1958) is commonly recog-

nized to be the first researcher to propose a linear stability analysis of

the thermocapillary flowwithin a horizontal fluid layer with a free sur-

face considered as non-deformable [18]. Pearson modeled the presence

of the upper gas layer through an adequate boundary condition that

takes also into account the heat transfer. Using this model, Pearson

established the critical condition (critical Marangoni number) beyond

which the liquid layer becomes unstable. Scriven and Sternling [19] ex-

tended this work to the case of a deformable free surface and demon-

strated that, in this particular case, the liquid layer is always unstable

and that there is no critical Marangoni number. Later, the conjugated
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role of buoyancy forces has been investigated by Laure and Roux [20]

for low Prandtl number (Pr) liquids, while Parmentier et al. [21]

studied liquids with Pr up to 10. Burguete et al. [22] analyzed the

destabilization of the thermocapillary–buoyancy flows toward

different patterns, depending on the temperature difference ∆T and

on the liquid pool depth d. For example, hydrothermal waves were

observed for small values of d, while for larger values, stationary

longitudinal rolls were observed. The transition of the buoyant–

thermocapillary instabilities from oscillatory to stationary modes

has been showed by Mercier and Normand [23]. This transition oc-

curs when the Bond number (the ratio between the Rayleigh and

the Marangoni numbers) is increased.

Concerning the convective and absolute instability studies, Müller

et al. [24,25] have first determined the transition curve between the

convective and absolute instability zones for the transverse rolls by

using a weakly nonlinear theory based on a Ginzburg–Landau equation.

Ouazzani et al. [10,26], experimentally, and Nicolas et al. [27], numeri-

cally, have shown that the transition between the basic flow and

the transverse rolls exactly corresponds to the absolute/convective in-

stability boundary curve, provided that the flow is not continuously

perturbed at the inlet. Furthermore, for an infinite extent system and,

by evaluating the long-time behavior of the Green function in the hori-

zontal plane, Carrière and Monkewitz [28] theoretically revealed that

the mode reaching zero group velocity at the convective/absolute tran-

sition always corresponds to transverse rolls, while the system remains

convectively unstable with respect to pure longitudinal rolls for all non-

zero Reynolds numbers.

In this paper, we present the first linear stability analysis of a hori-

zontal infinite liquid film flowing in one direction with uniform heating

from below.We limit our study in this paper to the two limiting cases of

Ma = 0 (pure buoyancy effect) and Ra = 0 (pure thermocapillary

effect). An eigenvalue problem is obtained through this analysis and is

solved numerically using the Chebyshev collocation spectral method.

We provide results for the critical dimensionless parameters of the

thermoconvective instabilities. Both longitudinal and transverse rolls

are studied, and their spatial structures are given. A comparison with

the PRB flow is given to illustrate the influence of the free upper surface

on both the critical parameters and the development of spatial

structures.

2. Physical model

Our study system consists of an infinite horizontal liquid film of

height H flowing in one direction (see Fig. 1). The bottom wall is kept

at a constant and uniform temperature Th that is higher than the initial

temperature of the liquid T0. The temperature of the gas over the liquid

layer is also fixed at T0. Assuming an incompressible Newtonian fluid

and considering the Boussinesq approximation, the three-dimensional

equations governing the conservation of mass, momentum and energy

are written as follows:

∇
!
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The dimensionless parameters that appear in these equations are: the

Reynolds number Re ¼ UmH
ν , where Um is the mean flow velocity and v is

the kinematic viscosity; the Rayleigh number Ra ¼ gβ Th−T0ð ÞH3

να , where g is

the acceleration due to gravity, β is the fluid thermal expansion coeffi-

cient and Th − T0 is the temperature difference between the heated

plate and the surrounding air; and the Prandtl number Pr ¼ ν
α, where α

is the fluid thermal diffusivity. In these equations, the half channel height

H/2, the mean flow velocity Um, the dynamic pressure ρUm
2 and the ratio

H/2Um are used as reference quantities for length, velocity, pressure and

time, respectively. The dimensionless temperature θ is defined as θ =

(T − T0)/(Th − T0). At the bottom of the channel, the fluid velocity V
!

Vx;Vy;Vz

� �

satisfies the no-slip condition, and the bottom wall is as-

sumed to be isothermal (θ = 1). By assuming a planar surface, a shear

stress boundary condition is imposed on the free surface, as derived

from the balance between the surface tension forces and the viscous

stresses in the fluid (∂Vx

∂Z
¼ −Ma

Pe
∂θ
∂X

;

∂Vy

∂Z
¼ −Ma

Pe
∂θ
∂Y
and Vz=0)whereMa ¼

∂σ
∂T

ΔTH
μα and Pe ¼ UmH

α are the Marangoni and Péclet numbers, respectively.

The surface tension coefficient is assumed to be a linear function of tem-

perature T: σ ¼ σ0 þ
∂σ
∂T

T−T0ð Þ. On the free surface, we use the convec-

tive thermal condition ∂θ
∂Z

¼ − Bi
2 θ . Bi is the Biot number, defined as

Bi ¼ hH
λ , where h is the heat transfer coefficient and λ is the thermal

conductivity of the liquid. To perform a linear stability analysis of the

problem, we split V
!
, P and θ into the basic state (V

!
, P, θ) and the distur-

bance (V 0
!
, P′, θ′). In the absence of lateral boundaries, the nondimensional

basic conductive steady state can be obtained and is described by a linear

temperature profile and a plane half-Poiseuille velocity profile:

θ Zð Þ ¼
2þ Bi

2 Biþ 1ð Þ
−

Bi

2 Biþ 1ð Þ
Z ð4Þ

Vx Zð Þ ¼ −
3

8
Z
2
−2Z−3

� �

: ð5Þ

Fig. 1. The study configuration and corresponding boundary conditions.
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We assume the three-dimensional infinitesimal perturbations to be

in the form of normal modes:

V
0
x;V

0
y;V

0
z; P

0
; θ

0
� �

¼ V̂x; V̂y; V̂z; P̂; θ̂
� �

e
i kxXþkyY−σtð Þ ð6Þ

where kx and ky are the wave numbers of the disturbance in the x- and

y-directions and σ is the complex pulsation. A linear stability analysis of

Eqs. (1), (2) and (3) leads to the following two ODEs for the amplitude

of the normalmodes of the vertical velocity component disturbance, V̂z,

and the temperature disturbance, θ̂:

2
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D
2
−k

2
� �2
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� �

D
2
−k

2
� �

−kxD
2
V

h i
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Ra

2PrRe2
k
2
θ̂ ð7Þ

−iσθ̂þ ikxV θ̂þ V̂zDθ ¼
2

PrRe
D
2
−k

2
� �

θ̂ ð8Þ

with the following boundary conditions:

V̂z ¼ 0; DV̂z ¼ 0; θ̂ ¼ 0 at Z ¼ −1 ð9Þ

V̂z ¼ 0; D
2
V̂z þ k

2 Ma

Pe
θ̂ ¼ 0; Dθ̂þ

Bi

2
θ̂ ¼ 0 at Z ¼ 1 ð10Þ

where k2 = kx
2 + ky

2 and D = ∂/∂Z. Eq. (7) is a linear fourth-order ODE

that reduces to the classical Orr–Sommerfeld equation when Ra = 0

[29], and Eq. (8) is a linear second-order ODE for the energy perturbation.

These two equations alongwith the boundary conditions Eqs. (9–10) de-

scribe an eigenvalue problem in which σ is the eigenvalue. The above

framework allows for a numerical calculation of the dispersion relation:

D kx; ky;σ ;Ra;Ma;Bi;Re; Pr
� �

¼ 0: ð11Þ

This dispersion relation is obtained numerically by discretizing the

eigenvalue problem using the Chebyshev spectral collocation method

[30,31]. To determine the critical thresholds of the problem, the eigen-

values of the system Eqs. (7–10) are placed in a decreasing order of

the imaginary part of σ. When Imag(σ) becomes positive, the basic

state is unstable.

3. Validation of the numerical method

The calculation code is implemented in MATLAB. It has been thor-

oughly tested against analytical and other numerical results. The

present developments being original, there is no previous similar work

in the literature to make comparisons. Thus we proceeded in two steps.

First we validated the implementation of the Eqs. (7) and (8) and in a

second step we validated the boundary conditions Eqs. (9–10). The first
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validation concerns the stability of the Poiseuille–Rayleigh–Bénard flow

in infinite lateral extension ducts heated uniformly from below. In this

case, the modeled configuration has the same governing equations

(Eqs. (7) and (8)) but with a rigid boundary condition in place of the

free flat surface [32]. The stability criteria for the onset of longitudinal

rolls are obtained and compared with those published previously in the

literature [32,3]. Our results agree well with the literature and show

that the basic flow becomes unstable towards the longitudinal rolls at

the critical Rayleigh number Rac= 1707.8 and for a critical wave number

ky= 1.558 (ky being scaledhere byH/2). These values are independent of

the Reynolds number. The second validation test case concerns the

Marangoni convection within an infinite fluid layer heated from below

and with a convective heat exchange at the free surface. In this case we

kept our boundary conditions (Eqs. (9) and (10)) but with different

governing equations (absence of forced and natural (buoyancy) convec-

tion) [33]. We represent in Fig. 2 the neutral stability curve for the

thermoconvective instability as a function of the wavenumber k for

Bi = 2. Our results are in good agreement with those obtained analyti-

cally by Pearson [18] and Colinet et al. [33].

4. Results and discussion

In this flow situation, two mechanisms are responsible for the onset

of thermoconvective patterns: buoyancy and thermocapillary convec-

tion. In this letter, we focus on the thermal convective instabilities in

the form of longitudinal rolls (kx = 0,ky ≠ 0, Real(σ) = 0) and trans-

verse rolls (kx ≠ 0, ky = 0, Real(σ) ≠ 0). Figs. 3 and 4 show the evolu-

tion of the critical parameters (Rac and Mac respectively) for the

development of longitudinal and transverse rolls according to the Biot

number in the limiting cases of pure buoyant convection and pure

thermocapillary convection. In both cases, the flow is always stable at

Bi=0 due to the constant basic state temperature θ Zð Þ ¼ 1, which cor-

responds to the case of a free surface acting as an insulating surface. In

the case of pure buoyant convection (Fig. 3), as the Biot number in-

creases, the critical Rayleigh number initially decreases steeply and

then increases slowly towards an asymptotic value (Rac=1097 for lon-

gitudinal rolls and Rac =1135 for transverse rolls). These two values of

Rac enclose the classical value founded for a static fluid layerwith a zero

stress free surface and an infinite Bi number (see for example Kundu

and Cohen, 2002 [34]). This behavior can be explained by the thermal

boundary condition at the free surface, which affects the temperature

perturbations in the bulk flow. Indeed, for small Bi values, these pertur-

bations are very sensitive to the heat transfer at the free surface. For

large Bi values, the free surface can be regarded as an imposed constant

temperature that causes the critical Rayleigh number to approach this

asymptotic value. We observe that the longitudinal rolls induced by

the buoyancy effect appear first because the critical Rayleigh number

for the longitudinal rolls is always smaller than that for the transverse

rolls. This result has also been found for PRB flow in channels of infinite

lateral extension [3]. In the case of pure thermocapillary convection

(Fig. 4), the critical Marangoni number decreases steeply until the Biot

number reaches a value of approximately Bi=1.5, after which the crit-

ical Marangoni number then increases linearly with Bi. This behavior

occurs because for low Bi values (not Bi=0), the free surface tempera-

ture is not homogeneous, which favors horizontal temperature gradi-

ents and this induces the thermocapillary instabilities. However, for

large Bi values, the temperature tends to be homogenized at the free

surface which reduces the horizontal temperature gradients thus the

thermocapillary instabilities. When the instabilities are induced by

pure thermocapillary effects, the critical Marangoni number is approx-

imately equal for both types of instabilities for small Reynolds numbers,

while the longitudinal rolls appear first for large Reynolds numbers.

Fig. 5 shows the effect of the Biot number on the critical wave

number ky
c of the longitudinal rolls in the case of pure buoyancy effect

and in the case of pure thermocapillary effect. We observe that ky
c

Table 1

Comparison of the critical Rayleigh number Rac and the critical wave number ky
c for the

onset of longitudinal rolls for free-surfaceflowwith those obtained fromnumerical results

for a PRB flow.

Free-surface flow (Bi = 100 and Ma = 0) PRB flow

Rac 1097.0 1707.8

ky
c 1.34 1.56
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Fig. 6. Evolution of the critical Rayleigh number Rac for the onset of transverse rolls as a

function of Re for different Bi (Pr= 7,Ma = 0). Comparison with the case of PRB flow.
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gradually increaseswith Bi to reach an almost constant value of ky
c =1.34

in the case of pure buoyancy effect and ky
c = 1.50 in the case of pure

thermocapillary effect. Thus, for large Biot numbers, thermocapillary

forces generatemore convective longitudinal rolls than buoyancy forces:

the thermocapillary forces are weak, which reduces the wavelength of

the rolls. Comparing these results with the PRB flow (see Table 1), we

note that the upper rigid surface stabilizes the flow and delays the

onset of longitudinal rolls by increasing Rac. The presence of an upper

wall also increases the critical spanwise number (ky
c(PRB) N ky

c), which

means that more convective rolls arise in the case of the PRB flow than

with a free surface.

As for the PRB flow [8], in our flow situation, the critical values (Rac
and Mac) for the onset of stationary longitudinal rolls are independent

of the Reynolds and Prandtl numbers. However, the critical values for

the onset of transverse rolls are dependent on the Reynolds and Prandtl

numbers. Comparing with the PRB flow, it is apparent from Fig. 6 that

the free-surface flow is always more stable than the PRB flow for small

Biot numbers regardless of the Re value. However, for moderate Biot

numbers (Bi b 20), the free-surface flow is less stable compared to the

PRB flow at low Re but becomes more stable compared to the PRB

flow for large Re. In the case of large Biot numbers, the free-surface

flow is always unstable compared to the PRB flow regardless of Re.

Fig. 7(a) and (b) shows the evolution of the critical wave number for

the transverse rolls kx
c as a function of Re and Pr, respectively, in the cases

of pure buoyancy and pure thermocapillary effects. Thewave number of

the transverse rolls due to thermocapillary effect increases as Re and Pr

a

b

Fig. 8. Cross sections of V
!

components (arrows) and θ̂ (contours) of themost unstable eigenmode. Free-surface (Ra=0) compared to the PRB flow. (a) Longitudinal rolls. (b) Transverse

rolls.
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increase, whereas the wave number of the transverse rolls due to the

buoyancy effect decreases when Re and Pr increase. Thus, buoyancy

and thermocapillary effects act in an opposing manner to establish the

critical wave number kx
c.

The flow structures for the longitudinal and transverse rolls of the

free-surface flow compared to the flow with a rigid upper surface

(PRB flow) are plotted in Fig. 8(a) and (b), respectively. As shown in

the case of PRB flow, the rolls are centered at Z=0 and have diameters

close to the channel height. In the case of free-surface flow, the centers

of the rolls are shifted upwards. The transverse rolls in the case of free-

surface flow are slightly deformed and are no longer symmetrical

with respect to the z-axis. These effects are directly linked to the

thermocapillary forces exerted at the liquid surface.

5. Conclusion

To summarize, we have performed the first stability analysis of a

horizontal infinite liquid film flowing in one direction with uniform

heating from below. We obtained the critical parameters (Rac, Mac, ky
c

and kx
c) for the onset of longitudinal and transverse rolls and their vari-

ations as a function of the other control parameters (Bi, Re, Pr). A com-

parison with PRB flow reveals that the upper free surface destabilizes

the flow in the case of longitudinal rolls and can stabilize or destabilize

the flow in the case of transverse rolls depending on the Biot and Reyn-

olds numbers. The presence of the upper free surface also decreases the

critical wave number of the rolls compared to the PRB flow. The struc-

tures of the longitudinal and transverse rolls are also modified.
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