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Daylighting plays a very important role for energy saving in sustainable building, therefore, setting the optimal shapes and positions of the openings is 
crucial for daylighting availability. On the other hand, computing daylighting for climate-based data is a time-consuming task involving large data set 
and is not well suited for optimization approaches. In this paper we propose a new and fast daylighting method that allows to perform opening shape 
optimizations. The base of our method is to model each element of an opening surface as a pinhole and then formulate a compact irradiance-based 
representation to ease global illumination calculations. We use the UDI metric to evaluate our method, on an office-based model, for different 
orientations and different geographical locations, showing that optimal windows shapes can be obtained in short times. Our method also provides an 
efficient way to analyze the impact of climate-based data on the shape of the openings, as they could be modified interactively.

1. Introduction

Configuring the opening shape and position is a crucial element
for improving the daylight exploitation, a well known effective
means to reduce artificial requirements of buildings. The prob-
lem of finding the best opening configuration involves two related
tasks: the geometric model optimization and the daylight compu-
tation.

Concerning daylight measurements, nowadays there are well
established metrics that take into account hourly-data for the
whole year, such as the daylight autonomy (DA) [1] or the useful
daylight illuminance (UDI) [2]. These metrics replaced successfully
the rough approximation of the widely used daylight factor, with
more realism. The metrics are known as climate-based, since they
consider time-varying daylight illumination for a full year. As out-
put of the computation, they evaluate the percentage in hours that
a place can have daylight accessibility. Involving hourly Sun and
sky conditions leads to work with a huge dataset, with thousands
of skies.

Regarding the problem of finding the optimal geometric model
that achieves a given goal, such as maximizing the daylight hours,
this problem cannot be solved by standard CAD tools that work on
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forward-based strategies. This strategy is unsuitable for optimiza-
tion problems, where thousands of possible configurations should
be tested. The problem should be stated as an inverse problem [3]
and formulated as an optimization approach [4]. In the case of opti-
mizing the shape for daylighting intentions, an additional difficulty
is that we need to evaluate the whole hourly dataset of the year, at
each iteration of the optimization.

One of the most used daylighting method is based on the day-
light coefficient (DC) approach, originally proposed by Tregenza
and Watters [5]. The concept behind this approach is to divide
the sky dome into patches and the contribution of each sky tile
is computed at each particular sensor position. Then, for a given
configuration, it is possible to compute the total illuminance con-
tribution for different sky conditions, for the whole year dataset.
However, if the geometry changes, the DCs may also change and
should be re-computed at each optimization step. This drawback
discourages the DC method for optimization problems.

In this paper, we propose a new daylighting computation
method which is suitable for the optimization of opening shapes.
The base of the method is to represent each element of a win-
dow as a pinhole approximation. The incoming light that passes
through each pinhole of the opening is then modeled using a com-
pact radiosity formulation that allows to isolate the window as a
single source contributor. In [6], a pinhole-based radiosity method
was presented, but only for static sky and environment maps. The
new method can deal with a whole-year dataset, providing fast
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daylighting computation and considering full global illumination
solutions. An important result obtained in our formulation is that
the overall computational cost of the optimization process does not
depend on the size of the scene nor on the number of sky tiles. We
also show that our approach could work in problems based on the
use of daylighting coefficients.

The main contributions of our work is a new formulation of
daylighting computation that allows modifying the geometry of
the opening. The new formulation enables us to obtain the opti-
mal shape for windows at early stages of the design process.
However, here we do not go further with building technological
considerations of the result, such as real windows insertions or
electric energy requirements, which are out of the scope of this
work. Moreover, a complementary contribution is the possibility
to analyze the impact of weather data on the geometry at the
design phase, a subject not completely addressed before in the
literature.

The rest of the paper is divided into six sections. In Sec-
tion 2 related work for daylighting and inverse lighting problems
is reviewed. In Section 3 the pinhole-based radiosity method is
reviewed and in Section 4 the extension for computing illuminance
from dynamic skies is formulated. Then, our optimization approach
is described in Section 5. Our method was tested with a box office
(Section 6). Our analysis provides results for different orientations
and different geographical locations of this office. Finally, the con-
clusions and further work are summarized in Section 7.

2. Related work

The main related subject to this work are daylighting and the
optimization problem, which are reviewed in this section.

2.1. Daylighting computation

Considering dynamic daylighting simulation, several metrics
based on hourly measured data have been developed. These include
daylight autonomy (DA) [1], continuous daylight autonomy (CDA)
[1], useful daylight illuminance (UDI) [2], and spatial daylight
autonomy (sDA) [7]. The daylight performance assessment of an
interior space is computed from annual hourly illuminance values
calculated over some sensors, typically at 0.75 m height repre-
senting a workplane. DA is the percentage of illuminance values
above a minimum desired illuminance, without an upper threshold
bound for illuminance. For this reason, it does not capture over-
illuminated situations that can produce visual discomfort. CDA
improves continuity by giving partial credits to values below the
minimum desired illuminance. sDA relates the working space by
computing the percentage of area that is above a threshold for at
least 50% of the annual evaluated hours. These metrics also have
the problem of not taking visual comfort into account. Another
frequently used metric is the UDI [2], which is the percentage of
illuminance values above a desired minimum, typically 100 lx, and
below a desired maximum, typically 2000 lx. Unlike other metrics,
UDI captures the daylight sufficiency and visual comfort of a design
solution because values above the upper threshold are likely to
cause visual discomfort/glare. In Section 6 we use UDI as the day-
lighting metric to optimize.

Regarding the daylighting computation, one of the most used
methods is based on the DC approach originally proposed by
Tregenza and Watters [5]. The concept of DCs is to divide the
skydome into a set of sky tiles and then calculate the contribution
of each sky tile to the total illuminance at various sensor points in a
building based on each sensors position and orientation. The total
sensor illuminance at a given point is obtained by linear superpo-
sition of each DC. Time-varying solar and sky tiles luminances can

be calculated using direct and diffuse irradiances from weather
data-files. Working with DCs is a two-step process: first calculating
the DCs, then folding them against time-varying luminances. The
approach is very efficient for static scenes, but, when the geometry
changes, the DCs should be re-computed. This discourages the
use of a DC approach for optimization problems. However, it
is computationally possible with time consuming executions.
Recent approaches following this strategy, and aiming also to link
daylighting to energy performance, can be found in [8,9]. In [8], an
example for a particular model optimization using DC is presented,
whereas in [9] the problem is addressed by studying a few number
of configurations, without an optimization process.

Other daylighting methods are focusing on the efficient calcu-
lation of complex fenestration systems. In this case, a bidirectional
scattering distribution function (BSDF) is used to represent the
optical behavior of the opening. The “three-phase simulation
method” [10,11] and the “five-phase method” [12] allow computing
annual daylight performance for such systems using the RADI-
ANCE package [13], by condensing the computation into several
pre-computed matrices. For instance, in the three-phase method,
the matrices account for the relation between sky patches and inci-
dent opening direction (D: daylight matrix), the relation between
the incident opening direction and the exiting directions (T: trans-
mission matrix) and the relation between the outgoing opening
directions to the desired calculation points (V: view matrix). The
matrix product VDT relates the luminance of the sky tiles with the
illuminance of interior points of the scene. This strategy allows
obtaining in a few seconds the illuminance at the desired points
for any changing sky condition, since no rays are casted. It can
be used also to optimize the BSDF (as for example the slat angle)
by changing only the T matrix. However, this approach cannot
be used to optimize the shape of the window, because the full
computation of V and D matrices are required at each step of
the optimization process, which is expensive in computational
resources.

2.2. Opening optimization and inverse lighting problems

An early approach to inverse opening shape design was pre-
sented by Tourre et al. [14]. They considered openings with
anisotropic light sources, however, their work did not consider
essential global illumination features neither occlusions. A more
general solution, where the previous restrictions are overcome,
is presented in [15]. This method considers openings composed
of a set of small elements as in the present work. It com-
putes the directional incoming light from the sky through parallel
projections. Next, at each opening element, a directional and
spatial representation is stored by means of anisotropic light
sources. These light sources are then used to evaluate their impor-
tance for a given indoor lighting intention. The final solution
used a ray-based method for global illumination taking several
hours to achieve simple shape optimization. No existing light-
ing coherence was considered to accelerate the computational
process.

Global illumination coherence in architectural models can be
exploited using a low-rank radiosity (LRR) approach in combi-
nation with a meta-heuristic method for optimization [3,16]. In
this case, optimal shapes of diffuse skylights can be obtained
in minutes. However, the method is restricted to translucent
surfaces.

Other related works on opening optimization focus on an inte-
grated energy evaluation, which includes artificial lighting and
thermal analysis [17,18]. In [17], they focus on the whole facade
for optimization, then, only the window-to-wall ratio is used as
a parameter for optimization. In [18], a genetic algorithm is used
to optimize the modeling of windows as cells. However, they use
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Fig. 1. Pinhole based radiosity and its main elements.

EnergyPlus as the energy evaluation engine, with a rough approx-
imation for daylighting. Our work focuses only on natural lighting
analysis with full hourly-year datasets providing a way to obtain
optimal window shapes.

3. Pinhole based radiosity

The substitution of an opening by a set of pinholes was proposed
in [6]. In this proposal, the pinholes are used to model the interac-
tion between the exterior daylighting and the interior surfaces of a
scene. The main feature of this so-called “pinhole-based radiosity”
(PBR) is that it is a radiosity method that allows to model anisotropic
emissions and isotropic reflections (Fig. 1). In this section, we sum-
marize this technique, which is fundamental to introduce the new
proposed method.

In PBR, the well-known radiosity equation [19] (I − RF)B = E is
substituted by

(I − RF)B = E + GW (1)

where I is the identity matrix, R is a diagonal matrix containing
the reflection index of each patch, F is the form-factor matrix, B

and E are vectors containing the radiosity values, and the emission
values of all patches, respectively. The new terms are the matrix G

of dimension n × w (where n is the number of patches in the scene
and w is the number of patches in the opening), and W, which is
a binary vector of dimension w, where W(j) = 1 when the patch j is

open and W(j) = 0 when it is closed. Each element G(i, j) contains
the radiosity value at the scene patch i, corresponding to the first
bounce of the light coming through patch j.

When the matrix (I − RF) is inverted, it is possible to find B (Eq.
(2)), for the configuration of pinholes defined in W.

B = ME + NW

where M = (I − RF)−1 and N = MG.
(2)

The calculation of G(i, j) is expressed in Eq. (3). This calcula-
tion is based on the approximation of the light passing through a
patch emulating a pinhole. Then, we use two opposite hemi-cubes
centered in each pinhole j, to model the light passing through the
corresponding patch j. These hemi-cubes, HI

j and HE
j (Figs. 1 and 2),

respectively contain the projection of the interior and exterior
views of the scene.

G(i, j) =
A(j)

A(i)
R(i)

∑

(u,v)|HI
j
(u,v)=i

��F(u, v)HE
j (u, v) (3)

The hemi-cubes are represented as matrices. Each cell HE
j (u, v)

contains the light energy expressed in radiance (W/sr/m2), HI
j(u, v)

contains an index that represents the scene patch projected on it,
�F(u, v) is the delta form-factor of cell (u, v) [20], and � is needed to
transform angular quantities (radiance of HE

j ) into area ones (irra-

diance (W/m2) on the pinhole). Other elements are R and A, which

Fig. 2. Internal (HI
j ) and external (HE

j ) hemi-cubes at pinhole j. Each pixel (ui, vi) of HE
j illuminates the surface represented in pixel (ui, vi) of HI

j through this pinhole.
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contains the reflection coefficient of the scene patches and their
areas, respectively.

In Eq. (3) the sum calculates the total irradiance that arrives at j

and goes to patch i. To do this, first the pixels (u, v) related to patch i

are sought in HI
j . After that, each radiance value HE

j (u, v) is weighted
by ��F(u, v). This is done to transform the radiance of the sky into
the irradiance on patch j, and because the influence of each pixel on
the hemi-cube over the pinhole is dependent on pixel location and
orientation [20]. Finally, the result is multiplied by (A(j)/A(i))R(i),
to transform the irradiance going through patch j into the radiosity
reflected by patch i.

A hemi-cube structure, that is, a cube sliced in half through a
plane parallel to one of its faces, is used just for computational
reasons [20], but hemispheres or other surfaces can be used as well.

4. Pinhole based illuminance from the sky

In this work we seek for the calculation of the illuminance at the
surfaces instead of their radiosities, therefore, the PBR is modified to
represent a pinhole-based illuminance (PBI). In this new approach,
Eqs. (1) and (2) are substituted by the following equations:

(I − FR)I = FE + GIW (4)

1I = MIFE + NIW

where MI = (I − FR)−1 and NI = MIGI .
(5)

Now, I stands for the global illuminance (lx = lm/m2), GIW is the
direct natural illuminance from the sky (or I(D,K)), and E is the lumi-
nous emittance (lx) from other light sources. The calculation of
GI(i, j) is:

GI(i, j) =
A(j)

A(i)

∑

(u,v)|HI
j
(u,v)=i

��F(u, v)s(k)

where k = Sj(u, v).

(6)

In this equation, Sj is the hemi-cube view of the tiles of the sky
as it is seen from pinhole j (each element of Sj has the index of
a sky tile), and s is a vector with the luminance ((lm/sr)/m2) of
each sky tile. The product between s and ��F(u, v) transforms the
luminance into illuminance, and the sum gives all the illuminances
received by patch j and going to patch i. Finally, the result is multi-
plied by A(j)/A(i) to find the illuminance on i. Fig. 3(a) shows a lateral
view of a room, with three different opening cases, and Fig. 3(b),
(c), and (d) shows the corresponding Sj views of the sky and the
ground.

4.1. PBI for many skies

In order to simplify the calculation of GI when the sky s changes,
Eq. (6) can be transformed by grouping the terms of the sum by
s(k):

GI(i, j) =

s∑

k=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A(j)

A(i)

∑

(u,v)|HI
j
(u,v)=i,Sj(u,v)=k

��F(u, v)

︸ ︷︷ ︸

L(i,j,k)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

s(k)

=

s∑

k=1

L(i, j, k)s(k)

(7)

In this equation, L is a 3-way array or tensor with dimension n × w ×

s, where L(i, j, k) is the ratio between the direct illuminance (lm/m2)
received by the scene patch i and the amount of light (lm/sr) emitted
by the sky tile k (stored in s(k)) passing through patch j.

A tensor is a multidimensional or N-way array [21,22]. Thus, a
1-way tensor is a vector, a 2-way tensor is a matrix, and a 3-way
tensor is a cube of data. A sparse tensor is a tensor where only a
small fraction of the elements are nonzero. In such case, it is more
efficient to store just the nonzeros and their indexes.

We can note that L, in fact, is a sparse tensor because each patch
i “sees” only a few set of sky tiles through pinhole j, thus there are
few L(i, j, k) cells containing nonzero elements. Can be estimated
that the memory needed to store L has O(nw).

The relation between GI, L and s of Eq. (7) can be expressed as:

GI = L ×3 s (8)

where ×3 stands for the product between a tensor and a vector in
the dimension 3 of the tensor [21].

Following the definition of NI in Eq. (5), it can be deduced that:

NI = MIGI = MI(L ×3 s) = (MI ×1 L) ×3 s = Q ×3 s (9)

where Q = MI × 1L is a tensor of dimension n × w × s, and ×1 spec-
ifies a product made along the first dimension of the tensor.
Therefore, each cell Q(i, j, k) is a number that multiplied by s(k) gives
the global illuminance (direct and indirect illuminance) received by
patch i, of the light emitted by the sky tile k, and passing through
the patch j of the opening.

The matrix Q × 2W allows to transform the luminance of the
sky tiles into the illuminance of the scene patches. This represen-
tation is somehow similar to the matrix VTD introduced in [10].
An important difference is that we can modify the geometry of
the window just by setting W. To build Q from VTD, the matri-
ces V and D should be calculated for each patch of the opening, a
computationally expensive task with RADIANCE package [13].

Fig. 3. A room and three hemi-cube views of the sky tiles, one for each opening.

4



The indirect illuminance is the main reason to consider that Q

and NI have relatively few zero elements. The light that comes from
any sky tile k and passes through any pinhole j, can potentially bring
indirect illuminance to any patch i of the scene, with the conse-
quence that Q(i, j, k) /= 0. The amount of memory needed to store
Q is O(nws), meaning that even for small scenes it is required a
large amount of memory. For instance, a scene composed of 10,000
patches, using a sky of 145 tiles and setting the number of pin-
holes to 200, generates a tensor Q of more than 2 Gbytes, when
each cell has a double precision number. But currently [2], the illu-
minance I is not calculated in all the surfaces but only over a small
set of points P = p1, . . ., p

P
called sensors. These sensors, that are

just light receptors, can be placed on the barycenter of some scene
patches or can be added as new transparent patches.

It can be shown that the calculation of Q(P, :, :) and NI(P, :) could
be directly computed, if the matrix MI is obtained and the rows P

of the sensors are selected:

NI(P, :) = (MI(P, :) ×1 L) ×3 s = Q(P, :, :) ×3 s (10)

Now, the amounts of memory needed to store Q(P, :, :) and
NI(P, :) have O(Pws) and O(Pw) respectively. Then, the amount of
memory needed is proportional to the amount of sensors and is
independent of the number of patches in the scene. For instance,
Q(P, :, :) needs 2 Mbytes for a scene containing 10 sensors, 145 tiles
and 200 pinholes, and NI(P, :) needs only 16 Kbytes for the same
scene. Furthermore, in the case of NI(P, :), the amount of mem-
ory needed is also independent of the number of tiles in the sky.
These results have practical implications in the calculation of the
illuminance for many skies and large scenes.

The main cost in the computational aspects of having a large
scene is due to the calculation of the inverse matrix MI = (I − FR)−1.
For large scenes composed of n patches, its calculation has com-
plexity O(n3) and consumes O(n2) memory. In spite of that, these
computational costs can be reduced using efficient factorization
techniques, such as low-rank radiosity [23].

4.2. Daylighting illuminances

In this paper we concentrate our experimental results on the
calculation of the daylighting, that is, the illuminance received by
the sky and the Sun without the consideration of other light sources
(i.e., E = 0 in Eq. (4)). The daylighting can be categorized into direct
illuminance I(D) and indirect illuminance I(I), according to the num-
ber of bounces. Direct illuminance covers the light arriving directly
from a light source, and indirect illuminance refers to the light that
arrives after at least one bounce. The addition of both quantities
is the global illuminance I(G), which is the illuminance accumu-
lated after infinite bounces. These daylight values can be calculated
through the following equations:

I(D) = GIW; I(G) = NIW; I(I) = I(G) − I(D) (11)

Another categorization can be associated to the kind of source
they come from. The daylighting can be calculated considering
that the light arrives from the Sun, from the sky, or from both
sources (total illuminance). The combination of both categoriza-
tions produces another categorization composed of 9 kinds of
illuminances that are expressed as:

I(D,∗) = G
(∗)
I

W = (L ×3 s(∗))W (12)

I(G,∗) = N
(∗)
I

W = (Q ×3 s(∗))W (13)

I(I,∗) = I(G,∗) − I(D,∗) (14)

where * denotes for S, K or T depending if the light source is the Sun,
the sky or both (T for total) sources, respectively. In these equations,
s(S) contains the value of the Sun light in each sky tile, s(K) contains

the value of the scattered light through the atmosphere in each sky
tile, and s(T) = s(S) + s(K). This new categorization is used in the results
analysis of Section 6.

4.3. Daylight coefficients equivalence

In this section, we show that our methodology could be used
to implement tests and to solve inverse lighting problems based
on daylight coefficients. Both Q and W can be related to the clas-
sical DCs formulation. In this way, this relation could be used to
accelerate the calculation of the DCs for any opening configuration.

Following Tregenza and Watters [5], a daylight coefficient
DC˛(pi) related to a sky tile S˛ is defined as:

DC˛(pi) =
I˛(pi)

s(˛)�S˛
(15)

where I˛(pi) is the illuminance I in luxes at a sensor pi caused by
the sky tile ˛, s(˛) is the luminous intensity of ˛ (lm/sr), and �S˛ is
the angular size of the sky tile. The total sensor Illuminance I(pi) is
obtained by the linear superposition of all the illuminances I˛(pi).

I(pi) =

S∑

˛=1

I˛(pi) =

S∑

˛=1

(DC˛(pi)�S˛) s(˛) (16)

Moreover, using Eqs. (5) and (10), and assuming that there are no
additional light sources (E = 0), the calculation of I(pi) is reduced to:

I(pi) = NI(pi, :)W = (Q(pi, :, :) ×3 s)W (17)

Now, grouping Eq. (17) by s(˛), it turns into:

I(pi) = (Q(pi, :, :) ×2 W)s

=

S∑

˛=1

(Q(pi, :, ˛) ×2 W) s(˛)
(18)

Therefore, from the coefficients of Eqs. (16) and (18), the value of
DC˛(pi) ∀˛ can be deduced as:

DC˛,W (pi) =
Q(pi, :, ˛) ×2 W

�S˛
(19)

where ˛ and W are parameters that modify the DC’s. Then, using
Eq. (19) it is possible to calculate a matrix DCW of dimension
P × s, where DCW(pi, ˛) = DC˛,W(pi). The calculation of DCW is now
reduced to a product between a tensor and a vector that has order
of complexity O(Psw).

This result relates our work with DCs, and shows a way to reduce
the computational resources needed to calculate the DCs, in com-
parison to the currently used routines of RADIANCE package [13].

5. Implementation

In this section we present practical considerations for imple-
menting an optimization system.

5.1. Illuminances in all sensors and for all skies at the same time

Assuming that the set of skies S = {s1, . . ., s
S
} is related to a set of

matrices {NI,s1
, . . ., NI,s

S
} and that there are no other light sources
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(E = 0), then it is possible to define the global illuminance (I(G)
S

) on
sensors P, and to build a unique matrix NI,S(P, :):

I
(G)
S

(P) = NI,S(P, :)W

where NI,S(P, :) =

⎛

⎜
⎝

NI,s1
(P, :)

...

NI,s
S
(P, :)

⎞

⎟
⎠

(20)

In this equation, I
(G)
S

(P) contains the global illuminance associated

with sensor pi ∈ P and each sky of sj ∈ S. The elements in I
(G)
S

(P) can
be characterized as:

I
(G)
S

(P) =

⎛

⎜
⎜
⎜
⎜
⎝

I
(G)
s1

(p1), ..., I
(G)
s1

(p
P
)

︸ ︷︷ ︸

I
(G)
s1

T
(P)

, ..., I
(G)
s
S

(p1), ..., I
(G)
s
S

(p
P
)

︸ ︷︷ ︸

I
(G)
s
S

T
(P)

⎞

⎟
⎟
⎟
⎟
⎠

T

where I
(G)
si

(P) = NI,si
(P, :)W is the global illuminance on sensors P

when the sky is si.

Similarly, I
(D)
S

(P) and I
(I)
S

(P) can be calculated as:

I
(D)
S

(P) = GI,S(P, :)W,

where GI,S(P, :) =

⎛

⎜
⎝

GI,s1
(P, :)

...

GI,s
S
(P, :)

⎞

⎟
⎠

(21)

I
(I)
S

(P) = I
(G)
S

(P) − I
(D)
S

(P)

= (NI,S(P, :) − GI,S(P, :))W
(22)

Furthermore, the distinction between sky, Sun, and total illu-
minance in the direct, indirect, and global illuminance can be
calculated if the sky and Sun luminous intensities for each sky
tile are available. Then, we place them in the s term of Eq. (8) and
following (Eqs. (10), (20), (21) and (22)). The calculation of Sun illu-
minance may require the use of a finer mesh [2], affecting the size
of s, L and Q, but without effect on the size of GI,S(P, :) and NI,S(P, :).

5.2. UDI formulation

Eqs. (20)–(22) are a previous step to the calculation of UDI. We
base the optimization tests on UDI, but our methodology could also
be used on any other daylighting metric. Following [2], the propor-
tion of skies S that fulfills the three indicators of UDI (exceeded,
fell-short, and achieved) are calculated respectively as:

PI>2k =

∑S

i=1
(max(Isi

(P)) > 2000)

S
(23)

PI<100 =

∑S

i=1
(min(Isi

(P)) < 100)

S
(24)

P100<I<2k =

∑S

i=1

(
(min(Isi

(P)) ≥100)∧(max(Isi
(P))≤2000)

)

S
(25)

In the equations above, the addends of each sum are Boolean
expression, whereas the operators >, <, and ∧ return 1 when they
are satisfied and 0 otherwise. The sums accumulate the amount of
hours where the Boolean expressions are satisfied, i.e., the amount
of hours where at least one sensor receives more than 2000 lx (Eq.
(23)), the amount of hours where at least one sensor receives less
than 100 lx (Eq. (24)), and the amount of hours where the illumi-
nances in all sensors are between 100 lx and 2000 lx (Eq. (25)).

Due to space constraints, in Section 6 we only present results of
Eq. (25). In this equation, we removed the division by S to show
the total number of hours along the year where the UDI indicator
is satisfied.

5.3. The optimization process: VNS and rectangles

We use variable neighborhood search (VNS) [24] metaheuris-
tic to solve the inverse daylighting problem. This methodology
is based on the idea of successive explorations of a set of neigh-
borhoods (N1(x), N2(x), . . ., Nk(x)). The method explores, either at
random or systematically, a set of neighborhoods to obtain differ-
ent local optima. Each neighborhood has its own local optimum,
and it is expected that the global optimum is the same as a local
optimum for a given neighborhood. The set of neighborhoods is
usually nested (the neighborhood Ni+1(x) is included in Ni(x)). To
address the inclusion of constraints into the optimization problem,
we use the penalty approach [25] which modifies the function to
optimize through the consideration of the constraints.

As we mentioned in Section 2.2, our approach is focused only
on daylighting. In Eqs. (20)–(22), the configuration of an opening
is defined by the selection of 0′s and 1′s in W. Then, the search
of an optimal opening configuration is a combinatorial problem,
where it is needed to add several constraints to define the shape
and other desired properties for the openings. To avoid such kind
of problems, our proposal is based on the use of a set of rectangles
to define the shape of the opening (Fig. 8). Each rectangle is defined
by two opposite corners, and all the patches that partially or totally
fall inside a rectangle are considered as part of the opening (see
all gray triangles in Fig. 8). The rectangles are built over walls and
roofs previously set to have openings installed. Each corner of a
rectangle opening can be represented as a 2D vector. We associate
each patch of those surfaces to a cell in W. Then, each cell of W is
set as “open” if its corresponding patch is partially or totally inside
of the rectangle, and as “close” otherwise. Working with corner
bounds has the advantage that reduces the potential number of
variables from hundreds (patches) to tens or less (corners). Also, it
assures the existence of large sets of connected patches.

Fig. 4. Nabil & Mardaljevic office [2] with 24 sensors, distributed in three rows.
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Fig. 5. Three possible configurations of the window.

6. Results

The results of the presented set of experiments exemplify the
practical use of the method. The simulations were conducted on a
desktop computer, with Intel quad-core i7 processor and 8 Gbytes
RAM. The code was implemented in MATLAB [26], and the tensors
in the MATLAB Tensor Toolbox Version 2.6 [27].

The geometric model used is the same as in [2] (Fig. 4). This office
is a box of 6 m × 3 m × 2.7 m size, with an opening in one of its walls.
The opening covers the entire wall except a lower section of 0.75 m
high. The wall of the office has 620 patches, and the opening is
modeled with 3 different configurations (Section 6.1). The sensors
are installed at 0.75 m from the floor. The window glass has a trans-
mittance of 0.76. The reflectivities of the walls, ceiling, and floor are
0.7, 0.8, and 0.2, respectively.

Hourly sky and Sun conditions were derived from the direct
normal and diffuse horizontal irradiation data, extracted from Test
Reference Year data [28].

6.1. Pinholes in the window

Here we analyze the performance of the pinhole method in
daylighting computation, for modeling the opening of the office.
In order to evaluate the amount of pinholes needed for realistic

modeling, we tested three configurations of the opening with 40,
160 and 640 patches (Fig. 5).

Each pinhole is positioned at the barycenter of a triangular ele-
ment; therefore, the 3 meshes are composed of 40, 160 and 640
pinholes, respectively. For each mesh, we calculate the illuminance
distribution (ID) in the sensors of the central line (sensors 1–8 of
Fig. 4). The diagrams of Fig. 6 show, along the sensors line, the
annual distribution of the illuminances measured in percentage of
the office hours (9:00–18:00). They are also clearly showing the
UDI availability along the central line (percentage of hours between
the two thick separation lines). In this situation, UDI is increasing
significantly from the front to the back of the room. These results
are computed in Gatwick-UK, and the window is oriented to the
South.

The three diagrams of Fig. 6 are quite similar, especially 6(b) and
(c), where the differences are lower than 5%. They are also similar
to the ID diagram of [2], although the weather data and the number
of sensors are not exactly the same.

The required amounts of memory to store Q(P, :, :) are 224 KB,
897 KB and 6.0 MB for 8 sensors and when the number of pinholes
is 40, 160, and 640, respectively. The largest matrix NI,S(P, :) occurs
when the opening has 640 pinholes. This matrix has dimension
(365 * 10 * 8) × 640 and needs a memory of 150 MB. Its calculation
takes about 80 s applying Eq. (5), assuming that F, R, s, Sj and HI

j are

Fig. 6. ID for the central sensors, with three meshes of the window during working hours (9:00–18:00) in a year, in Gatwick, UK.
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Fig. 7. Direct, indirect and global illuminances from the sky and the Sun at sensor 4 in Gatwick-UK.

available. After NI,S(P, :) is built, the calculation of an ID diagram for
any opening takes only 0.1 s.

For the other experiments, we use a mesh always composed of
640 elements that allows a better definition of the optimal open-
ings shape. However, if, due to constraints in memory or time, a
rough approximation of the shape is preferred, a smaller amount
of pinholes may bring comparable results.

6.2. Direct and indirect illuminances

This experiment consists in the calculation of the direct and
indirect sunlight and skylight illuminances arriving at sensor 4
(see Fig. 4). We apply Eqs. (20)–(22), assuming that the window
is fully open. As we do the calculation only for one sensor and 24 h
per day, NI,S(P, :) has dimension (365 * 24 * 1) × 640 and requires
44 MB of storage. The results are shown in Fig. 7, where each dot in
the images represents an hour in the year, the columns represent

the days (365 columns) and each row represents 1 h. The results
are expressed in luxes. Fig. 7(a)–(c) shows the direct illuminance
from the Sun, the sky, and the sum of both (total illuminance).
Fig. 7(d)–(f) shows the indirect illuminance (the internally reflected
component) from the Sun, sky, and total. Finally, Fig. 7(g)–(i) shows
the sum of direct and indirect illuminance (global illuminance) of
the Sun, sky and total.

6.3. Optimization: problem definition and settings

The optimization process is based on the pinhole method, and
the shortcuts described in Section 5. The problem to solve is the
maximization of the UDI hours in the office. We have to define some
constants and to set some parameters that maximize the impact of
the solution achieved. The constants are: the number of pinholes
(640), the interval of hours (all working hours – 9:00 to 18:00 –
in a year), and the number of iterations (50,000). For this setting,

Fig. 8. Valid configurations of the opening. The union of interior patches of the rectangle is considered as the opening shape.
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Fig. 9. Optimal opening shape for {24,8,S,UK} settings, the UDI obtained is 1442 h,

and the glazing ratio obtained is 4.7%.

each optimization process takes about 1.5 h (about 0.1 s per opening
configuration).

The optimization parameters are the number of sensors and
the number of rectangles. To reduce the number of variables, the
rectangles are related to each other by an axial vertical symme-
try constraint (Fig. 8(b)). This reduction has a direct impact on the
computational costs involved in the optimization process.

We perform an initial study of the optimal shape with the num-
ber and distribution of sensors (1, 8, or 24) corresponding to the
scheme of Fig. 4, and with 1, 2, 4, or 8 rectangles.

To label each optimization solution, we define a vector nota-
tion containing 4 parameters: {#sensors, #rectangles, orientation,
location}. In addition to the number of sensors and rectangles, the
other parameters are: the orientation (S, E, N, and W), and the geo-
graphical location, which has been selected in a range of latitudes
(Quito-Ecuador [0.15 S, 78.48 W], Kharga-Egypt [25.45 N, 30.53 E],
Barcelona-Spain [41.28 N, 2.07 E], Gatwick-UK [51.15 N, 0.18 W],
and Kiruna-Sweden [67.82 N, 20.33 E], which are codified as EC, EG,
ES, UK, and SE respectively).

Our analysis of the optimal results starts by defining one con-
figuration of parameters as a reference result, and it continues by
studying results achieved when 1 or 2 parameters are modified.

6.3.1. Reference solution

As a reference solution, we use the opening (three small rec-
tangles on the top and a large one on the bottom of Fig. 9) that
maximizes amount of working hours where the UDI is achieved,
for 24 sensors and 8 rectangles, when the opening is oriented
to the South in Gatwick-UK. This configuration is encoded as
{24,8,S,UK}.

Fig. 11. Solar-path diagram for the solution obtained in 10(a) centered at sensor 4.

If the middle-step is removed, UDI decreases of 87 h.

The matrix NI,S(P, :) has dimension (365 * 10 * 24) × 640 and is
stored in 449 MB of memory. Its calculation takes about 110 s. The
optimal UDI value found for the reference configuration is 1442 h,
corresponding to 1442/3650 = 39.5% of the working hours. The glaz-
ing ratio (GR) obtained, measured as the ratio between the surface
of the opening and the surface of the floor in the office, is 4.7%.
The solution found is composed of a small opening area in the bot-
tom part of the window, and three even smaller areas at the top
of the window. A first observation about this solution is that those
small openings could cause discomfort in the working areas due to
the direct sunlight incidence, but it seems that this problem is not
detected by the sensors, or perhaps is compensated by the benefits
of the other lights.

The gain obtained with this result can be compared to a com-
pletely open window for the same setting, which results in an UDI
of 450 h. Therefore, the solution of Fig. 9 has a gain of about 220%
over the original configuration.

6.3.2. Amount of sensors

The amount and distribution of sensors have a great influence
in the final solution. We calculate the optimal solution for two
other sensor configurations, different from the reference one with
24 sensors. The first configuration is composed only of the sen-
sor number 4 (see Fig. 4), and the second one is composed of
the 8 sensors that belong to the central row. The shapes vary
notably, as well as the amount of UDI hours. These shapes seem
to avoid the direct illuminance of the sensors by the Sun. Also,
these results follow the intuitive idea that the addition of sensors
reduces the amount of UDI hours satisfied. When only one sensor

Fig. 10. Sensor 4 UDI = 2571 h (a), and 8 sensors on the central line UDI = 1703 (b).
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Fig. 12. Average amount of hours per day for the optimal solution computed with clear sky for the solutions with different amount of sensors.

Fig. 13. Solutions for 1, 2 and 4 rectangles.

is used, UDI = 2571 h (GR = 15.0%), whereas when we add the other
7 sensors, the value obtained of UDI is 1703 h (GR = 5.1%), which
is higher than the UDI value obtained for 24 sensors (UDI = 1442 h,
and GR = 4.7%). The results show that the solution is sensitive to
the amount (and position) of the sensors. We also observed that
the glazing ratio diminishes when the number of sensors increases,
and consequently, the average sky view factor (SVF) in the plane of
the sensors is also reduced. Moreover, the computational costs of

the irradiances I
(∗)
S

(P) are increasing proportionally to the number
of sensors. Therefore, there is a trade-off between the precision
of the optimal UDI values found and the computational costs
involved.

Fig. 11 shows the stereographic diagram for the office centered
at sensor number 4 with the window shape of Fig. 10(a) (white
geometry). Regarding the Sun path for that location, it can be
observed that the solution allows Sun rays entering in the office
for about 2 h at noon during two months of the year because of
this “protrusion-step” window shape. To analyze the impact of this

shape, we also compute the UDI without the step (we eliminate the
superior rectangle of the opening formed by 4 × 12 × 2 patches).
For this window, we obtain an UDI of 2484 h, that is, 87 h less than
the optimal value, confirming the importance of the irregular shape
obtained. To improve the interpretation of the solutions using
different number of sensors, we also compute the day-averaged
amount of sunny hours in each situation using a simple clear-sky
model. This evaluation is performed with Heliodon 2 package [29].
Fig. 12 shows the amount of sunny hours computed on a grid
situated in the sensors plane using only one sensor. The average
number of hours per day at that point is less than 45 min, and it is
reduced for the increasing number of sensors. The most noticeable
observation is that, for this particular example, only the three
points closer to the window are contributing to the UDI value.
Another conclusion is that for 1, 8 and 24 sensors, we observe
respectively the decreasing of the mean SVF (1.9%, 0.5%, 0.3%), the
number of UDI hours computed before as the objective function
of the optimization procedure (2371 h, 1703 h, 1442 h) and the
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Fig. 14. Solutions for East, North and West orientations.

Fig. 15. East and West non-symmetric solutions for office hours (a)-(b), and for 24 h (c)-(d). East and West symmetric solutions for 24 h (e)-(f).

glazing ratios characterizing the openings (15%, 5.1%, 4.7%). As
also observed in Fig. 12(b) and (c), these two last situations are
very close to each other, but in the last one we see clearly the
contribution of the two lateral sensors.

6.3.3. Amount of rectangles

Here, we analyze the influence of the number of rectangles in
the optimal shape and in the UDI value.

In most of the current lighting problems, the designer is looking
for a rectangular opening that maximizes some lighting parameter,
in our case the UDI value. Moreover, when the designer is looking

for the optimal shape of the opening, a combination of rectangles
may approximate that shape. We found that the use of several rec-
tangles is a useful strategy to seek a first approximation of the
optimal shape.

After obtaining the optimal shape for 1, 2, 4 (Fig. 13), and 8
(Fig. 9) rectangles, we see that, compared to the reference solu-
tion, all the solutions have quite a similar geometry (Fig. 13(a) and
(b) are identical). However, the UDI values are sensible to that vari-
ation. For instance, there is a distance of only 4 patches between the
reference solution and Fig. 13(c) (�GR = 0.2%), but the UDI distance
(�UDI) is of 51 h.
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Fig. 16. Solutions for different geographic locations.

Fig. 17. Solar diagrams for the different geographic locations studied.
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6.4. Optimization tests

Considering the previous results, we decide to use 24 sensors
and 8 rectangles to solve the optimal openings, with different ori-
entations and geographical locations.

6.4.1. Orientation

For orientation changes, it can be observed that the results for
East, North and West orientations (Fig. 14) have better UDI val-
ues than the reference solution (Fig. 9). The highest UDI difference
(�UDI = 939 h) is presented when the window is oriented to the
North.

Fig. 15 shows several results for East and West orientations. In
Fig. 15(a)–(d) the optimal shape is shown without the symmet-
ric restriction. As it is explained in Section 6.3, this case implies
more variables (32) and more optimization steps (200,000) than the
symmetric counterpart. In Fig. 15(c) and (d) we show the opening
configuration obtained when the full year (24 h per day and 8760 h
per year) is considered. Finally, in Fig. 15(e) and (f), we apply the
symmetry again but for the full year.

The non-symmetric results found (Fig. 15(a)–(d)), slightly
improve their symmetric counterparts (Figs. 14(a), (c), 15(e),
and (f), respectively). An interesting question to discuss is if the
symmetric configurations for East and West orientation should be
the same when we optimize in a full year basis. The optimal config-
urations are quite similar. In Fig. 15(e) and (f), it can be appreciated
that the East opening has only 12 patches more than the West open-
ing. Also, they ought to be equal if we just consider a clear-sky
model. On the other hand, the UDI hours have a difference of 86 h.
So, perhaps the difference in the solutions is due to another factor
more related to the optimization process. To evaluate the solutions,
we exchanged East and West opening configurations looking for an
improvement in the solutions, but the results worsen the optimal
UDI values in 22 h and 13 h for East and West orientations, respec-
tively. Thus, it appears that East and West solutions are different
because of the climate-based data.

6.4.2. Geographical location

We compute optimal windows shape for the other 4 geographi-
cal selected places: Quito-Ecuador, Kharga-Egypt, Barcelona-Spain,
and Kiruna-Sweden (Fig. 16).

The locations cover different latitudes. All the opening config-
urations are quite similar, but the amount of UDI hours decreases
significantly when the latitude increases. Regarding the solar path
diagrams from the center of the office (Fig. 17), we can observe
that both in the Equator line and the tropic (Fig. 17(a) and (b))
there is no direct Sun along the year. In Barcelona and the Arctic
Circle (Fig. 17(c) and (d)), there are some hours of direct Sun com-
ing through the upper part of the window, and in the Arctic Circle
the light also comes through the bottom part.

Mean SVF due to the optimized windows are: 0.4% in the polar
circle (i.e., a little more than in London), 0.7% in Quito-Ecuador 0.3%
in the tropics and in Barcelona. This result is very interesting: on the
Equator line, the Sun is always high for the south window, which
can be more open. On the polar circle, the Sun is so weak that the
window can be a little more opened. In other latitudes, the SVF is
rather constant.

7. Conclusions and future work

A new method to calculate the illuminance of a set of sensors
is presented. This method is based on the radiosity equation and
the use of pinholes to model the flux of light passing through the
opening. A set of matrix-based equations is defined, whose param-
eters are the luminance of the sky tiles (s) and the geometry of
the opening (W). As examples of application of these equations,

the UDI metric and the daylight coefficients are formulated, both
dependent on s and W. The achieved speed led us to implement an
optimization method to find optimal openings based on the hourly
sky conditions of a whole year. The work is presented here as a
fast computational method for aiding design at an early stage of an
opening shape analysis. Further steps should address real architec-
tural construction, as well as the connection between the openings
and other light sources (E /= 0), or the use of energy for heating and
cooling. Another extension of our work is the inclusion of blinds or
fenestration systems to expand the possibilities of lighting. Finally,
the method could be applied to more complex scenes and to a
higher number of sky tiles, taking advantage of the fact that compu-
tational cost of the optimization process does not depend on these
parameters.
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