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Cooling of a Magmatic System Under Thermal Chaotic Mixing

KAMAL EL OMARI,1 YVES LE GUER,1 DIEGO PERUGINI,2 and MAURIZIO PETRELLI
2

Abstract—The cooling of a basaltic melt undergoing chaotic

advection is studied numerically for a magma with a temperature-

dependent viscosity in a two-dimensional (2D) cavity with moving

boundary. Different statistical mixing and energy indicators are

used to characterize the efficiency of cooling by thermal chaotic

mixing. We show that different cooling rates can be obtained

during the thermal mixing of a single basaltic magmatic batch

undergoing chaotic advection. This process can induce complex

temperature patterns inside the magma chamber. The emergence of

chaotic dynamics strongly modulates the temperature fields over

time and greatly increases the cooling rates. This mechanism has

implications for the thermal lifetime of the magmatic body and

may favor the appearance of chemical heterogeneities in the

igneous system as a result of different crystallization rates. Results

from this study also highlight that even a single magma batch can

develop, under chaotic thermal advection, complex thermal and

therefore compositional patterns resulting from different cooling

rates, which can account for some natural features that, to date,

have received unsatisfactory explanations, including the production

of magmatic enclaves showing completely different cooling his-

tories compared with the host magma, compositional zoning in

mineral phases, and the generation of large-scale compositional

zoning observed in many plutons worldwide.

Key words: Magma cooling, chaotic advection, thermal life-

time of magma chambers, temperature-dependent viscosity,

crystallinity, thermal eigenmodes, numerical simulation.

List of symbols

A Area (m2)

Cp Heat capacity (J=kgK)

k Thermal conductivity (W=mK)

L Wall characteristic length (m)

Dimensionless numbers

Nu Nusselt number

U Crystal fraction

Pr Prandtl number

Re Reynolds number

T� Dimensionless temperature

X Rescaled dimensionless temperature

Greek symbols

q Fluid density (kg=m
3
)

r Standard deviation

s Period of modulation (s)

Subscript

m Mean

1. Introduction

Thermal equilibrium is of great interest in both

petrology and volcanology because the possible

evolution of magmatic systems strongly depends on

the development of thermal and compositional

heterogeneities which, in turn, can influence the

capability of the magmatic mass to differentiate

and/or erupt. It has recently been shown that

magmatic systems can exhibit wide compositional

heterogeneity in both space and time (e.g., PERUGINI

and POLI 2012; PERUGINI et al. 2012). This hetero-

geneity is the result of complex processes

developing in magmatic masses and is mostly

considered to be a result of chaotic dynamics (i.e.,

magma mixing; DE CAMPOS 2011; MORGAVI et al.

2013; PERUGINI et al. 2012). The presence of cha-

otic behaviors in igneous systems is widely

reported in literature (e.g., BERGANTZ 2000; PETRELLI

et al. 2011; PERUGINI and POLI 2012; PERUGINI et al.

2012), but surprisingly, there are few contributions

addressing the thermal behavior of a magmatic

body experiencing chaotic dynamics. Since the late

1990s, different works on thermal advection of
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high-viscosity fluids have shown that temperature

fields can be strongly modulated by the onset of

chaotic dynamics (SAATDJIAN and LEPREVOST 1998;

LEFEVRE et al. 2003; MOTA et al. 2007; EL OMARI

and LE GUER 2010a; LE GUER and EL OMARI 2012),

but they are mostly confined to industrial processes.

Therefore, study of the thermal evolution of a

magmatic body in a chaotic environment could be

of great interest and would start to fill the gap in

previous and recent literature. The development of

different thermal domains in space and time may,

in fact, strongly influence the cooling history of the

magmatic mass and therefore crystallization, lead-

ing to the formation of volumes of melts with

strong rheological and compositional differences.

As an example, crystal-size distributions have long

been known to be influenced by the cooling

kinetics of the magma (WINKLER 1949). Different

cooling histories may also induce differential rates

of growth for crystals. In this work, we focus on

the cooling kinetics of a batch of magmatic melt

undergoing very low advection. In particular, we

present numerical simulations of chaotic thermal

advection aimed at understanding the space and

time modulation of the temperature field during

cooling of a mafic melt. The temperature depen-

dence of the magma viscosity is taken into account.

Results are discussed in the light of the timescales

of cooling for the magmatic body and the impact

of this process on the evolution of the magmatic

mass. The production of different thermal domains

in which magma crystallization may proceed with

differential efficiency is also discussed.

2. The Physical Problem

2.1. Conceptual Model and Properties of the Mafic

Magma

The study of several natural magmatic systems

has repeatedly led to the inference that the magma

dynamics are governed by chaotic dynamics (e.g.,

FLINDERS and CLEMENS 1996; DE ROSA et al. 2002;

PERUGINI et al. 2003, 2006). The fact that magma

dynamics is chaotic means that its investigation can

be reduced, as a first approximation, to the study of

stretching and folding of the silicate melt. This

approach has enabled the investigation of the

interplay between flow fields and the modulation

of geochemical composition in the magmatic sys-

tem (e.g., PERUGINI et al. 2003, 2006). Despite the

simplicity of such an approach, it is important to

note that it is capable of generating structures and

compositional patterns that mimic those observed in

natural rocks (e.g., PERUGINI et al. 2003; PERUGINI

and POLI 2012). This observation confirms that a

system exhibiting chaotic advection contains much

that is necessary for replicating the fluid-dynamic

evolution of a magma body. Thus, irrespective of

the specific processes responsible for advection

(e.g., convection, flow in conduits, etc.), chaotic

dynamics of magmas is a very powerful conceptual

tool for addressing the complexity of this petroge-

netic and volcanological process. Guided by this

conceptual model, we consider here the thermal

chaotic mixing in a 2D rectangular cavity filled

with a Newtonian mafic magma (Fig. 1). The

numerical system contains all essential ingredients

and fundamental building blocks to replicate the

basic fluid dynamics of a magma body, consisting

of stretching and folding processes. We consider

that the cavity is not open to mass fluxes, implying

that, once in place, the mafic batch behaves as a

closed system. The thermophysical properties of the

mafic magma are given in Table 1. The initial

temperature Ti of the molten magma is chosen as

1,200 �C (liquidus temperature), and the

Figure 1
Sketch of the two-dimensional magma chamber (aspect ratio 0.6)

2



temperature of the surrounding rock–magma inter-

face Tw is 600 �C. All the thermophysical

properties are considered independent of tempera-

ture except the viscosity, as explained in the

following section. The corresponding Prandtl num-

ber at the initial temperature of the magma is Pr =

45,450. For this high Prandtl number, the magma

flow is characterized by a flow momentum much

higher than the heat diffusion. Classically, for a

steady laminar flow, the wall effects will be felt

further inside the magma chamber for the velocity

field than for the thermal field, thus the magma

cooling will be governed by what happens in the

vicinity of the walls (EL OMARI and LE GUER 2010).

We will see that this mechanism will differ when

chaotic advection enters into action. We limit the

study to magmas at the early stages of crystalliza-

tion, and we assume that no release of latent heat

of crystallization occurs during the formation of

crystals (see Sect. 2.2). The crystallization is

envisaged as a phenomenon directly linked to the

increases in the viscosity of the melt during

cooling. Although these assumptions might appear

quite severe, as reported in the introductory section,

the aim of this study is to investigate the sole

effect of chaotic advection on the thermal field to

assess the kinetics of cooling of a mafic magma.

As another assumption, we consider that the density

remains constant during the cooling of the magma.

Thus, natural convection due to buoyancy is not

possible inside the magma chamber (i.e., convec-

tive thermal plumes BRANDEIS and JAUPART 1986).

Assuming a constant density within the magma

chamber is in keeping with the idea that we study

natural magmas at the early stages of the differen-

tiation process, as stated above.

2.2. Magma Viscosity and Viscosity–Crystallinity

Relation

Magma viscosity is primarily linked to its silica

content. The higher the amount of silica in a magma,

the more viscous the magma will be due to the strong

silicon–oxygen bonds which produce silica chains.

Since we are investigating a mafic magma at the early

stages of crystallization (i.e., low chemical varia-

tions), we neglect the link of viscosity to chemical

composition. The gas content also affects the magma

viscosity. We assume that the system contains a fixed

amount of gas phases (closed system) and that their

content is below the saturation value (i.e., no gaseous

exsolution occurs). Other factors that strongly influ-

ence magma viscosity are temperature and crystal

content. The viscosity increases with decreasing

temperature and with increasing crystal content. In

this study we consider a pseudo-Newtonian fluid

(with no yield stress and a viscosity not dependent on

strain rate) for which the temperature dependence of

the viscosity is modeled by an exponential law that

can simulate the rapid increase in viscosity when tiny

crystals form during cooling (MC BIRNEY and MURASE

1984; SPERA 2000; COSTA and MACEDONIO 2003;

GIORDANO et al. 2008):

l ¼ l0 exp Bð1� T�Þð Þ ð1Þ

with l0 the viscosity at the initial temperature (T� =

1), here considered equal to 100 Pa s. B is the Pear-

son number that takes into account the increase of

viscosity with cooling (LE GUER and EL OMARI 2012).

In this study, three cases are considered: the non-

temperature-dependent, reference case (B ¼ 0), and

cases with moderate (B ¼ 5) and greater temperature

dependence (B ¼ 10). The parameter B determines

how fast the viscosity increases as the temperature of

the magma is lowered. The viscosity range is from

100 Pa s for the mafic melt at the initial temperature,

near its liquidus temperature, to about 106–107 Pa s

for the same magma now containing a certain amount

of crystals. The assumption that the magma is a

Newtonian fluid is valid when we consider tempera-

tures near the liquidus. This fact was confirmed by

the measurements of SATO (2005) for the 1707 basalt

from Mount Fuji volcano, for which the viscosity is

almost constant against shear rate at 1,210 �C,

Table 1

Thermophysical properties of the melted mafic magma at the initial

temperature Ti

Mafic magma property Value Unit

Density, q 2,750 kg m�3

Thermal conductivity, k 2,2 W m�1 K�1

Thermal diffusivity, a 8 � 10�7 m2 s�1

Specific heat, Cp 1,000 J kg�1 K�1

Dynamic viscosity, l (Ti = 1,200 �C) 100 Pa s
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corresponding to a melt with very low crystal content.

As the temperature is lowered (subliquidus tempera-

tures), a non-Newtonian shear thinning might appear

depending on several parameters such as the quantity

and morphology of crystals (CIMARELLI et al. 2011)

and the applied strain rate (CARICCHI et al. 2007).

MADER et al. (2013) extensively reviewed the rheol-

ogy of two-phase magmas, reporting that the

rheology of a crystal-bearing igneous system mostly

depends on the crystal fraction U, the critical crystal

fraction at which particles cannot move past one

another (i.e., the maximum packing fraction Ucr), and

the flow index n. The latter is a function of the U=Ucr

ratio and of the crystal aspect ratio (MADER et al.

2013). As reported by MADER et al. (2013), a mag-

matic system is always Newtonian for U=Ucr\0:5.

For higher values of U=Ucr (i.e., 0:5\U=Ucr\0:8),

the Newtonian behavior still persists for values of the

flow index n equal to or greater than 0:9. The values

of Ucr are not easy to unravel in natural magmatic

systems (MADER et al. 2013). Using a geometric

approach, Ucr is about 0:74, if crystals are sub-

spherical. The value of Ucr is lower for disordered

systems (Ucr � 0:64; MADER et al. 2013). Assuming

Ucr ¼ 0:656 (smooth particles; MADER et al. 2013),

the behavior of the system can be safety considered to

be Newtonian for crystal content U up to 0:32.

Studying a natural system, MARSH (1981) states that

the limit of the phenocrystal content observed in

basaltic lavas is Ucr ¼ 0:55; above this critical point

the viscosity of the magma is so high that it cannot

erupt as lava. The maximum packing density corre-

sponds to a minimum of liquid content in the melt or

equivalently to a minimum of porosity, which is

highly dependent on the morphology of the crystals

and their polydispersity. The viscosity of the magma

also depends intimately on the shape of the crystals

and their polydispersity. Moreover, the nucleation

and growth rates of these crystals are closely linked

to the local cooling rate encountered inside the

magma. Magma cooling rates are related to the

thermal fields, which are intimately linked to the flow

kinematics. To summarize the behavior described by

MADER et al. (2013), a mafic magma with low crystal

content (U\30 %) can be reasonably considered as a

Newtonian fluid if the crystal aspect ratio is not larger

than 3:2. For higher content of crystals and/or larger

values of the crystal aspect ratio, a rheological tran-

sition characterized by a rapid increase of the

apparent viscosity occurs. A complete review of the

transition from Newtonian to non-Newtonian behav-

ior lies beyond the scope of this work, and to be

conservative, we limit the discussion of results to

magmatic systems with crystal content below 30 %

(i.e., U ¼ 0:3). Classically, the model given in the

literature to link the apparent viscosity to the degree

of crystallinity is the Krieger–Dougherty model

(KRIEGER and DOUGHERTY 1959) derived from the

Einstein–Roscoe model (ROSCOE 1952):

l
l0

¼ 1� U
Ucr

� ��b

; ð2Þ

where Ucr is the critical volume fraction and the

exponent b is a fitting parameter correlated with Ucr

to account for particle shape (CIMARELLI et al. 2011).

This model is appropriate to fit the data mainly for

low crystal concentrations.

2.3. Chaotic Advection Flow

The chaotic advection phenomenon is now well

known to enhance fluid mixing, reactive mixing or

heat transfer in many industrial processes (AREF

1984; OTTINO 1989). It is also recognized to be of

particular importance for natural phenomena in

various earth domains such as volcanology (MET-

CALFE et al. 1995; PERUGINI and POLI 2012; RENJITH

et al. 2013), atmospheric sciences or oceanic disper-

sion (pollutants, black tides or plankton blooms;

LOPEZ et al. 2001). Chaotic advection becomes par-

ticularly interesting for applications where the

viscous effects are large compared with inertial

effects (i.e., very low Reynolds numbers). This can

be encountered for problems which involve small

physical dimensions (typically for microfluidic appli-

cations), for very low velocities or for very large

viscosities. The flow of a magma couples two of these

elements (i.e., large viscosity and low velocity of the

chamber wall, if present). For two-dimensional

chaotic advective flows, a simple unsteady velocity

field is able to generate very complex tracer patterns

(concentration or temperature fields) (AREF 2002).

The global mixing mechanism comprises a stirring

phase related to the stretching and folding of fluid

4



elements (as blobs and filaments) and a mixing phase.

By chaotic advection, we mean that nearby fluid

elements separate from each other exponentially in

time in particular domains of the flow. That is why

mixing is greatly enhanced due to the efficient

generation of interfaces between scalars, which then

facilitates the diffusion of the scalar through these

interfaces (the mixing phase itself). It is not necessary

for the velocity field itself to be chaotic as in

turbulence to obtain chaotic trajectories of particles.

A necessary constraint to produce chaotic advection

in two-dimensional flow is to break the time invari-

ability of the streamlines, as obtained by considering

an unsteady flow with moving magma chamber walls

in the present study. The 2D rectangular cavity we

have chosen for the study of the magma flow is a

classical geometry for chaotic advection (CHIEN et al.

1986; JANA et al. 1994; LIU et al. 1994). It has a

height/length ratio (H=L ¼) of 0.6. As a stirring

protocol, a constant velocity is imposed alternately on

the side walls during each half period (Fig. 2). Thus, a

nondimensional period s controls the efficiency of the

thermal mixing. In this study, a highly laminar

magmatic flow is chosen with a reference Reynolds

number equal to 1 for the simulations. This reference

Reynolds number is based on the viscosity of the

initial hot magma l0 (at Ti = 1,200 �C). As the

viscosity at the initial temperature of the magma is

fixed, the product U � L is constant and the couple

(U; L) has to be chosen. Thus, U and L are dependent

variables for this problem. For the temperature-

dependent viscosity cases, when the magma viscosity

increases, the Reynolds number becomes smaller.

Thus, a simple shear flow is applied to the magma

chamber and the stirring protocols correspond to

alternating movement of the two side walls at a given

constant velocity, originating chaotic dynamics. As

explained above, this protocol has been chosen to

trigger chaotic advection in the magmatic system

according to natural evidence and previous studies

where magma mixing processes have been widely

documented (e.g., PERUGINI and POLI 2012; PERUGINI

et al. 2006, 2007).

The chosen period is one allowing the chamber

side walls to be swept alternately five times each

(s ¼ 10). In order to show the time scales involved in

the chaotic mixing mechanism for the magmatic

system, in Table 2, for Re = 1, the time unit L=U and

the real time of a period of stirring are given for three

sizes L of the magma chamber (the associated

velocities U are fixed as explained above). As an

indication, the operating shear rate in the magmatic

body is also given.

In a recent work, EL OMARI and LE GUER (2010a)

showed that the global thermal chaotic mixing is very

sensitive to the wall kinematics and that the stagna-

tion parabolic points at the wall play a key role. Our

objective in this study is also to verify this point for

the thermal mixing occurring during the cooling of

the magmatic mass.

3. Mathematical Formulation

3.1. Conservation Equations and Flow Parameters

The governing equations (Navier–Stokes, energy,

and continuity) are solved for the 2D cavity described

above. Some hypotheses are considered: gravity is

considered normal to the cavity plane, thus no natural

convective flow can develop inside the cavity as the

density is not dependent on the temperature as

indicated in the Sect. 1; additionally no viscous

heating effect is considered. This last assumption is

justified even with the consideration of the exponen-

tial increase of the viscosity with temperature

because the velocities considered are very low; the

Brinkman number (Br) which characterizes the

Figure 2
Temporal modulation of the magma chamber walls (stirring

protocol)
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relative importance of the viscous dissipation in the

energy equation is very low:

Br ¼ l0 � U2

k � ðTi � TwÞ
� 1: ð3Þ

Thus, the viscous heating term is neglected in the

energy equation (LE GUER and EL OMARI 2012).

Additional nonlinearities are introduced into the

problem via the viscosity law, which is taken to

depend on temperature, and also through the inclu-

sion of inertia. Considering the parameter values

given in Table 2, the Strouhal number is around 0.1,

which is not too small. As a consequence, the flow

does not satisfy the quasisteady hypothesis and the

acceleration and deceleration phases imposed on the

walls will influence the mixing inside the whole

cavity.

The unsteady convective heat transfer cooling

problem is governed by the nondimensional conser-

vation equations for mass, momentum, and energy:

r � v ¼ 0; ð4Þ

otvþ v � rð Þv ¼ �rpþ 1

Re
r � l

l0

rvþ ðrvÞT
� �� �

;

ð5Þ

otT
� þ v � rT� ¼ 1

RePr
r2T�; ð6Þ

where

Re ¼ qUL

l0

; Pr ¼ l0Cp

k
; and T� ¼ T � Tw

Ti � Tw

The characteristic scales considered for this nondi-

mensional problem are the cavity length L, the

velocity of the wall U, the time U=L, and the pressure

qU2. With the above definition of the dimensionless

temperature, the maximum temperature difference

between the walls and the fluid is always 1. T� = 1

corresponds to the beginning of the thermal mixing

(all the magma is at 1,200 �C), and T� = 0 to the

magma at the rock temperature of 600 �C. Thus, the

2D unsteady convective heat transfer cooling prob-

lem is governed by only two nondimensional

numbers (Re and Pr). Another point has to be men-

tioned, concerning the latent heat of crystallization

that is released into the mafic magma during its

cooling. For the mafic magma with 30 % of mass

fraction crystallized (corresponding to the high vis-

cosity encountered for the low temperatures), we

have estimated the Stefan number (characterizing the

ratio of sensible heat to latent heat) to be above 20.

This high ratio indicates that, as a first approximation,

the latent heat of crystallization can be neglected,

despite the role it may play in localized areas near

solidification fronts.

3.2. Numerical Method

The continuity and Navier–Stokes equations were

solved, as well as the energy conservation equation,

by means of an in-house code (Tamaris) based on the

unstructured finite-volume method. Spatial schemes

approximating convective and diffusive fluxes are

second-order accurate. The convective fluxes are

approximated by the high-resolution nonlinear CU-

BISTA scheme in order to reduce the numerical

diffusion. This is crucial to avoid overshoot of the

thermal diffusion in the energy equation. Time

advancement is ensured by the implicit, second-

order-accurate, three-time-step Gear scheme, while

the pressure and velocity fields are coupled by the

SIMPLE algorithm. A parallel algebraic multigrid

(AMG) solver is used to resolve the obtained linear

systems, since a sufficiently fine mesh of 54,000

computational cells was used to capture possible

striations arising in the temperature field. This mesh

was chosen after a thorough study of the dependence

of the results on mesh size. The MCIA supercom-

puter at Bordeaux was used for the parallel

calculations. More details about the numerical meth-

ods used and code validations are given elsewhere

Table 2

Time unit and real time associated to a period of stirring for

Reynolds number equal to 1 and different sizes of magma chamber

Re = 1 Time unit Real time for Shear rate

L=U a period 10 L=U

L ¼ 100 m

U ¼ 3:63� 10�4 m s�1 3.19 days �32 days �10�5 s�1

L = 1,000 m

U ¼ 3:63� 10�5 m s�1 0.87 years �8.72 years �10�7 s�1

L = 10,000 m

U ¼ 3:63� 10�6 m s�1 87.2 years �872 years �10�9 s�1

The corresponding initial shear rate is also given

6



(EL OMARI and LE GUER 2009, 2010a, b, 2012;

BAMMOU et al. 2013).

3.3. Thermal Mixing Indicators

We mainly use three statistical mixing indicators

to characterize the efficiency of heat transfer by

chaotic thermal mixing: the mean temperature, the

variance, and the Nusselt number. Their evolutions

are followed over time during the magma cooling.

The mean temperature of the magma T�m, which

represents the energy extracted from the fluid across

the walls (EL OMARI and LE GUER 2010), is given by

T�m ¼
1P
c Ac

X
c

AcT�c

!
; ð7Þ

where the summation is made over all 2D computa-

tional cells of area Ac (the subscript c is for cell).

Indeed, the mean temperature evolution can be seen

as an indicator of the ratio of the total energy supplied

to the fluid from the initial time considered to the

time t:

EðtÞ ¼ qCpVchamber TmðtÞ � Twð Þ: ð8Þ

Hence, the mean temperature is asymptotically

bounded by the fixed temperature imposed on the

walls (i.e., Tw or T�m = 0 for nondimensional tem-

perature). The second indicator is the variance r2 of

the fluid temperature, which represents the level of

homogenization of the scalar temperature inside the

2D magma chamber (STREMLER 2008):

r2 ¼ 1P
c Ac

X
c

AcðT�c � T�mÞ
2

� �
: ð9Þ

For a thermal mixing problem without any source of

scalar, the advection–diffusion equation indicates that

the temperature fluctuations evolve towards a uni-

form state (r2 = 0) at a decay rate given by the

product of twice the thermal diffusivity a and the

temperature gradients induced by the flow inside the

magma chamber (THIFFEAULT 2012). Thus, for our

case, as the thermal diffusivity is given and the flow

field chosen, the speed at which the magma will be

cooled will be studied by following the decay rate of

r2 over time for different temperature-dependent

viscosity cases. The last indicator used is the mean

Nusselt number Nu, which characterizes the strength

of heat transfer across a wall. It represents the

dimensionless temperature gradient in a direction

normal to the wall:

Nu ¼ 1

Sw

Z
Sw

rT� � n dS: ð10Þ

Since we consider here that the wall temperature (the

temperature of the surrounding rock–magma inter-

face) is kept constant during the cooling, the parietal

heat flux exhibits a nonuniform distribution along the

boundaries of the chamber (i.e., a nonuniform tem-

perature gradient distribution). This distribution is

closely related to the complex fluid flow kinematics

inside the magma chamber.

4. Results and Discussion

4.1. Flow Streamlines, Temperature,

and Crystallinity Field Patterns

In Fig. 3, one can observe the streamlines in the

cavity flow system corresponding to the separate

motion of each wall for the non-temperature-

dependent viscosity case. Despite their simplicity,

the combination of these two very simple Eulerian

velocity fields produces very complex irregular

Lagrangian trajectories that consequently give com-

plex temperature patterns, as shown in Fig. 4, which

presents several snapshots of the temperature field

taken at different periodic times for two values of the

Pearson number B. We observe highly elongated and

folded striations produced by chaotic advection near

the rock walls of the magma chamber, with cold

magma tongues penetrating inside the chamber; these

structures lead to the existence of flow regions with

very different temperature levels. For the case B = 0,

one can notice the existence of a large unmixed

thermal zone in the central part of the domain with

two filaments emanating from it which move together

in the magmatic chamber during chaotic advection.

This island of hot magma is transported across the

magma chamber without shape distortion, undergoing

weaker cooling compared with parietal areas (BRES-

LER 1997). After a transient stage, the spatial

7



distribution of the temperature patterns takes the

same form at each periodic time but the amplitude of

the dimensionless temperature differences tends

towards 0; these self-similar structures are called

thermal strange eigenmodes (EL OMARI and LE GUER

2010; LIU and HALLER 2004) and are the signature of

an underlying fractal structure in the flow. The spatial

structure of the temperature field is smooth; this is

due to the relatively high value of the thermal

diffusivity and is also the reason why only relatively

large temperature striations are observed. By com-

parison, the spatial structures of the concentration

patterns would have presented more lamellar struc-

tures due to the lower value of the molecular

diffusivity. The thermal diffusion blurs the fine-scale

structure of the representative thermal strange eigen-

mode. The direct consequence of the existence of this

thermal strange eigenmode is that the crystallization

front in such a chaotic flow will not last long parallel

to the walls, as classically considered for the cooling

of a magmatic chamber (HUPPERT 2000). The result

could be the existence of a magmatic enclave, which

would appear after complete solidification of the

magmatic mass (e.g., DIDIER and BARBARIN 1999;

PERUGINI and POLI 2000). This process could also

account for the widespread occurrence of composi-

tional zoning in mineral phases (e.g., GINIBRE et al.

2002; PERUGINI et al. 2005). In fact, as minerals are

transferred among the different dynamic regions, they

can undergo multiple episodes of resorption and

growth according to the thermal and compositional

features of the different regions existing within the

magmatic system. At larger length scales, this could

also generate compositional zoning in the magmatic

mass, as observed in several plutons worldwide (e.g.,

MAHOOD and FRIDRICH 1982; HECHT and VIGNERESSE

1999). The effect of temperature-dependent viscosity

is noticeable, since these hot zones disappear for

B = 5. This is due to the strong increase of the

magma viscosity in the vicinity of the cold walls,

which promotes the carriage of magmatic liquid by

the moving walls and thus improves the stirring. The

period that corresponds to the establishment of a

persistent temperature pattern seems to be much

longer than before for the case B = 0. The self-

similar patterns also seem to appear much later. This

fact is confirmed below by observations of the

probability distribution functions (PDFs) of temper-

ature. The case with greater temperature dependence

(B = 10) is illustrated in Fig. 5. The strong effect of

the temperature-dependent viscosity on the velocity

field is clearly shown in the evolution of the

streamlines. At t ¼ 5s, for example, the streamlines

are deformed and a small new vortex appears in a

corner of the magma chamber. The temperature

patterns are correlatively modified: they do not align

with the streamlines and are, in some regions of the

chamber, perpendicular to them. A complex spatial

distribution of the temperature gradients over the

whole domain is thus obtained.

In Fig. 6, the crystallinity fields are plotted for the

case B ¼ 5 using the Krieger–Dougherty model. We

recall that this model is appropriate for low crystal

fractions up to the critical value of Ucr ¼ 0:4 (MADER

et al. 2013). Starting with zero crystallinity at the first

instant (all the magma is at the liquidus temperature),

the crystallinity rapidly reaches values around 0:3 in

some convoluted zones of the cavity. These zones

correspond exactly to the cold zones in the temper-

ature patterns of Fig. 4 (for B ¼ 5). High degrees of

Figure 3
Flow streamlines induced by the wall movements during the first (left) and second (right) half-period of the stirring protocol
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crystallinity are thus observable deep inside the

magma chamber (for t ¼ 5s and 10s), allowing the

formation of solid enclaves that could travel inside

the cavity. Thus, the solidification fronts will not

develop parallel to the walls. From t ¼ 20s, the

crystallinity becomes almost homogeneous in the

cavity around the value 0:3, close to the critical

crystallinity for Newtonian behavior.

4.2. Statistical Indicator Evolutions

The impact of the temperature dependence of

viscosity on the mixing of magma can be appreciated

in the above-mentioned global statistical indicators.

In Fig. 7, one can observe the evolution of the mean

temperature T�m inside the magmatic chamber over

Figure 4
Temperature fields at different periodic instants t ¼0, 5s, 10s, 15s, 20s, and 25s (from left to right and top to bottom), for B = 0 and 5

9



time (number of periods) for the three different

mixing cases (B = 0, B = 5, and B = 10). This

represents the amount of energy extracted from the

magma across the walls from time 0 to time t. This

figure shows that the mean temperature decreases

exponentially towards the wall temperature T� = 0

when chaotic mixing is present (B = 0 to B = 10

cases), and much more rapidly when the viscosity is

Figure 5
Flow streamlines and temperature fields at different periodic instants t ¼0, 5s, 10s, 15s, 20s, and 25s (from left to right and top to bottom), for

B = 10

10



high (higher B value). However, the final decay rates

are identical. The purely conductive case (fixed

walls) is also given for reference; the slow nature

of the thermal mixing is evident, since it operates

only by thermal diffusion. This case is also charac-

terized by a temperature field with isotherms parallel

to the magma chamber walls.

The standard deviation evolutions are given in

Fig. 8 for the same cases. We recall that the variance

r2 represents the level of homogenization of the

temperature inside the magma chamber. We observe

first of all a phase which corresponds to the creation

of the temperature gradients. This phase is much

longer (up to five periods) and the gradient more

pronounced when B is higher. After this transient

time, the smoothing of the temperature gradients is

observed, being most important for the case B = 10.

For longer times (after 50 periods), the evolutions are

quite similar, with the same decay rate for B = 0 and

B = 10. For the purely conductive case, the temper-

ature homogenization across the magma chamber is

very low. This once more confirms the cooling

efficiency during chaotic mixing.

Figure 9 illustrates the parietal heat transfer along

one of the moving walls. It is characterized by the

mean Nusselt number evolution with time, which is

found to be globally exponential. The large oscilla-

tions of the Nusselt values observed for the three

cases are due to the variation of the temperature

gradients along the wall resulting from the periodic

modulation of the wall movement. For B = 10, the

Figure 6
Crystallinity fields at different periodic instants t ¼0, 5s, 10s, 15s, 20s, and 25s (from left to right and top to bottom), for B = 5 (in relation

with the temperature fields of Fig. 4). The color scale is different for top and bottom rows
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Figure 7
Evolution of the mean temperature for different values of the

temperature-dependent viscosity coefficient B. Comparison with

the purely conductive case
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strong nonlinearity introduced by the temperature-

dependent viscosity results in significant irregular

fluctuations in the evolution of the Nusselt number.

Without chaotic advection inside the magma chamber

(the conductive case), the heat transfer displays a

significant slowdown over time. The asymptotical

behavior of the Nusselt number evolution in this case

is due to the very low penetration of the temperature

gradient zone inside the magma chamber.

4.3. Temperature Probability Distribution Functions

and Recurrent Patterns

The temperature distributions inside the magma

chamber are analyzed by displaying the probability

distribution functions (PDFs) of the temperatures at

seven different periodic times during the cooling for

the cases B = 0, B = 5, and B = 10. At first all the

temperatures were T� = 1. When chaotic advection

starts, a distribution of temperature appears and a peak

is observed, revealing the most represented tempera-

ture. This peak moves in time to the left while its height

increases. The shift of the PDF towards the left

illustrates that the hot temperatures disappear during

the thermal mixing process. A narrower distribution is

obtained when the mean temperature approaches the

wall temperature T� = 0. This effect is much more

pronounced for the case B = 10, for which the right tail

of the distribution is shorter.

An important feature of this thermal chaotic flow

is revealed by the PDFs of the rescaled dimensionless

temperature X, defined as

X ¼ T� � T�m
r

: ð11Þ

When the dimensionless temperature difference is

rescaled by the standard deviation r, we observe, for

B = 0, that the distribution for the last periods (from
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PDFs of the temperature T� at seven different periodic times for B = 0, B = 5, and B = 10
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t=s = 20 to t=s = 45) superimpose (Fig. 11). The

superimposed PDFs, plotted for different times dur-

ing the mixing process but at the same phase of the

period, characterize the self-similarity of the dissi-

pation mechanism and are the signature of the

existence of a thermal strange eigenmode in the

periodic magmatic flow. This is characterized by the

production of persistent patterns in the magmatic flow

that develop after a transient time (see Fig. 4). These

patterns arise from a subtle combination of stretching,

folding, and thermal diffusion as the flow is period-

ically exactly the same (ROTHSTEIN et al. 1999;

PIKOVSKY and POPOVYCH 2003; LIU and HALLER 2004;

EL OMARI and LE GUER 2010). The convergence to the

thermal strange eigenmode is also associated with the

exponential decay of the dimensionless temperature

variance (see Fig. 8). With the increase in the tem-

perature dependence and the nonlinearity due to the

stronger link between the velocity field (which is not

that of Fig. 3) and the temperature field (B = 5 and

B = 10 cases), the temperature patterns lose their

self-similarity and the flow becomes more complex.

5. Conclusions

In this study we investigated the effects of chaotic

advection for thermal mixing during the cooling of a

mafic magma with temperature-dependent viscosity.

The implications for magmatic systems are impor-

tant. One of the most significant is related to the

thermal lifetime of magma chambers. We have

shown that, when the thermal field of a magma

chamber is governed by chaotic dynamics, it

develops complex structures that are strongly modu-

lated by advective flow fields. This generates

different thermal domains due to different cooling

efficiencies depending on the ability of chaotic ther-

mal mixing to homogenize the thermal fields; in some

cases poorly mixed regions may remain. These cor-

respond to volumes of melt in which heat is

transferred with strongly different efficiencies to the

surrounding volumes of melt. In strongly stretching

regions, heat transfer is fast because of the formation

of large contact interfaces. Due to higher heat transfer

rates, these regions cool faster than weakly stretching

regions, allowing the preservation of chemical

structures. This is particularly true for closed systems

(i.e., magma chambers that are not refilled by new

magma), where the total energy of the system is equal

to the initial energy of the system. On the contrary,

open systems (e.g., magma chambers continuously

refilled by new hot magma) will be able to mix more

deeply as a result of the prolonged energy input to the

system. In weakly stretching regions, heat dissipation

is slower than in strongly stretching areas, because it

occurs mainly via diffusion. This allows for the for-

mation of volumes of melt that can potentially

preserve the initial temperature for a longer time.

Here, chemical homogenization is also very slow due

to lower values of chemical diffusion coefficients

with respect to thermal diffusion coefficients. As a

result, after the beginning of chaotic advection, the

magmatic system quickly evolves towards a config-

uration in which different thermal domains exist. The

development of chaotic thermal mixing also con-

tributes to an increase in the space and time

complexity of the magmatic system. Moreover, we
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PDFs of the rescaled dimensionless temperature X at seven different periodic times for B = 0, B = 5, and B = 10
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have shown that the temperature-dependent viscosity

effect is manifested by the introduction of additional

complexity in the flow; it also destroys the self-sim-

ilar character of the temperature fields. This first

study was made with the consideration of a certain

number of assumptions about the physical phenom-

ena involved. To get closer to a more appropriate

magma behavior, consideration of further physical

processes could be investigated by numerical simu-

lations for the magma flow, for example, the

buoyancy effect if the shear has a component parallel

to the gravity field (differentiation), the viscous

heating generated by viscous friction near the walls,

the non-Newtonian shear-thinning rheological

behavior of the magma with or without the existence

of a yield stress, and the crystallization kinetics

during cooling (including a physical model of magma

solidification).
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