

Electrostatic Precipitator: Technological Development and Applications to Thermal Incineration Processes in CEA

Mickaël Marchand, Florent Lemont, Thierry Reess, Antoine Silvestre de Ferron, S. Souakri

▶ To cite this version:

Mickaël Marchand, Florent Lemont, Thierry Reess, Antoine Silvestre de Ferron, S. Souakri. Electrostatic Precipitator: Technological Development and Applications to Thermal Incineration Processes in CEA. International Journal of Plasma Environmental Science and Technology, 2016, 10 (2), pp.157-160. hal-02153453

HAL Id: hal-02153453 https://univ-pau.hal.science/hal-02153453

Submitted on 26 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Electrostatic Precipitator: Technological Development and Applications to Thermal Incineration Processes in CEA

M. Marchand¹, F. Lemont¹, T. Reess², A. Silvestre de Ferron², and S. Souakri²

¹DEN, DTCD, LPIC, CEA Marcoule, France

²SIAME, University of Pau, France

Abstract—Electrostatic precipitators are widely used in industry particularly for dust removal in cement plants. These systems enable charged dust particles to be collected after creating a strong electrostatic field between two reference electrodes. These devices offer many advantages for new chemical processes currently studied by the CEA Marcoule. The existing conventional electrostatic precipitators nevertheless need to be adapted before considering introducing this technology into the nuclear environment. This paper summaries the experimental work carried out on an electrostatic precipitator set up in a CEA Marcoule process.

Keywords-Electrostatic, filtration, electrode, dust, high voltage, pulsed

I. INTRODUCTION

New chemical processes for waste treatment and conditioning are under development in the nuclear industry. The processes developed by the CEA's LPIC laboratory involve a stage during which the waste organic material is incinerated, followed by a phase of processing the mineral ash obtained (concentration, separation, and packaging in a vitreous matrix). These steps generate combustion gases loaded with dust that it is essential to filter into the centralized system for processing gases downstream of the cycle. The most conventional technology used in the nuclear industry to purify loaded gases is filtration through porous media. These filters are highly efficient but they have two major drawbacks. First, the porous media generate additional secondary radioactive waste during the nuclear operation. Secondly, their progressive dust loading causes depression drop in the process which affects the design basis of the ventilation systems.

Research is currently being carried out at the CEA on others filtration technologies such as electrostatic precipitation. These systems overcome the two main operating constraints related to the use of conventional porous media filters. However, before considering incorporating such systems in nuclear facilities, technological developments must be demonstrated to improve the filtration performance of these devices during representative operating periods.

II. METHODOLOGY

The results presented in this paper were obtained from an electrostatic precipitator built into the CEA Marcoule's IRIS process gas treatment unit (see Fig. 1).

The IRIS process gas treatment consists of a cooler, an electrostatic precipitator, two HEPA filters in parallel as well as a scrubber. First, combustion gases loaded with dust are cooled with an air/air heat exchanger. The heat exchanger

Corresponding author: Mickael Marchand e-mail address: mickael.marchand@cea.fr

Presented at the 3rd ISNPEDADM 2015 (New electrical technologies for environment), in October 2015

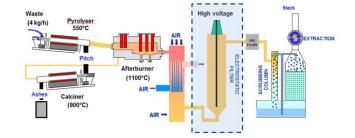


Fig. 1. CEA's IRIS process with its electrostatic precipitator.

output gases have an average temperature of 130° C and are loaded with dust with a concentration around 3×10^{6} particles per liter. Then gases flow into an electrostatic precipitator. The electrostatic precipitator had been designed beforehand from the Deutsch equation defined by

$$\eta = 1 - \exp\left(-\frac{WS}{Q}\right) \tag{1}$$

in which η represents collection efficiency, W velocity of the particles, S particle collection surface area and Q gas flow rate. For dust collection target efficiency of 99.75%, the dust collection surface area is 3.8 m² with the following process variables: gas flow rate Q of 480 m³/h and particle velocity Wof 0.2 m/s. Consequently, the IRIS process electrostatic precipitator consists of a 4-meter-long stainless steel cylindrical shell with an internal diameter of 350 mm and a central emission electrode bearing a negative potential. The inner wall of the shell, which forms the other electrode, is grounded. An electric field is then set up between both electrodes. This field charges the dust contained in the gases and then they migrate to the collecting electrode. For this study, filtration effectiveness was measured using two isokinetic sampling sensors placed upstream and downstream the precipitator. These both sensors include a flowmeter to modulate the shielding gas and also a paper filter weighed before and after testing to measure the amount of dust collected and thus make filtration performance

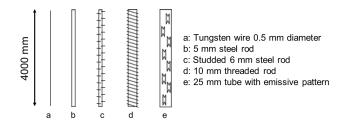


Fig. 2. View of the five central filtration electrode geometries tested in the IRIS process electrostatic precipitator.

available.

Different geometries of emissive electrodes may influence the gas ionization process by boosting the value of the electric field in its vicinity [1]. To improve the performance of the IRIS electrostatic precipitator, an experimental study to geometrically optimize the emitting electrode was conducted to obtain a maximum ionization field while taking care to remain under the critical threshold of breakdown in the air (5 kV/cm positive and 13 kV/cm negative [2]). The various configurations were assessed by measuring the negative direct power supply voltage applied to the central filtration electrode and the resulting average current. Particle collection effectiveness was also measured according to filtration time. These tests were initially conducted using the electrostatic precipitator operating in air and then operating with dust from the process.

III. RESULTS

A. Presentation of the various geometries of filtration electrodes

Six different geometries of central electrodes were tested (Fig. 2). The first geometry (a) consists of a tungsten wire with a weight at one end to limit its movement inside the precipitator. The second (b) and third (c) configurations tested are normal and studded steel rods having a diameter of 5 and 6 mm, respectively. The fourth (d) geometry is a threaded rod with an outer diameter of 10 mm. Finally, the fifth geometry (e) is a steel tube of 25 mm in diameter with emissive pattern created.

B. Influence of the geometry on the power supply voltage and current

Fig. 3 shows the change in the measured average current (in mA) depending on the voltage (in kV) applied to each of the electrodes during electrostatic precipitator operating in air (Fig. 3A) then with the dust load from the process (Fig. 3B). These measurements were obtained using a TECHNIX power source SR80-N-5 kW.

The results show different behaviors according to the atmosphere and chosen geometry. One one hand, in presence of particles (Fig. 3B), the use of a tungsten wire results in the higher currents (up to 6.2 mA) with a maximum allowable voltage of -35 kV before a spark is produced. On the other hand, with the 25 mm tube emissive pattern, maximum voltages are greater (up to -43 kV) but maximum currents are weaker (2.6 mA).

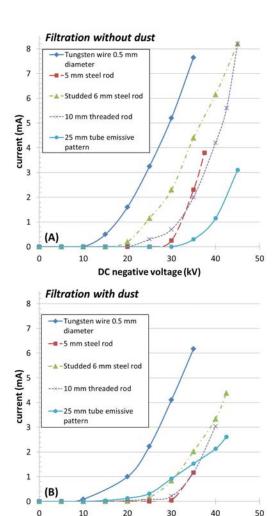


Fig. 3. Change in the average current measured according to the direct voltage applied for five geometric configurations of electrodes at $T=130\,^{\circ}\mathrm{C}$.

DC negative voltage (kV)

Tungsten is a ductile material that becomes rough on the surface when it is stretched to its limits. This property has been used with the tungsten wire to generate a significant amount of emissive patterns on a microscopic scale and thus set up a higher average current. Conversely, for the studded tungsten tube, there are fewer emissive patterns (and therefore the average current recorded is lower). However the geometry of the tube leads to apply a higher power supply voltage in relation to the tungsten wire because the field amplification factor is lower.

C. Measuring filtration efficiency

Table I summarises filtration performance for a voltage and a given current from different geometric configurations. Filtering performance was calculated by measuring the mass of dust on a paper filter from two isokinetic sampling probes located upstream and downstream of the electrostatic precipitator using the following relationship:

$$\eta = 1 - \frac{m_{out}}{m_{in}} \tag{2}$$

TABLE I
COMPARISON OF FILTRATION EFFICIENCIES OBTAINED FROM DIFFERENT ELECTRODES GEOMETRIES

Electrode	Efficiency (%)	Voltage (kV)	Current (mA)
Tungsten wire 0.5 mm diameter	98.7	32	5
5 mm steel rod	90.2	35	1.3
Studded 6 mm steel rod	93.0	35	1.9
10 mm threaded rod	98.1	39	3.1
25 mm tube emissive pattern	97.8	40	3.2

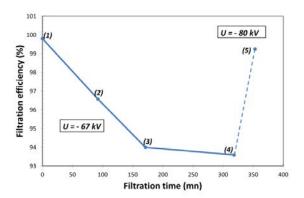


Fig. 4. Change in dust collection efficiency as function of time using the 25 mm steel tube.

where m_{in} and m_{out} are respectively the masses of dust deposited on the paper filter at the input and output of the two sampling probes. The best filtration efficiencies were obtained with the tungsten wire (98.7%) then with the rod (98.1%) and finally with the 25 mm steel tube (97.8%) respectively. We noted that for a fixed voltage of -40 kV, the 25 mm steel tube presents 1% less efficiency than the tungsten wire. Consequently, the tube seems less efficient than the tungsten wire, but it has a markedly better mechanical strength when it is placed in the shielding gas inside the electrostatic precipitator because it does not move around the central axis of the electrostatic precipitator, particularly in the event of major disturbance induced by the modulation of process gas flow rates. This geometric configuration has therefore been retained for further studies because this avoids having to put centering devices inside the precipitator which facilitate the routing of arcs.

D. Change in filtration efficiency as a function of time

Figs. 4 and 5 represent the change in dust collection efficiency according to the filtering time and imposed electrical power respectively. The 25 mm steel tube was used for this study. Five successive measurements (points 1 to 5) were taken. By comparing both curves simultaneously, we can see that for a fixed voltage of -67 kV, the filtration performance decreases from 99.8% at time t=0 (point 1) to a value close to 93.5% after more than 5 hours of testing (point 4). At the same time, the electrical power decreases from 175 W (i.e. I=2.6 mA for point 1) to a value of 55 W (i.e. I=0.82 mA for point 4) after a 5 hours filtration time (Fig. 5).

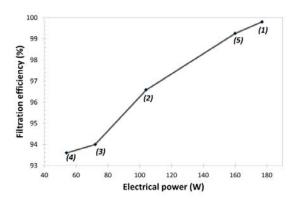


Fig. 5. Change in filtration efficiency in relation to the imposed electrical power.

It is therefore shown that dust filtration efficiency decreases with time, as already observed with a point-to-plane configuration [3]. The decrease of the average current is due to the fact that more and more particles settle on the (grounded) collecting electrode, resulting in a reduction of the electric field by accumulation of negative charges on the electrode, as dusts are non-conductive. In order to maintain optimum efficiency, the power supply voltage has been increased to a value of -80 kV (point 5) which had the immediate effect of achieving dust filtration efficiency close to 99.5% for an electrical power of 160 W. Adjusting the power by increasing the power supply voltage therefore obtains values close to the initial conditions (point 1) without, nevertheless, achieving them. To obtain exactly the same initial conditions, all the dust deposited inside the electrostatic precipitator has to be removed. This manipulation is restrictive in the context of industrial operation.

IV. DISCUSSION

The results show that filtration efficiency can be improved by optimizing the geometry of the central electrode. The main aim is to generate a maximum electrostatic field between both electrodes to facilitate the migration of dust particles. It has been shown that filtration efficiency is then dependent on the average current measured but decreases with time [3]. To maintain a good level of filtration, it is then mandatory to continually increase the power supply voltage applied to the central filtration electrode. This voltage increase must not reach a maximum value that causes filamentary discharge to appear inside the electrostatic precipitator and the emergence of "back corona" type phenomena [4].

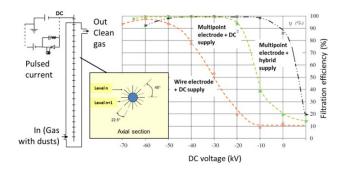


Fig. 6. Axial section of the new multi-point electrode and comparison of filtration efficiency in relation to two other electrode geometries.

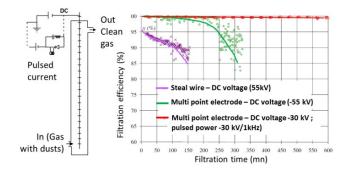


Fig. 7. Comparison of filtration efficiency as a factor of time for two electrodes (shaped rod and multi-point rod) using direct or direct/alternating power supply.

Specific electrode geometry combined with a pulsed power system has therefore been developed to optimize the effectiveness of particle collection over long periods of time. Studies carried out in collaboration with the University of Pau SIAME laboratory helped recommend a new electrode called "multipoint" along with an optimized power supply [5]. The multipoint electrode consists of a 2 m-long rod comprising a set of points spaced at an angle of 45° on the same plane and offset at an angle of 22.5° between two successive levels (see inset Fig. 6).

The filtration efficiency obtained from this new multi-point electrode has been improved as shown by the results presented in Fig. 6. By comparing the efficiency curve with the two other geometries (wire electrode and multipoint electrode), a filtration efficiency greater than 99.7% can be achieved from -30 kV up to -95 kV (see the new multi-point electrode curve on Fig. 6). The efficiency is then optimal on a wider voltage range by increasing the maximum value of the voltage (-95 kV) without apparition of filamentary discharge. Furthermore, by combining this new multi-point electrode with a mixed direct/alternating power supply, filtration performance over long periods can be significantly improved. Filtration efficiency, with this new configuration, does not decrease even after more than 500 minutes of electrostatic precipitator operation (Fig. 7).

These values are obtained only if this multi-point electrode is combined with a mixed direct/alternating power source. Results show that, with a direct power supply alone, effectiveness begins to drop after 200 minutes of electrostatic precipitator

operation.

V. CONCLUSION

Different geometries of emitting electrodes have been tested to compare the filtration efficiency of an electrostatic precipitator according to the applied voltage and average current. The filtering performance of these electrodes was then assessed as a factor of time. The results obtained were used to develop a new geometry of electrode called "multi-point". This new configuration helped improve filtration efficiency over a wider voltage range. The use of a combined direct/alternating power source on this multi-point electrode significantly improved the performance of the electrostatic precipitator over long periods of operation.

REFERENCES

- D. Blanchard, "Collecte des fines particules et caractérisation des couches de poussière dans un précipitateur électrostatique," Ph.D. dissertation, Université Joseph Fourier, 2001.
- [2] D. Blanchard, "Modlisation des décharges couronnes négatives application à la précipitation électrostatique," Ph.D. dissertation, Université de Pau, 2010.
- [3] A. Silvestre De Ferron, T. Reess, L. Pcastaing, P. Pignolet, and F. Lemont, "Optimizing the operation of an electrostatic precipitator by developing a multipoint electrode supplied by a hybrid generator," *Journal of Physics D: Applied Physics*, vol. 42, 2009.
- [4] P. Ranstad, A. Karlsson, C. Tonks, and K. Bradburn, "Results from ESP-upgrades, including control systems," in *Proceedings of the 13th International Conference on Electrostatic Precipitation, ICESP XIII*, Bangalore, India, September 2013.
- [5] F. Lemont, A. S. de Ferron, T. Reess, and A. Russelo, "Device for electrostatic filtering using optimized emissive sites," French Patent WO2 009 103 704 A2, 2009.