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ABSTRACT
This work presents an original numerical model for a free surface flow interacting with a spring-block system. The
formulation is based on the fictitious domain approach and a penalty method on viscosity to describe the rigid solid
motion. The incompressible Navier-Stokes equations are solved in the whole domain and the free surface and the
body contour are captured using a Volume of Fluid method. To describe the rigid body motion, a single degree of
freedom model, able to represent translation or rotation, is embedded in the code. The discrete equations are written
in a well known finite volume framework over Cartesian grids. In such a context, the external spring and damping
forces are represented as body forces in the solid region. The proposed strategy is tested in a sloshing damping
system. The numerical results are compared with experimental data obtained within the present study. Finally, the
method is used to simulate a wave energy converter system as an illustration of a rotational case.

Keywords: Computational methods in hydro-environment research and fluid dynamics; flow-structure inter-
actions: flow control: hydraulics of renewable energy systems: laboratory studies; wave-structure interactions.

1 Introduction

Free surface flows interacting with moving rigid bodies have been widely reported in the literature
due to their extensive use in many hydraulic applications. Wave interaction with coastal defence
elements (e.g. Rogers, Dalrymple, & Stansby, 2010) or floating breakwaters (e.g. Huang, He, &
Zhang, 2014; Koftis, Prinos, & Koutandos, 2006), wave action on ships or off-shore platforms (e.g.
Zhao, Ye, Fu, & Cao, 2014), wave energy recovery systems (e.g. Renzi, Abdolali, Bellotti, & Dias,
2014; Y.-H. Yu & Li, 2013), or conversely, generation of waves by rock fall in water reservoirs (e.g.
Abadie, Morichon, Grilli, & Glockner, 2010), all require the description of liquid-gas interfaces
interacting with moving bodies. These types of problems also often involve external forces which
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can act on the solid, such as mooring forces on floating bodies, power take-off mechanisms in wave
energy converters, or a friction force as at the interface between a breakwater caisson and the
underlying rubble mound.

The Fluid Solid Interaction (FSI) involves the coupling between two different phenomena: the
fluid flow usually expressed in the Eulerian reference frame and the structure deformation for which,
the Lagrangian frame is more adapted. Many numerical methods try to solve this intrinsic difficulty.
Among these, the Arbitrary Lagrangian-Eulerian method (ALE) (Donea, Giuliani, & Halleux,
1982), is likely the most often used, and consists in deforming the fluid domain from a reference
configuration to follow the fluid/solid interface. This method is for instance used in Kassiotis,
Ibrahimbegovic, and Matthies (2010) to compute the impact of a free surface flow generated by a
dam break on a flexible obstacle.

When the solid is rigid, the study is somehow simplified, but appropriate numerical methods are
still required. Numerical methods can be grouped in two classes: moving or fixed grid methods.The
Smoothed Particle Hydrodynamics approach (SPH) (Gingold & Monaghan, 1977) is a meshless
method where the unknowns are computed at points that move during the analysis. It was recently
adapted to FSI by Groenenboom and Cartwright (2010). An example of the application of this
method is reported in Altomare et al. (2014) for the simulation of the interaction of waves with sea
breakwater armor blocks. The Boundary Element Method (BEM) is also belongs to Lagrangian
methods. Here, the problem is reduced to a discretization over the boundary of the domain and the
flow is assumed to be potential (Borgarino, Babarit, & Ferrant, 2012). Methods with a fixed mesh
include the family of fictitious domain method, where we find the Immersed Boundary Method
(IBM) (Peskin, 1972, 2002), the Distribute Lagrangian multiplier (DLM) (Glowinski, Pan, Hesla,
Joseph, & Periaux, 2001), penalty methods (Angot, Bruneau, & Fabrie, 1999) among others. These
methods superpose the body on a fixed fluid domain generating a fictitious fluid domain where the
solid is. It is necessary to impose conditions on the fictitious fluid domain to ensure non-penetration
of fluid through the solid boundary. The IBM method consists in moving the solid wall and imposing
a jump of the stress at the interface. This condition is achieved by imposing additional forces on
the fluid formulation in the vicinity of the solid boundary. The DLM method principle is to fill
the solid areas with a virtual fluid, to relax the rigid body motion condition of the rigid body,
and then impose the rigid body motion by Lagrange multipliers in the variational formulation
of the fluid (Glowinski et al., 2001). This approach was later extended to the interaction with a
deformable body (Yu, 2005). Among the penalty methods we find the Euler-Lagrangian coupling
method where a solid Lagrangian mesh is superimposed onto a fixed fluid Eulerian mesh. The
principle is to penalize the velocity difference between the solid interface and the fluid (Sarthou,
Vincent, Caltagirone, & Angot, 2008). Non-Lagrange multiplier fictitious domain methods can also
be used to solve FSI problems as presented in Veeramani, Minev, and Nandakumar (2007).

A local penalization of the fluid viscosity can also be used to reproduce quasi solid behaviour. This
approach seems to appear first in Ritz and Caltagirone (1999) in the context of fluid particle inter-
actions. The method was further developed in Caltagirone and Vincent (2001), Randrianarivelo,
Pianet, Vincent, and Caltagirone (2005), and Vincent, Randrianarivelo, Pianet, and Caltagirone
(2007) by separating the different contributions of the deformation rate tensor. Penalization on
viscosity can also be found in Cruchaga, Celentano, and Tezduyar (2007), where a finite element
numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT)
for flows with fluid-solid and fluid-fluid interfaces is used to simulate a nylon sphere falling in a
fluid-filled tube. In the MITICT, fluid / solid interfaces are accurately tracked with a moving La-
grangian technique, and fluid / fluid interfaces are treated with an interface-capturing technique
as they are too complex and unsteady to track (Cruchaga, Löhner, & Celentano, 2012).

The viscosity penalization approach is also followed in the present study. In this paper, we
present a finite volume method including the Volume of Fluid (VOF) model reported in Abadie
et al. (2010) to deal with an immersed rigid solid in motion subjected to external forces. To this
end, a formulation is proposed including the following aspects: two VOF are implemented to track

2



January 18, 2017 Journal of Hydraulic Research article˙benoit

the fluid-fluid and fluid-solid interfaces, a penalty model on the viscosity is used to describe solid
regions, and an algorithm to describe external forces acting on the fluid-structure system is included.
The resulting methodology is able to solve the fluid interaction with rigid bodies considering a free
surface flow behaviour like those presented in sloshing dampers or marine energy systems.

Compared to previous works, the novelty includes:

• the application of this penalty method generally restrained to fluid particle interactions (e.g.,
Ritz & Caltagirone, 1999) to hydraulic engineering systems,
• the definition of a rigidity criterion and a simple method to impose kinematic constraints on

the solid such as the definition of a rotation center,
• a practical approach to define external forces acting on the solid body,
• finally, novel experiments allowing to assess the numerical behaviour of the proposed tech-

nique and its potential to solve an immersed spring-block system.

The outline of the paper is as follows: Section 2 reports the governing equations and the numerical
method used to solve them. The proposed penalty method based on body forces and a velocity
constraint is also detailed in Section 2. Section 3 presents the experiment that has been conducted to
validate the numerical method in translation. The comparison between the experimental data and
the simulation results are summarized in the same section. In Section 4, an example of application
of the method to a rotational system (i.e. the wave roller energy converter) is given. Finally,
perspectives and conclusions are drawn in Section 5.

2 Model Presentation

2.1 Governing Equations

The problem to be analysed is sketched in Fig. 1. It involves two fluids (i.e. water ΩF1 and air
ΩF2) and a solid body ΩS . The following incompressible Navier-Stokes equations for a Newtonian
fluid describe the flow motion in the fluid domain (i.e., ΩF = ΩF1 ∪ ΩF2):

∇ · v = 0 (1)

ρ(
∂v

∂t
+ (v · ∇)v) +∇p−∇ · [µ(∇v + ∇tv)] = ρb (2)

where ρ and µ are respectively fluid density and viscosity, both spatially variable and symbol
b represents an acceleration (typically the gravity acceleration) leading to the body force. This
system of equations is completed with appropriate initial and boundary conditions. Moreover, the
interface between ΩF1 and ΩF2, named ΓF , needs to be described including kinematic and dynamic
conditions at the interface. Here continuity of velocity and stress through ΓF is assumed (i.e., in
the present work no surface tension is considered).

The rigid solid motion of the body ΩS is defined by Newton’s laws, written in terms of displace-
ment of its centroid δ and its angular rotation θ in two dimensions by :

mδ̈ = Fext (3)

Iθ̈ = Text (4)

where m is the rigid body mass, Fext is the global external force acting on ΩS (including gravity
and hydrodynamic force) , I is the solid inertia moment and Text the hydrodynamic torque acting
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on the solid center of mass. The continuity of velocity and stress should also be ensured through
the solid contour ΓS .

The fluid-solid interaction basically requires:

1. solving equations 1 and 2 over the ΩF domain including free surface motion,
2. computing F and T acting on the rigid body ΩS ,
3. solving equations 3 and 4 and moving ΩS accordingly,
4. recomputing the flow equations (step 1) in the updated ΩF domain.

In the present work, an alternative formulation to the described fluid-solid interaction problems
for rigid bodies is used. Equations 1 and 2 are solved in the whole domain Ω = ΩF ∪ ΩS . The
viscosity inside the ΩS region is taken large enough to enforce rigid conditions and it acts as a
penalty factor of the strain-rate tensor. In addition, the interface evolution for ΓF and ΓS needs
to be determined. To this end, the motion of each surface is described by:

∂ΦF,S

∂t
+ v · ∇ΦF,S = 0 (5)

where ΦF,S(x, y, z) is a phase function corresponding to ΓF and ΓS , respectively.

2.2 Numerical method for NS equations

The NS equations are discretized on a fixed Cartesian grid using a finite volume formulation.
Following Patankar (1980), the finite volume formulation is solved using a staggered mesh known
as the Marker And Cells (MAC) method from Harlow, Welch, et al. (1965). The coupling between
velocity and pressure is solved using the Augmented Lagrangian method described by Fortin and
Glowinski (1982). This is a minimization method under the constraint of the continuity equation,
where the pressure, which is decoupled from the velocity, appears as a Lagrange multiplier. The
incompressibility constraint is directly introduced into the equation of motion as a penalty term
ru∇(∇.v), that couples the velocity components. At each time step n and at iteration k, the system
is written as:

ρn(
vn,k+1

4tn
+ (vn,k∇)vn,k+1)− ρnb−∇pn,k

−∇[µn(∇vn,k+1 +∇tvn,k+1)]− ru∇(∇.vn,k+1) = ρn
vn

4tn
(6)

pn,k+1 = pn,k − rp∇ · vn,k+1, (7)

where ru and rp are convergence parameters set in the present work as 1. The advantage of such
a formulation is the explicit calculation of the pressure. It uses only the pressure in the previous
temporal iteration and the divergence of velocity. When turbulence effects need to be included,
the viscosity µ in equation (6) is usually modified by using adequate turbulence models. For com-
pleteness, in the present version of the developed computational code, the viscosity µ is the sum of
the molecular viscosity and an additional viscosity calculated by the Large Eddy Simulation (LES)
model reported by Sagaut, Troff, Lê, and Loc (1996). This additional viscosity was found to help
to stabilize computations for the most non linear sloshing cases studied in Ducassou (2016). In
the cases presented in this paper, no turbulence model is required. as the turbulence is weak and
does not significantly influence the flow. Nevertheless, the additional viscosity was kept to ensure
numerical stabilization in cases with the most violent block motions avoiding to reduce mesh size
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and time step. Finally, note that the LES model is also adapted to the FSI approach presented
in this paper. Therefore, it could be employed to study turbulence in more detail for future 3D
applications where sufficiently resolved meshes need to be chosen.

2.3 Penalty method

To model a mobile solid, the use of a penalty model on the viscosity (Angot et al., 1999; Ritz &
Caltagirone, 1999) is proposed. This method allows to stiffen certain areas of the fluid field. In fact,
a very high viscosity value is used in the solid region enforcing the fluid in such a region to mimic
the rigid body behaviour. The viscosity acts as a penalization parameter, and it promotes nearly
zero strain-rates in the solid domain (i.e., non-deformations are obtained) while still allowing solid
motion. Indeed, when a very large viscosity is used in a certain area of the domain, the viscous stress
tensor term becomes predominant in the discretized momentum equation 6 in this area. Then, the
strain-rate tensor has to be close to zero when numerical convergence is achieved. Practically, the
penalized viscosity has to be within a certain range to ensure a sufficient non-deformation criterion
while keeping convergence of the algorithm.

Therefore, inside the solid body contour only a zero deformation criterion is in fact solved using
this method. So following this constraint, the model gives a constant velocity inside the body
contour. But the value of this velocity actually depends on the hydrodynamics forces which act
on the body interface. In the first liquid cell (i.e., containing zero body volume fraction) just close
to the body, the classic Navier-Stokes equations are solved (i.e., without the viscosity penalty),
thus providing physical pressure and velocities. The velocity inside the rigid body is a global result
from these forcings. Actually, the equilibrium is solved implicitly at once through the Augmented
Lagrangian procedure and the inversion of the linear system, and the result is that the equations
system (6,7) will be equivalent to the system (3,4) in the solid area.

Rigidity criterion

In order to quantitatively control the non-deformation of the stiffened fluid region, the following
approach is proposed. First, a coefficient of local deformation Cdef is computed at each mesh cell
i, j (here written in 2D):

Cdefi,j =
√
ε2Ii,j + ε2IIi,j (8)

where εI and εII are the strain rate deformation tensor components for the two main axes. If this
coefficient is very low, it means that the particle does not become locally distorted according to its
two main axes. At every time step, the maximum of Cdefi,j is computed over the solid volume as
Cdef (t)=max[Cdefi,j ] at each time. Finally, an accumulated maximum deformation Ctot is assessed
by summing Ctot over the simulation time Y as:

Ctot =

∫
Y
Cdef (t) dt =

∑
i

Cdef (ti)dti (9)

In the simulations performed in this paper, the Ctot < 0.1% criterion was chosen to achieve an ap-
propriate description of the rigid body motion. Practically, this criterion is ensured with a penalized
viscosity of o(107) Pa s.

Kinematic constraint

Kinematic constraints need to be considered when dealing with hydraulic engineering systems. For
instance, to promote purely translational or rotational (e.g., the wave energy converter described
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in 4) rigid body motions. In the framework of this method, this can be very simply achieved by
penalizing the velocity within the solid fluid area. For instance, to impose horizontal translation,
the vertical velocity is fixed to zero at two successive grid points of the velocity mesh (horizontal
velocity is fixed to obtain a vertical translation and so on). Technically, this is achieved by using a
supplementary penalty term in the resolution matrix. To force rotational motion around an axis,
the center of rotation is taken at a pressure node, and the four velocity neighbours are penalized
within the resolution matrix and fixed at zero.

External forces

External forces acting on a solid body in interaction with a fluid are also often involved in hydraulic
applications. Here the method is described for spring and damper forces, but it can be generalized
to other forces such as Coulomb friction force, magnetic forces, etc. The idea is to see that body
forces and point forces are equivalent as soon as rigid motion is considered. Therefore, in the present
work, the spring and damper forces are taken in consideration as supplementary accelerations
(Aext) superimposed onto gravity (g), resulting in the following expressions:

b = g +Aext (10)

Aext =
1

ρSΩS

−kxδx − cx
dδx
dt

−kyδy − cy
dδy
dt

+
1

ρSΩS

−krθsin(θM )
rM

− crθ̇sin(θM )
rM

−krθcos(θM )
rM

− crθ̇cos(θM )
rM

 (11)

where kx and ky are the spring constants related to each reference axis; kr is the rotational spring
constant; cx and cy are the damping coefficients; cr is the rotational damping coefficient; rM and
θM are the polar coordinates of point M relative to the rotation center. To add acceleration Aext

in the discrete scheme, gravity is modified only in the grid points where the external forces act, i.e.,
into the rigid solid domain. The solid velocity components along the x and y axes are expressed
as dδx/dt and dδy/dt, respectively. Numerically, these terms are calculated by averaging out fluid
velocity over the rigid body area as follows:

d δx
d t

=

∑nM

1 uM
nM

and
d δy
d t

=

∑nM

1 vM
nM

(12)

where nM is the number of velocity grid points in the solid, δx and δy are solid horizontal and
vertical displacements with respect to its equilibrium position, uM and vM are the components of
the velocity at point M along the x and y axes respectively. Numerically these terms are calculated
at each time step n by:

δx = δxinit
+

n∑
i=1

dδx
dt

∣∣∣∣
i

4ti and δy = δyinit
+

n∑
i=1

dδy
dt

∣∣∣∣
i

4ti (13)

The solid angular velocity in the plane (Cr,x,y) where Cr is the rotation center, is computed as:

θ̇ =

∑
nM

√
u2M + v2M

rM
nM

(14)
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The angular deviation θ of the solid from its equilibrium position in the plane (Cr,x,y):

θ = θinit +
n∑
i=1

θ̇i4ti (15)

2.4 Interface tracking and transport

Equation 5 is solved using a Volume of Fluid (VOF) technique as described by Hirt and Nichols
(1981), which describes the volume fraction occupied by one of the fluids (i.e., water) in a cell. The
properties (density and viscosity) are distributed according to a mixing law based on the volume
fraction at each cell. The Piecewise Linear Interface Calculation (PLIC) method is employed to
recover the interface location from the discontinuous volume fraction distribution. The algorithm
to advance the interface position in time reads:

- Identification of mixed cells (i.e., 0 < ΦF,S < 1).
- In each mixed cell, calculation of the interface normal direction using a finite difference

approximation on nine points.
- Piecewise linear interface reconstruction, knowing the normal direction in each cell and the

volume fraction.
- Lagrangian advection of the interface segments using a linear interpolation of velocities cal-

culated on the staggered mesh.
- Calculation of the new volume fraction distribution.

To ensure the stability of the PLIC method, a sufficient condition is that the volume fraction
does not move more than half of a cell during a time step as was suggested by Abadie, Caltagirone,
and Watremez (1998).

2.5 Mesh size convergence analysis

In the framework of this work, the simulation of a sphere settling in an enclosure at R = 11.6
reported by Ten Cate, Nieuwstad, Derksen, and Van den Akker (2002) has been performed to
assess mesh size and time step convergence analysis. The material properties, corresponding to a
Nylon bearing and a silicon oil, are ρsolid = 1120 kg m−3, ρliquid = 962 kg m−3 and µliquid = 0.113
Pa s, respectively. The diameter of the sphere is d = 15 mm and the tube has a diameter D = 100
mm with a height L = 160mm. The initial position of the sphere is H = 120mm and hx and hy
are the characteristic grid sizes for the x and y directions, respectively (uniform grids are used in
this analysis, i.e. hx = hy, see Fig. 2a for details).

To verify the numerical behaviour of the penalty method, the evolution of the accumulated max-
imum deformation computed from equation 9 is reported in Fig. 2b, showing practically negligible
deformations values. Figure 2c presents the time evolution for the sphere’s velocity computed in
the present work using different grids characterized by β = d/hy. Mesh refinement ensures the con-
vergence of the simulation results with the experimental data. In such a figure, the results reported
by Cruchaga, Muñoz, and Celentano (2008) using a finite element formulation are also included
to check the numerical behaviour of the present technique. Finally, the average CPU time for this
simulation is 0.0007 s per cell and time step on an Intel R©E5-2650Lv2 processor.
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3 Experimental work and validation of the numerical method in the translational
case : the sloshing damper case

3.1 Description of the experiment

This section introduces the experiments developed in the framework of the present work with the
aim to obtain valuable data to validate the numerical formulation in a translational motion. The
case studied could also be an original idea of sloshing damper. The setup of the experiment is
presented in Fig. 3. A spring-block system put into an acrylic tank is attached to the lateral walls
of the tank. The block is mounted on wheels so that bottom friction can be neglected. The tank is
mounted on a shake table able to produce controlled amplitude motions A and angular frequency
ω = 2πf . The dimensions of the different components of the system are presented in Table 1. The
tank is filled with water up to a level h. Two cases were studied:

1. Spring-block system only, i.e. the tank is empty,
2. Spring-block system immersed, i.e., the tank is filled up to different levels and the free-surface

evolves with time. In the present work, only the experiments with a water level at rest h = 400
mm are reported.

In addition, the experimental case of a spring-block system confined (i.e. the tank is fully filled
with water, with no-free surface is present), was also conducted. Practically no block motion was
detected, hence the experimental and numerical results obtained for this case are not shown (Ducas-
sou, 2016; Nuñez, 2015).

The experiments are carried out with an imposed motion of amplitude A = 5 mm using different
imposed frequencies f ranging from 1 Hz to 6 Hz. The experiments are video recorded using a high
speed camera with an image quality of 800x600 pixels at 200 or 500 fps. The motions of the block
and the shake table are obtained from such videos using a motion capturing technique. The error in
the positions is estimated as ±0.25 mm based on pixel size. From such data, the amplitudes of the
block motion and the phases related to the table position are calculated. Moreover, the free surface
evolution is captured by ultrasonic sensors located at 25 mm from the walls of the tank (labelled
S1, S2, S3, and S4; see Fig. 3(b)). Sensor S5 is used to register the motion of the tank, which
coincides with the shake table motion, but the data from S5 helps to synchronize the signals. The
error in the sensor measurements is ±0.5 mm. During 2D behaviour of the free surface evolution,
coincident signals at S1 and S2 or S3 and S4 are reported, as illustrated in Fig. 4(a) at an imposed
frequency of 1.25 Hz. Meanwhile, differences in the signals registered by S1 and S2 or by S3 and
S4 are expected only when 3D effects of the free surface evolution become significant (e.g. the free
surface response obtained at imposed frequency of 1.9 Hz, see Fig. 4(b)). From the experiments,
2D free surface behaviour was found at imposed frequencies of 0.5 Hz, 0.75 Hz, 1.0 Hz, 1.25 Hz, 1.6
Hz, 1.7 Hz, and 1.8 Hz. The free surface evolution clearly shows 3D effects at imposed frequencies
of 1.9 Hz, 2.0 Hz, 2.2 Hz, and 2.4 Hz. The experiments report that free surface 3D effects evolve
near resonance frequencies. Due to the experimental configuration, 3D effects are only detected
by the free surface evolution, while the block motion is constrained to be one-directional. The
experimental measurements obtained during the time-periodic regime (i.e. the steady state forced
vibration) are reported in the next section together with the computed numerical responses.

Mechanical characterization of the spring-block system

The mechanical parameters (spring rigidity k and system damping c) need to be determined to
model the problem. A least squares approximation can be used to adjust such parameters consid-
ering that the experimental response for case 1 must adjust the analytical spring-block solution.
Neglecting air drag and added mass effect, the equation of motion of a spring-damper-block system

8
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subjected to imposed support motion is written as:

mẍsolid + cẋsolid + kxsolid = cẋtable + kxtable (16)

In this equation xsolid(t) and xtable(t), represent the motion of the block and the motion of the
table, along the x axis, respectively. The k and c values can be obtained from the block’s motion
(computed using equation 16) that best fits the experiments of spring-block case reported in Sub-
section 3.2. The obtained parameters are: k = 823 N m−1 and c = 2.14 N s m−1. A rigidity of
the spring k = 823 ± 24 N m−1 was also confirmed by tensile tests and analytical determination.
A major error, estimated as 20 %, was found in the determination of the damping coefficient c.
However, a sensitivity analysis of the solution of equation 16 reveals that no large differences in
the block positions are found when c is selected within the error range c = 2.14 ± 0.5N s m−1.
Notice that this damping coefficient is an average equivalent damping coefficient that attempts to
describe other physical phenomena like structural damping and friction.

3.2 Modeling the experiments

This section reports the numerical analysis of the two experimental cases reported in Section 3,
including the experimental measurements. The computational domain is discretized using 200000
cells (400 cells in x and 500 in z with refinement near the water/air interface). A mesh sensitivity
study, equivalent to those reported in Section 2.6, was carried out in the case of the spring-damper
block in air (not presented here) showing almost indistinguishable results for β = l/hx > 50.
Following this, computations presented in the rest of the paper were performed with β = 100.
Slip boundary conditions are imposed along all walls, including the top and bottom of the tank.
A constant time step of 0.001 s is adopted for the simulations. The material properties used are
ρwater = 998.2 kg m−3, µwater = 0.001 Pa s, ρair = 1.225 kg m−3, and µair = 0.000018 Pa s for
water and air, respectively.

The material properties of the block are ρsolid = 337.8 kg m−3 and µsolid = 5.107 Pa s, a value
sufficient to satisfy the stiffness criterion Ctot < 0.1% (see Section 2). The system is subjected
to gravity action and the external horizontal acceleration promoted by the imposed motion. This
horizontal acceleration is taken from the imposed experimental values as ẍtable = Aω2sin(ω.t), i.e.
Aext = ẍtable in equation 10 in ΩF ∪ΩS . The imposed amplitude A = 5 mm at different frequencies
ranging from 1 Hz to 6 Hz are studied. The cases analysed are reported in the following subsections.

Spring-block system

The analysis for the spring-block system in the empty tank is presented in this section. The me-
chanical parameters k and c are obtained from this situation. It should be noted that k identifies the
existing spring, while the damping factor c basically represents the structural damping and takes
into account the global friction effects due to the mechanism used. As described in Section 3.1,
parameters k = 823 N m−1 and c = 2.14 N s m−1 are obtained by adjusting the analytical (solution
computed from equation 16) to the experimental data via a least squares procedure. Simulations
are performed using such values with the aim of assessing the numerical behaviour of the proposed
formulation. Numerical and experimental responses for the block motion are reported in Fig. 5.
From these plots, maximum amplitudes for the block motion and phases related to the imposed
motion (table motion) are obtained. The results for all the frequencies analysed are summarized
in Figs 6(a) and 6(b), respectively. Fig. 6 also includes the analytical values computed with the
adopted mechanical parameters. It is remarkable that the numerical responses satisfactorily match
the experiments, with the normalized root-mean-square deviation computed as 4 % for amplitude
and phase. The effect of varying k and c within the range of their errors declared in Subsection
3.1 is not reported in the present work. Nevertheless, it could be mentioned that the normalized
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root-mean-square deviation is 7% for amplitude and phase when a c = 3 Nsm−1 is used. Moreover,
the natural frequency of the system can be determined from Fig. 6. It is near fn = 4.18 Hz as
it could be determined analytically by f2n = k/m = 823 N m−1/1, 193 Kg. Finally, stream lines
snapshots captured at different instants of the numerical analysis for the case at f=4 Hz are shown
in Fig. 7, denoting the translation of the block and a disordered flow in the air. The calibrated
mechanical model will be used to simulate the confined and immersed spring-block systems (i.e.,
cases 2 and 3).

Spring-block system immersed

In this case, the spring-block system is fully immersed in the tank filled up to h = 400 mm and the
free-surface evolves during the analysis. Figure 8 depicts the numerical and the experimental free
surface evolution registered at locations S1, S2, S3, and S4 (see Fig. 3(b)). The signal reported by
S5 is the imposed motion. This figure illustrates the physical behaviour of the free surface at the
control points. The water level evolution for the reported frequencies is practically coincident at
locations S1 and S2, as well as those at location S3 and S4. Moreover, the signals reported at S1 and
S4 have a half-period phase shift between them. The same behaviour is observed for the free surface
evolutions at S2 and S3. The numerical responses for the free surface describe these trends, but
such numerical predictions lose accuracy at 1.7 Hz. This may be due to the strong flow pattern that
evolves. Fig. 9 plots the computed block motion together with the experimental data. The imposed
motion is also included to denote the phases. In spite of the differences reported for the numerical
predictions of the free surface, a very good agreement can be observed between numerical and
experimental results for the block motion. Maximum amplitudes of the block motion and phases
are reported in Fig. 10 for the different imposed frequencies. A satisfactory correspondence can be
seen between numerical responses and experimental data. The maximum errors in amplitude and
phases are obtained near resonance conditions and they are bounded by 11% and 7%, respectively.
The graphs show that the resonance occurs at the frequency fn=1.4 Hz, which is the natural
frequency of the system without the block (fn = (g/(4πL)tanh(πh/L))0,5). At this frequency the
block amplitude is the highest and the phase difference is approximately π/2. A negative phase lag
is also apparent at the frequency of 1.0 Hz. The interaction between the block and the free surface
causes the block to move forwards with respect to the tank at some frequencies. Stream lines at
different instants of the analysis are presented in Fig. 11, which shows that the block translation
is properly captured as well as the free surface conditions. Vortex generation is also observed in
water due to the cyclic motion of the block.

4 Examples of rotational cases

A few engineering devices such as the oscillating wave surge converters (e.g. the Wave Oyster or the
Wave Roller systems described by Folley, Whittaker, & Hoff, 2007), involves a solid in rotational
motion around an axis. Therefore, there is a need for the simulation of this kind of wave-flow
/structure interactions. Two examples are shown in this section to illustrate the capability of the
method to deal with rotational motions.

In the first one, a rectangular body is forced to move in rotation around an axis located in the
bottom part of the solid. The methodology used to achieve this rotation was explained in 2.3. The
surrounding fluid is only air. The fluid viscosity within the solid area is µsolid = 5.107 Pa s and
its density is 500 kg m−3. The body is subjected to a restoring and a damping moment imposed
as body forces (2.3). Gravity is set to zero. The solid body initial inclination is 45◦ compared to
its equilibrium position which is here vertical. Figure 12 shows snapshots of the solid position and
streamlines at two different times. The center of rotation is clearly visible in the bottom part of
the solid. Around the rotation axis, flow streamlines are strictly circular within the solid area.
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Figure 12-b shows the flow after approximately one half of the rotation cycle. Recirculation and
flow vorticity are generated in the air flow by the solid motion. In this case, the air influence on the
solid is weak and the solid motion is very close to the analytical solution of the classical oscillator
without surrounding fluid (Ducassou, 2016).

The second example shows the application of the penalty numerical method to the case of a
seabed-mounted bottom-hinged wave energy converter (WEC) described also by Gomes, Lopes,
Henriques, Gato, and Falcao (2015). The device is forced to move rotationally under the action of
regular waves. The power take-off is a hydraulic damper. The following dimensions are considered
in the simulation: water depth h = 200 mm, device/wave source distance l = 3500 mm = 17.5h,
device height D = 140 mm and width e = 30 mm and rotation center position Zp = 30 mm. Flap
solid body behaviour is achieved using a viscosity value of 5.107Pa s.

The regular wave is generated through a source term added in the mass conservation equation
following the method described in Lin and Liu (1999) associated with a fifth order Stokes theory.
With this approach, waves are propagated in both directions. In the cases presented here, wave
period is Tw = 1.5 s, wave height Hw = 20 mm = 0.1h and wave length Lw = 2060 mm = 10.3h.

Two configurations are studied in this paper: the oscillating flap is in open water (i.e., regular
wave trains are described) and the upstream limit of the domain is a reflective wall (i.e., standing
waves are generated). The first case is sketched in Fig. 13. In order to avoid multiple interference
after reflection at the boundaries, two dissipative zones made up of a porous medium (as proposed
by Khadra, Angot, Parneix, and Caltagirone (2000)) are imposed at both lateral limits of the
domain to mimic open water cases, while waves are only damped at the upstream (left) limit in
the case of a reflective wall (i.e., no dissipation zone is used at the right limit of the domain).

The mesh is made up of 1350 cells in x and 250 cells in z. The initial time step is 0.1 s to allow
the computation to start from a null velocity field. After the first instants of the analysis a Courant
number of 0.2 is used for the remainder of the simulation.

To run the cases including waves,two parameters need to be characterized in order to optimise
the system’s efficiency: the flap density and the rotational damping coefficient cr. Energy transfer is
minimized when the system works near resonance conditions, i.e., the natural oscillating frequency
of the device in water needs to be close to the wave frequency. Hence, a parametric study was
conducted (not all results are shown) to determine the density value that ensures such condition.
The flap was subjected to free vibration by inducing an initial shift from its equilibrium position.
Simulations were performed with different density values (from 50 kg m−3 to 900 kg m−3), without
and with free surface. Notice that the added mass and buoyancy effects play a relevant role in such
computations (e.g., as was demonstrated by Costarelli et al., 2016).

Figure 14 presents snapshots of a free vibration analysis without free surface. This figure shows
the formation of dipole vortices stressing the complexity of the flow and the interest of the Navier-
Stokes simulations in comparison with more classical potential flow models. From these simulations,
a density of 200 kg m−3 ensures that the natural frequency of the WEC is close to the wave period
(i.e., 1.74 s for the device against 1.5 s for the waves, in the present analysis). The latter value is
chosen in the present the study.

The simulation of the free vibration analysis including free surface effects (Fig. 15) stress the
importance of the latter on the evolution of the solid body. In this case, conversely to the preceding
one, the solid motion is immediately damped and the WEC directly goes to its equilibrium position
without oscillating.

Following the mechanical characterization of the system, a feasible rotational damping coefficient
needs to be determined. To this end, the simulations with waves (forced vibration) were performed
using three values of such a coefficient: cr = 0 N m s, cr = 3 N m s and cr = 30 N m s. Figure
16 shows the wave-interaction effect on the device after the initial transient regime is completed,
for the cr = 0 N m s. A complex pattern of streamlines develops as waves propagate showing the
interaction with the WEC. As in Fig. 12, the rotation center is clearly visible by the concentric
circles of streamlines at the bottom of the flap. Streamlines are obviously circular curves anywhere
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in the solid area, a fact that confirms the ability of the rigidity criterion to promote solid behaviour
while rotational motion occurs. A complex vortex structure evolves near the tip of the flap over
time. There are also some vortices created close to the bottom of the domain due to the unavoidable
void between the moving flap and its attachment. It is interesting to note that many numerical
methods previously used to study wave energy converters do not take into account viscous drag and
vortex shedding, or such effects are considered by adding explicit terms to be parametrized. Here
the method allows an implicit handling of vortex shedding which may be an important cause of
dissipation for oscillating wave surge converters. To quantify the obtained overall numerical results,

the system’s efficiency η, defined as: η = 8
∫ T
0 crθ̇

2dt/(ρgH2
wLw) , has been computed. It also helps

to provide a qualitative comparison with the studies reported by Gomes et al. (2015).
In open water, the obtained mean amplitude of the oscillating flap are 12◦, 3◦ and 0.1◦ for cr = 0

N m s, cr = 3 N m s and cr = 30 N m s, respectively. Accordingly, the efficiency is η = 20.5% and
η = 1.3% for cr = 3 N m s and cr = 30 N m s, respectively (notice that null efficiency is computed
for cr = 0 N m s).

The situation changes drastically when a reflective wall at the right boundary is used. In such a
case, a standing wave is generated and the relative WEC position to the wall plays a crucial role.
For the flap located at an antinode of the standing wave and 1570 mm apart from the right of the
domain, the obtained mean amplitudes of the oscillating flap are 18◦, 6◦ and 0.3◦ for cr = 0 N m
s, cr = 3 N m s and cr = 30 N m s, respectively. The maximum efficiency is η = 59.7 for cr = 3
N m s. For the flap positioned close to a node of the standing wave, the efficiency reduces to 5%
using the same model parameters.

Finally, the obtained efficiency trends are close to those reported in the literature when similar
wave conditions and devices are used (see Gomes et al. (2015) and references therein). This fact
qualitatively assess the numerical behaviour of the proposed methodology.

5 Concluding remarks

In the present work a numerical strategy has been proposed to solve wave/structure interactions,
including the modelling of free surface evolution and external forces acting on the solid. The
methodology was developed in the well known framework of staggered finite volume techniques
where the moving interfaces, that is free surface and body contour, were updated using a volume
of fluid approach. The formulation proposes to enforce the rigid conditions via penalization of the
fluid viscosity. Spring-damper forces acting on the solid are considered as body forces per unit
mass distributed into the solid domain. Kinematic constraints are imposed on the solidified area
by simply penalizing velocity nodes.

In addition, an experiment was also conducted to assess the capabilities of the present numerical
strategy. Amplitudes of the block position and their phases, and the free surface evolution have
been satisfactorily validated by contrasting the numerical responses with the experimental data
using different imposed motion conditions.

Finally, numerical examples have been given to illustrate the ability of the method to deal with
rotational solid motion in interaction with waves. The system’s efficiency, chosen as an overall
parameter to verify the numerical responses, has shown similar trends to those reported in the
literature for the waves and mechanical conditions analysed. Future work will be the experimental
validation of the model for rotational motions as well as 3D analyses.
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Notations

g = gravity acceleration (m s−2)
v = fluid velocity (m s−1)
p = fluid pressure (Pa)
ρ = fluid density (kg m−3)
µ = fluid viscosity (Pa s)
b = equivalent acceleration (m s−2)
m = solid mass (kg)
I = solid inertia moment (N m s2)
δ = (δx, δy) = solid displacement (m)
θ = solid rotation (rad)
Fext = external forces (N)
Text = hydrodynamic torque (N m)
ΦF,S = fluid or solid phase function (-)
(ru, rp) = parameters of the Augmented Lagrangian Method (Pa s)
(εI , εII) = principal components of the strain rate tensor (-)
Cdefi,j = coefficient of local deformation (-)
Cdef = instantaneous maximum over solid volume of local deformation coefficient (-)
Ctot = accumulated equivalent deformation over simulation time (s)
Aext = additional acceleration (m s−2)
k = spring constant (N m−1)
(kx, ky) = spring constant in x and y directions (N m−1)
kr = rotational spring constant (N m)
c = damping coefficient (kg s−1)
(cx, cy) = damping coefficient in x and y directions (kg s−1)
cr = rotational damping coefficient (N m s)
ΩS = solid domain (m−3)
ΩF = fluid domain (m−3)
ΓS = solid contour (m−2)
ΓF = fluid contour (m−2)
uM = component of the velocity at point M along the x axis (ms1)
vM = component of the velocity at point M along the y axis (ms1)
nM = number of velocity grid points in the solid (-)
t = time (s)
(rm, θm) = polar coordinates of points M relative to rotation center
Cr = solid rotation center
(hx, hy) = mesh step in x and y direction respectively (m)
d = sphere diameter (m)
A = amplitude of shake table motion (m)
ω = pulsation of shake table motion (s−1)
f = frequency of shake table motion (Hz)
fn = natural frequency (Hz)
h = water depth (m)
Hw = wave height (m)
Tw = wave period (s)
Lw = wave length (m)
η = system efficiency (-)
R = Reynolds Number (-)
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Sagaut, P., Troff, B., Lê, T., & Loc, T. P. (1996). Large eddy simulation of turbulent flow past a

backward facing step with a new mixed scale sgs model. In Computation of three-dimensional
complex flows (pp. 271–277). Springer.

Sarthou, A., Vincent, S., Caltagirone, J., & Angot, P. (2008). Eulerian–lagrangian grid coupling
and penalty methods for the simulation of multiphase flows interacting with complex objects.
International Journal for Numerical Methods in Fluids, 56 (8), 1093–1099.

Ten Cate, A., Nieuwstad, C., Derksen, J., & Van den Akker, H. (2002). Particle imaging velocimetry
experiments and lattice-boltzmann simulations on a single sphere settling under gravity.
Physics of Fluids (1994-present), 14 (11), 4012–4025.

Veeramani, C., Minev, P. D., & Nandakumar, K. (2007). A fictitious domain formulation for flows
with rigid particles: A non-lagrange multiplier version. Journal of Computational Physics,
224 (2), 867–879.

Vincent, S., Randrianarivelo, T., Pianet, G., & Caltagirone, J. (2007). Local penalty methods for
flows interacting with moving solids at high reynolds numbers. Computers and Fluids, 36 ,
902–913.

Yu. (2005). A dlm/fd method for fluid/flexible-body interactions. Journal of computational physics,
207 (1), 1–27.

Yu, Y.-H., & Li, Y. (2013). Reynolds-averaged navierstokes simulation of the heave performance
of a two-body floating-point absorber wave energy system. Computers and Fluids, 73 , 104 –
114.

16



January 18, 2017 Journal of Hydraulic Research article˙benoit

Zhao, X., Ye, Z., Fu, Y., & Cao, F. (2014). A cip-based numerical simulation of freak wave impact
on a floating body. Ocean Engineering , 87 , 50 – 63.

Tables and figures

Table 1: Dimensions of the experimental system

Tank height L1 500 ± 1 mm
Tank width L 400 ± 1 mm
Tank depth E 200 ± 1 mm
Block height h 200 ± 1 mm
Block width l 90 ± 1 mm
Block depth e 20 ± 1 mm
Block mass m 1.192 ± 0.001 kg

Figure 1: Sketch of the studied case
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(a) (b)

(c)

Figure 2: Sphere setting case: (a) computation grid; (b) evolution of accumulated deformation; and
(c) mesh size convergence.
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Figure 3: Experimental setup: (a) view of the laboratory, (b) 3D plot including sensor positions
and (c) sketch of the problem studied.

(a) (b)

Figure 4: Experimental free surface time evolution: (a) 2D behaviour at f=1.25Hz and (b) 3D
behaviour at f=1.9Hz.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Spring-block in air only. Numerical (a, c, e) and experimental (b, d, f) block displacements
evolution during the time-periodic regime for imposed motion of frequencies 3.7 Hz (a and b), 4.0
Hz (c and d), and 4.5 Hz (e and f). Shake table displacement is also included.

Figure 6: Spring-block in air only. Amplitude and phase diagrams.
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(a) (b) (c) (d)

Figure 7: Spring-block in air only. Snapshots at instants 10.22 s (a), 10.25 s (b), 10.30 (c) s, and
10.32 s (d) of the numerical simulations with imposed motion at frequency 4.0 Hz.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Spring-block in 400 mm of water. Numerical (a, c, e) and experimental (b, d, f) water
level evolution during the time-periodic regime at imposed motions of 0.75 Hz (a,b), 1.25 Hz (c,d)
and 1.7 Hz (e,f).
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Spring-block in 400 mm of water. Numerical (a,c,e) and experimental (b,d,f) block dis-
placements evolution during the time-periodic regime at frequencies of 0.75 Hz (a,b), 1.25 Hz (c,d)
and 1.7 Hz (e,f). Shake table displacement is also included.

Figure 10: Spring-block in 400 mm of water. Amplitude and phase diagrams.
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(a) (b) (c) (d)

Figure 11: Spring-block in 400 mm of water. Snapshots of numerical simulation at 1.4 Hz and at
40.2 s (a), 40.27 s (b), 40.48 s (c) and 4.55 s (d).

(a) (b)

Figure 12: Rectangular solid forced to move in rotation and subjected to restoring and damping
moments. Surrounding fluid is only air. Immediately after solid release (i.e. t u 0) (a) and after
half a period of oscillation (b).

Figure 13: Sketch of the computational domain for the seabed-mounted bottom-hinged wave energy
converter simulation.
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(a) (b)

(c) (d)

Figure 14: Simulation of the free vibration WEC motion in water without free surface at different
instants: t = 0 s (a), t = 0.487 s (b), t = 0.899 s (c), t = 1.778 s (d).

(a) (b)

(c) (d)

Figure 15: Simulation of the free vibration WEC motion in water with free surface at different
instants: t = 0 s (a), t = 0.282 s (b), t = 0.885 s (c), t = 2.439 s (d).

(a) (b)

Figure 16: Simulation of the oscillating WEC in interaction with a regular wave train (open water).
Snapshots of fluid interfaces and streamlines: wave crest at the left boundary (a) and wave crest
above the flap (b).
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