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Abstract

We study the existence of equilibria in two-period production economies, where

asymmetrically informed agents exchange securities, on incomplete financial mar-

kets, and commodities, on spot markets, with a perfect foresight of future prices.

Extending our pure-exchange existence theorems, we show that equilibria exist for

an open dense set of economies, parametrized by the assets’ payoffs, and for all

economies, whose assets are nominal or numeraire. The model covers all types of

private ownership - sole proprietorship, partnership or corporations - and all sectors

consistent with competition, i.e., with non-increasing returns to scale. It is a step

towards proving existence in stochastic production economies, and the full existence

of sequential equilibria with production, when perfect price foresight fails to prevail.
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1 Introduction

This paper extends De Boisdeffre’s (2007 and 2017) existence theorems of two-

period pure-exchange financial economies with differential information to similar

economies with production. It shows that equilibrium exists for an open dense set

of economies parametrized by assets’payoffs, and for all economies, whose financial

structure is nominal or numeraire. We call this existence property "weakly generic".

The model has two periods, with an a priori uncertainty upon which state of

nature will prevail tomorrow, out of a finite space, S. There are finite sets, I, of con-

sumers, and J, of producers. Asymmetric information amongst them is represented,

ex ante, by idiosyncratic private signals, Sk ⊂ S, which correctly inform every agent,

k ∈ I ∪ J, that tomorrow’s true state will lie in Sk. Non restrictively, from De Bois-

deffre (2016), the signals, (Sk), preclude all arbitrage opportunity on the financial

market, where agents may trade, unrestrictively, nominal or real assets.

Agents exchange finitely many goods and services on spot markets, serving as

inputs or outputs in production, or as final consumption goods, and whose prices

are commonly observed or perfectly anticipated. The means and fruits of produc-

tion reward sole proprietors, or partners, in joint ventures, or the shareholders

of corporations. Consistently with competition, the model covers all sectors with

non-increasing returns to scale. Consumers’preferences need not be ordered. The

current existence proof, building on De Boisdeffre’s (2017), displays specific com-

plexities due to production. It is a step towards proving existence in stochastic

production economies, and the full existence when anticipations fail to be perfect.

The following Section 2 presents the model, Section 3 states and proves our Theo-

rem, Section 4 deals with numeraire assets and an Appendix proves a Lemma.
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2 The model

We consider a production economy with two periods, t ∈ {0, 1}, and an ex ante

uncertainty about which state of nature will prevail ex post. Agents exchange

goods and services, serving as inputs or final consumption goods. They trade assets

of all kinds on typically incomplete financial markets. The sets, I, J, S, H and

J0, respectively, of consumers, producers, states of nature, goods and services, and

assets, are all finite. The non random state at the first period (t = 0) is denoted by

s = 0 and we let Σ′ := {0} ∪ Σ, for every subset, Σ, of S. Similarly, l = 0 denotes the

unit of account and we let H ′ := {0} ∪H.

2.1 Markets and information

Producers and consumers, k ∈ K := I ∪ J, exchange goods and services, h ∈ H, on

both periods’spot and labour markets, for the purpose of the final consumption of

consumers, or the use of inputs by producers, which include raw materials, interme-

diary goods and labour. To simplify exposition, we assume that H is the union of

H1, the set of final consumption goods (including services & leisure), and H2, that

of inputs. We restrict, at no cost, spot prices to the set, ∆ := {p ∈ RH+ : ‖p‖ 6 1}. We

refer to a pair of state and price, ω := (s, ps) ∈ S ×∆, as a forecast, and let Ω := S ×∆

be their set.

Producers, j ∈ J := J1 ∪ J2, are of two types: corporations (when j ∈ J1), whose

shares (called equities) can be exchanged on the stock market, and all other pro-

ducers, j ∈ J2, consisting of sole proprietors and joint ventures. Consumers may

exchange, at t = 0, finitely many assets, or securities, j ∈ J0 (with #J0 6 #S), whose

yields, at t = 1, are exogenous and conditional on the realizations of forecasts, ω ∈ Ω.
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They may also exchange equities on a stock market, or participations in corpora-

tions, j ∈ J1, whose conditional yields across forecasts are endogenous. The equities’

payoffs, and bounded portfolio set, [0, 1]J1, are presented below. The generic agent’s

portfolio, z := (z0, z1) := ((zj0), (z
j
1)) ∈ ZI := RJ0 × [0, 1]J1, summarizes the positions that

she takes on each asset or equity, positive, if bought, negative, if sold short. Pro-

ducer’s portfolio set, ZJ  ZI , will be restricted. At market price q ∈ RJ0 × RJ1 , the

purchase of a portfolio, z ∈ ZI , costs q · z units of account at t = 0, against delivery

of conditional payoffs at t = 1.

Assets’payoffs at t = 1 may be nominal (i.e., pay in cash) or real (pay in goods)

or a mix of both. They define a matrix, V , which is identified to the continuous

map, V : Ω → RJ0, relating forecasts, ω := (s, p) ∈ Ω, to the rows, V (ω) ∈ RJ0, of all

assets’cash payoffs, delivered if state s and price p obtain.

At t = 0, each agent, k ∈ K, receives a private information signal, Sk ⊂ S, which

correctly informs her that tomorrow’s true state will be in Sk, and we let S := ∩k∈KSk

be their pooled information. We assume costlessly, from De Boisdeffre (2016), that,

at the time of trading and given price expectations, agents have inferred all infor-

mation required to preclude unlimited arbitrage opportunities on financial markets.

For every price, p := (ps) ∈ ∆S, we let V (p) be the S × J0 payoff matrix, whose

generic row is V (s, ps) (for s ∈ S) and < V (p) > be its span in RS. Before presenting

agents’behaviours, we recall well-behaved properties of the financial structure, in

the following Claim 1. We let V be the set of (S×H ′)×J0 exogenous payoffmatrixes

defined as the matrix, V , above. That set is equiped with the same notations as

above (for V ∈ V). For more details, we refer the reader to De Boisdeffre (2017).
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Claim 1 Let Λ := {Ṽ ∈ V : rank Ṽ (p) = #J0, ∀p := (ps) ∈ ∆S} and M ∈ Λ be given.

The following Assertions hold:

(i) Λ is open and everywhere dense, in the set V;

(ii) @((zk), p) ∈ (RJ0)K\{0} ×∆S :
∑

k∈K zk = 0 and M(s, psk)·zk > 0, ∀(k, sk) ∈ K×Sk.

Proof The proof is given under Claim 1 in De Boisdeffre (2017). �

Each agent, k ∈ K, forms idiosyncratic anticipations, pks ∈ RH1
++, of commodity

prices in each (possible) state, s ∈ Sk\S. To alleviate notations, we assume that

pks = pk′s := (phs )h∈H1
, for every triple (k, k′, s) ∈ K ×K × Sk ∩ Sk′\S. Thus, we restrict

tomorrow’s prices to P := {p := (phs ) ∈ ∆S : phs = phs , ∀(s, h) ∈ S\S ×H1}. Agents’sym-

metric forecasts across states, s ∈ S\S, simplifies exposition w.l.o.g. We restrict first

period prices to P0 := {(p0, q) ∈ ∆×RJ0×RJ1 : ‖q‖ 6 1}, whose bounds are normalized

to one for convenience and could be replaced by any positive value.

Given (Sk), the generic consumer, i ∈ I, has for consumption set Xo
i := (RH1

+ ×{0}H2)S
′
i.

Similarly, each producer, j ∈ J, elects a production plan within a production set,

Y oj ⊂ (RH)S
′
j , representing her technology constraints.

2.2 The producer’s behaviour

Throughout a generic producer, j ∈ J, is given, and always referred to.

Agent j has a production set, Y oj ⊂ (RH1
+ × (−RH2

+ ))S
′
j , characterizing the feasible

input-output bundle pairs, (y0, ys) ∈ RH×RH , across states, s ∈ Sj, that her technology

permits. The components of a production plan, y := (yhs ) ∈ Y oj , are positive, if h is

produced, and negative, if used as an input. Many goods and services are not used or

produced, so appear with zero components in production plans, y ∈ Y oj . If production

demands time, inputs will typically be used at t = 0 and outputs released at t = 1.

We make standard assumptions on technology as follows:
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Assumption A1, Y oj is closed and convex ;

Assumption A2, Y oj ∩ (RH+ )S
′
j = {0} and Y oj − (RH+ )S

′
j ⊂ Y oj ;

Assumption A3, ∀(j, y) ∈ J × (RH+ )S
′
j , (y + Y oj ) ∩ (RH+ )S

′
j is bounded.

The above conditions have a clear economic meaning and imply, as standard, the

technology’s non-increasing returns to scale, consistently with competition. More-

over, from Assumption A3 and the limited quantity of total inputs and endowments

in the economy, production will be bounded.

The producer values each state, s ∈ S, of a state price, πjs, such that, πjs > 0, for

every s ∈ Sj, πjs = 0, for every s ∈ S\Sj, and
∑

s∈Sj π
j
s 6 1. At prices (ps) ∈ ∆ × P , her

discounted profit of a production plan, y := (ys) ∈ Y oj , is thus: p0·y0 +
∑

s∈Sj π
j
s ps·ys.

Once all agents have inferred their arbitrage-free information signals, (Sk), as

assumed above, any restriction of access to the stock market, defined as the joint

financial and equity markets, for a firm, does not change the equilibrium outcome,

provided the firm had no deficit constraint. This is because the producer keeps an

indirect, yet full, access to the stock market via the eventual owners, namely, con-

sumers, whose participations to the stock market are unrestricted (see, e.g., Magill

& Quinzii, 1996, chap. 6). Hereafter, we assume that producers have a portfolio

set, ZJ , which is a sub-vector space of RJ0 × {0}J1. Hence, producers’participations

to the asset market may be restricted or not. We do not allow producers to take

crossed participations in corporations not only because they eventually belong to

consumers, but also (and mainly) for expositional purposes. Our existence Theorem

would be unchanged if we did, but definitions and notations would become over-

whelming, as will be apparent later. Typically, producers would have access to a

loan and credit market, as in the real world, to start a business.
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Restricted participation is not, hereafter, innocuous because our model is one of

‘limited liability’. That is, once a company is created (with the possible contribu-

tions of owners or shareholders at t = 0), it is not allowed to bankruptcy, at t = 1.

If, moreover, the producer is endowed with physical wealth, she may offer it as col-

lateral for a (possible) loan and make profit in any state. Consistently with the fact

that companies run their business with available stocks, capital, equipment, etc., we

make the following technical assumption, that the producer is endowed with some

physical assets, ej := (ejs) ∈ (RH+ )S
′
j , which grants the bundle of goods, ejs ∈ RH+ , in

each state s ∈ S′j, if it prevails. This endowment is such that:

Assumption A4, ∀j ∈ J, ej ∈ (RH++)S
′
j , where R++ := {x ∈ R : x > 0}.

Remark 1 Assumption A4 (and A6 below) are tantamount to assuming that

every agent is endowed with some wealth (or cash) in any state. This assumption is

natural for companies, which always detain physical assets. Indeed, the spot price

is observed or perfectly anticipated and, with some wealth available, agents can

always exchange the total endowment of the economy on spot markets, without

changing their strategies, to meet the above Assumptions.

Thus, for all price system, $ := ((p0, q), p := (ps)) ∈ P0 ×P , the firm’s budget set is:

Bj($) = {(y, z = (z0, 0)) ∈ Y oj ×ZJ : p0·(y0+ei0)−q·z > 0, ps·(ys+eis)+V (s, ps)·z0 > 0,∀s ∈ Sj}

From Assumptions A4, the interior of Bj($) may not be empty for non-zero spot

prices. The generic producer, j ∈ J, has an objective function, her profit, or present

return of her strategy, namely, for every $ := ((p0, q, p := (ps)) ∈ P0 × P and every

(y, z := (z0, 0)) ∈ Bj($):

Πj($, (y, z)) = p0·(y0 + ej0)− q · z +
∑

s∈Sj π
j
s (ps · (ys + eis) + V (s, ps) · z0).
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Her behaviour is to maximise her profit in the budget set, that is, to select one

element in ηj($) := arg max Πj($, (y, z)) for (y, z) ∈ Bj($), if nonempty. We will show

this set is, indeed, non empty at clearing market prices. In any case, the producer

makes a decision, that is, chooses one strategy (yj , zj := (zj0, 0)) ∈ Bj($), henceforth,

set as given for all other agents. This strategy results in the endogeneous yields,

r0j($, (yj , zj)) := (p0 ·(yj0+ej0)−q·zj), at t = 0, rsj($, (yj , zj)) := (ps ·(yjs+ejs)+V (s, ps)·zj0),

in each state s ∈ Sj, and rsj($, (yj , zj)) := 0, in each state s ∈ S\Sj.

2.2 The consumer’s behaviour and concept of equilibrium

Throughout, a generic consumer, i ∈ I, is given.

Agent i receives an endowment, ei := (ehis), granting the conditional bundles of

goods and services, ei0 ∈ RH+ at t = 0, and eis ∈ RH+ , in each state, s ∈ Si, if it prevails.

The endowment in services consists in an amount of labour with certain skills, called

workforce, that she may offer to producers. The agent consumes leisure if she does

not offer her full workforce. Her consumption set, Xo
i := (RH1

+ × {0}H2)S
′
i, lets every

consumption in inputs - only used by firms - be zero.

In addition to their endowments, the consumer may receive dividends. Indeed,

each firm, j ∈ J, belongs to consumers, either exclusively, or as partners or share-

holders. Each agent, i ∈ I, detains initial shares (which may be zero), zji ∈ [0, 1], of

each company, j ∈ J, which satisfy
∑

i∈I z
j
i = 1. Most of these shares should be zero.

For each consumer, i ∈ I, we denote by zi := (0, ..., 0, (zji )j∈J1) ∈ {0}J0 × [0, 1]J1 ⊂ ZI her

portfolio endowment. We recall ownership breaks down into three categories:

* sole proprietorship

It occurs if a production unit, j ∈ J2, is owned by one person, i ∈ I (i.e., zj2i = 1).

Then, there is no managerial conflict, for the sole proprietor decides in her own will
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of the production strategy, (yj , zj) ∈ Bj($), given prices, $ ∈ P0×P . However, selling

the company, or shares of it, may turn out to be diffi cult and the owner is, hence,

assumed to keep her property until the second period.

* partnership

It occurs when a limited number of partners, i ∈ Ij ⊂ I, have agreed to create

a joint venture, j ∈ J2, and on the shares, zj2i > 0, of each member. Partners

may also have diffi culties in retrading their shares, which they keep until the next

period. To the difference of sole owners, partners may have different assessments of

future income streams, resulting in potential management disagreements. Conflicts

can often be resolved by side payments, whose study is beyond our scope. Joint

ventures only create if partners have reached a managerial agreement.

Partners would be expected to share their information so that Si = Sj, for every

i ∈ Ij. If, eventually, partners do not share the same beliefs, the shareholder, i ∈ Ij,

of the firm, j ∈ J2, expects to receive her share of profits in any state s ∈ Si ∩ Sj.

* corporations

Corporations’shares may be exchanged on the stock market by the generic con-

sumer, deciding to keep or change her initial shares, (zji ) ∈ RJ1 , for new ones, along

her perceived interests, at a market price, q1 ∈ RJ1. Corporations are run by an ap-

pointed manager and owned by private shareholders, (possibly) meeting in boards

and always free to exchange their participations on the stock market.

To the difference of assets (j ∈ J0), corporations (j ∈ J1) have endogenous yields,

defined above, and their purchase and sale are bounded in practice. Indeed, corpora-

tions are physical units, which cannot be bought or sold short an unlimited number
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of times. Transactions are thus bounded. W.l.o.g. on the bounds, we assume that a

corporation cannot be sold short and cannot be bought more than one time by any

agent, that is, consumers’porfolio set is ZI := RJ0× [0, 1]J1. �

Given prices, $ := ((p0, q), p := (ps)) ∈ P0 × P , and the producers’decisions,

Y := [(yj , zj)] ∈ ×j∈JBj($), the generic ith agent’s budget set is:

Bi($,Y ) := {(x := (xs), z := (z0, z1)) ∈ Xo
i × ZI :

p0·(x0 − ei0) 6 −q·(z − zi) +
∑

j∈J1 z
j
1 r0j($, (yj , zj)) +

∑
j∈J2 z

j
i r0j($, (yj , zj)) and

ps·(xs − eis) 6 V (s, ps)·z0 +
∑

j∈J1 z
j
1 rsj($, (yj , zj)) +

∑
j∈J2 z

j
i rsj($, (yj , zj)), ∀s ∈ Si}.

Each consumer, i ∈ I, has preferences, ≺i, represented, for all x ∈ X0
i , by the

set, Pi(x) := {y ∈ Xo
i : x ≺i y}, of strictly preferred consumptions to x. In the above

economy, denoted by E = {(I, J0, J1, J2, H), V, (Sk)k∈K , (Y
o
j )j∈J1∪J2 , (X

o
i , ei,≺i)i∈I}, agents

optimise their objective in their budget sets. So the concept of equilibrium:

Definition 1 A collection of prices, $ := ((p0, q := (q0, q1)), p := (ps)) ∈ P0 × P , and

strategies, Y := [(yj , zj)] ∈ ×j∈JBj($) and X := [(xi, zi)] ∈ ×i∈IBi($,Y ), defines an

equilibrium of the economy, E, if the following conditions hold:

(a) ∀j ∈ J, (yj , zj) ∈ arg max Πj($, (y, z)) for (y, z) ∈ Bj($);

(b) ∀i ∈ I, (xi, zi) ∈ Bi($,Y ) and Pi(xi)× ZI ∩Bi($,Y ) = ∅;

(c)
∑

i∈I(xis−eis) =
∑

j∈J (yjs + ejs), ∀s ∈ S′;

(d)
∑

k∈K zk =
∑

i∈I zi.

The economy, E , is called standard under conditionsA1 toA4 and the following:

Assumption A5, (monotonicity): ∀(i, x, y) ∈ I×Xo
i ×Xo

i , (x 6 y, x 6= y)⇒ (x ≺i y);

Assumption A6, ∀i ∈ I, ei ∈ (RH++)S
′
i ;

Assumption A7, ∀i ∈ I, ≺i is lower semicontinuous convex-open-valued and such

that x ≺i x+ λ(y − x), whenever (x, y, λ) ∈ Xo
i × Pi(x)×]0, 1].
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3 The existence Theorem and proof

Theorem 1 If its payoff map, p ∈ P 7→ V (p), is constant, or payoff matrix, V , is

in the open dense set, Λ, of Claim 1, a standard economy, E, admits an equilibrium.

Under the condition of Claim 1-(ii), which is equivalent to the no-arbitrage con-

dition and always assumed above, non restrictively along De Boisdeffre (2016), the

proof of Theorem 1 is the same whether assets be nominal, or the payoff matrix,

V , be in Λ. So, w.l.o.g., we henceforth assume that the economy, E , is standard and

that V ∈ Λ, which is set as given throughout. Some parts of the proof are akin to

De Boisdeffre’s (2017), to which we will refer, so as to avoid unnecessary lengths.

Other parts are specific to production economies, and will be detailed hereafter.

3.1 Bounding the economy

For every (i, j,$ := ((p0, q := (q0, q1)), p, Y := [(yj , zj)]) ∈ I×J×P0×P×(×j∈JYj×Z0), let:

Bj($) := {(y, z := (z0, 0)) ∈ Y oj ×ZJ : p0·y0 − q·z + 1 > 0 and ps·ys + V (s, ps)·z0 + 1 > 0,∀s ∈ Sj};

Bi($,Y ) := { (x := (xs), z := (z0, z1) ∈ Xo
i × ZI :

p0 · (x0 − ei0) 6 1− q · (z − zi) +
∑

j∈J1 z
j
1 |r0j($, (yj , zj))|+

∑
j∈J2 z

j
i |r0j($, (yj , zj))|,

ps·(xs − eis) 6 1+V (p, s)·z0+
∑

j∈J1 z
j
1 |rsj($, (yj , zj))|+

∑
j∈J2 z

j
i |rsj($, (yj , zj))|,∀s ∈ Si},

where |rsj($, (yj , zj))| :=
√
rsj($, (yj , zj))2 (for all (j, s) ∈ J × S′i) and let

A($,Y ) := { [(xi, zi)] ∈ ×i∈I Bi($,Y ) :
∑

i∈I(xis − eis) 6
∑

j∈J (yjs+ejs),∀s ∈ S′ and
∑

k∈K zk =
∑

i∈I zi }.

Lemma 1 ∃r > 0 : ∀$ ∈ P0×P, ∀Y ∈ ×j∈JBj($), ∀X ∈ A($,Y ), ‖X‖+ ‖Y ‖ < r

Proof : see the Appendix. �

Lemma 1 permits to bound the economy. Thus, we define (along Lemma 1), for

every (i, j,$, Y ) ∈ I×J×P0×P×(×j∈JBj($)), the following convex compact sets:
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Xi := {x ∈ Xo
i : ‖x‖ 6 r} and Yj := {y ∈ Y oj : ‖y‖ 6 r},

Z0 := {z ∈ ZJ : ‖z‖ 6 r} and Z1 := {z ∈ ZI : ‖z‖ 6 r};

A($,Y ) := A($,Y ) ∩ (×i∈IXi × Z1).

3.2 The existence proof

For every (i, j,$ := ((p0, q := (q0, q1)), p, Y := [(yj , zj)]) ∈ I×J×P0×P×(×j∈JYj×Z0), we

start with the following definitions of modified budget sets for every agent:

B′j($) := {(y, z) ∈ Y oj ×ZJ : p0·(y0+ej0)− q·z + γ(p0,q) > 0 and ps·(ys+ejs) + V (s, ps)·z0 + γ(s,ps) > 0,∀s ∈ Sj};

B′′j ($) := {(y, z) ∈ Y oj ×ZJ : p0·(y0+ej0)− q·z + γ(p0,q) > 0 and ps·(ys+ejs) + V (s, ps)·z0 + γ(s,ps) > 0,∀s ∈ Sj};

B′i($,Y ) := { (x := (xs), z := (z0, z1)) ∈ Xo
i × Z1 :

p0·(x0−ei0) 6 γ(p0,q)−q·(z−zi)+
∑

j∈J1 z
j
1| r0j($, (yj , zj))+γ(p0,q)|+

∑
j∈J2 z

j
i |r0j($, (yj , zj))+γ(p0,q)|,

ps·(xs-eis) 6 γ(s,ps)+V (p, s)·z0+
∑

j∈J1 z
j
1 |rsj($, (yj , zj))+γ(s,ps)|+

∑
j∈J2 z

j
i |rsj($, (yj , zj))+γ(s,ps)|,∀s ∈ Si};

B′′i ($,Y ) := { (x := (xs), z := (z0, z1)) ∈ Xo
i × Z1 :

p0·(x0−ei0) < γ(p0,q)−q0·z0−q1·(z1-zi)+
∑

j∈J1 z
j
1 |r0j($, (xj , zj))+γ(p0,q)|+

∑
j∈J2 z

j
i |r0j($, (xj , zj))+γ(p0,q)|,

ps·(xs-eis) < γ(s,ps)+V (p, s)·z0+
∑

j∈J1 z
j
1|rsj($, (xj , zj))+γ(s,ps)|+

∑
j∈J2 z

j
i |rsj($, (xj , zj))+γ(s,ps)|,∀s ∈ Si},

where γ(p0,q) := 1−min(1, ‖(p0, q)‖), γ(s,ps) := 1− ‖ps‖, for each s ∈ S and γ(s,ps) := 0,

for each s ∈ S\S. The above correspondences satisfy the following properties:

Claim 2 Let (i, j) ∈ I×J, $ := ((p0, q), p) ∈ P0×P and Y ∈ ×j∈JYj×Z0 be given.

The following Assertions hold:

(i) B′′i ($,Y ) 6= ∅ and B′′i is lower semicontinuous at ($,Y );

(i) B′′j ($) 6= ∅ and B′′j is lower semicontinuous at $;

(iii) B′j and B′i are upper semicontinuous at $ and ($,Y ), respectively.

Proof : The proof is given, mutatis mutandis, under De Boisdeffre’s (2017)

Claims 2 to 4, to which we refer the reader. �
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Then, we introduce the following reaction correspondences on the convex com-

pact set, Θ := P0×P × (×j∈JYj×Z0) × (×i∈IXi×Z1), namely, for every (i, j) ∈ I × J and

every θ := ($ := ((p0, q), p := (ps)), Y := [(yj , zj)], [(xi, zi)]) ∈ Θ, we let:

Ψ0(θ) := {((p′0, q′), p′) ∈ P0×P :
∑

s∈S′(p
′
s − ps)·(

∑
i∈I(xis − eis)−

∑
J∈J (yjs+ejs))

+(q′ − q)) · (
∑

k∈K zk −
∑

i∈I z1i) > 0};

Ψj(θ) :=


B′j($) if (yj , zj) /∈ B′j($)

{(y, z) ∈ B′′j ($) : Πj($, (y, z)) > Πj($, (yj , zj)} if (yj , zj) ∈ B′j($)

;

Ψi(θ) :=


B′i($,Y ) if (xi, zi) /∈ B′i($,Y )

B′′i ($,Y ) ∩ Pi(xi)× Z1 if (xi, zi) ∈ B′i($,Y )

.
The above correspondences meet the following Claims 3 and 4.

Claim 3 The following Assertions hold:

(i) for each k ∈ K ∪ {0}, Ψk is lower semicontinuous;

(ii) ∃ θ∗ := ($∗ := ((p∗0, q
∗), p∗), Y ∗ := [(y∗j , z

∗
j )], X∗ := [(x∗i , z

∗
i )]) ∈ Θ, such that :

∗ ∀((p0, q), p := (ps)) ∈ P0×P,
∑

s∈S′ (p∗s − ps)·(
∑

i∈I (x∗is − eis)−
∑

J∈J (y∗js + ejs))

+(q∗ − q) · (
∑

k∈K z
∗
k −

∑
i∈I zi) > 0;

∗ ∀i ∈ I, (x∗i , z
∗
i ) ∈ B′i($∗, Y ∗) and B′′i ($∗, Y ∗) ∩ Pi(x∗i )× Z1 = ∅;

∗ ∀j ∈ J, (y∗j , z
∗
j ) ∈ B′j($∗) and {(y, z) ∈ B′′j ($∗) : Πj($

∗, (y, z)) > Πj($
∗, (y∗j , z

∗
j )} = ∅.

Proof The proof is technical and given, mutatis mutandis, under De Boisdeffre’s

(2017) Claims 5-6, to which we refer the reader to avoid unecessary lengths. �

Claim 4 The following Assertions hold:

(i)
∑

k∈K z
∗
k =

∑
i∈I zi;

(ii) X∗ ∈ A($∗, Y ∗), hence, ‖X∗‖+ ‖Y ∗‖ < r;

(iii) ∀s ∈ S′,
∑

i∈I (x∗is − eis) =
∑

J∈J (y∗js + ejs) may be assumed.

12



Proof Assertion (i) From Claim 3, the following relations hold:

p∗s·(
∑

i∈I (x∗is-eis)−
∑

J∈J (y∗js+ejs)) > 0, for every s ∈ S′, and q∗·(
∑

k∈K z
∗
k−
∑

i∈I zi) > 0.

From Claim 3, summing up budget constraints at t = 0, for each i ∈ I, yields:

∑
i∈I p

∗
0·(x∗i0 − e∗i0) 6

∑
i∈I(γ(p∗0 ,q∗) − q

∗·(z∗i − zi)) +
∑

j∈J1 [r0j($
∗, (y∗j , z

∗
j ))+γ(p∗0 ,q∗)]

+
∑

j∈J2 [r0j($
∗, (y∗j , z

∗
j ))+γ(p∗0 ,q∗)]), that is,∑

i∈I p
∗
0·(x∗i0 − e∗i0) 6 #Kγ(p∗0 ,q∗) − q

∗ ·
∑

k∈K z∗k + q∗ ·
∑

i∈I zi +
∑

j∈J p∗0·(y∗j0 + e∗j0), and,

from above, 0 6
∑

i∈I p
∗
0·(x∗i0-e∗i0)−

∑
j∈J p∗0·(y∗j0+e∗j0) 6 #Kγ(p∗0 ,q∗)−q

∗·(
∑

k∈K z
∗
k−
∑

i∈I zi).

Assume, by contraposition, that
∑

k∈K z
∗
k 6=

∑
i∈I zi. Then, from Claim 3, the

relations γ(p∗0 ,q∗) = 0 and q∗ · (
∑

k∈K z
∗
k −

∑
i∈I zi) > 0 hold, in contradiction with the

above relations. This contradiction proves that
∑

k∈K z
∗
k =

∑
i∈I zi.

Assertion (ii) Let s ∈ S be given. Assume, by contraposition, that there exists

h ∈ H, such that
∑

i∈I (x∗his − ehis)−
∑

J∈J (y∗hjs + ehjs) > 0. Then, from Claim 3-(ii), the

relations γ(s,p∗s) = 0 and p∗s·(
∑

i∈I (x∗is − eis) −
∑

J∈J (y∗js + ejs)) > 0 hold. Summing up

budget constraints in state s, for every i ∈ I, yields, from Assertion (i) and above:∑
i∈I p

∗
s·(x∗is − e∗is) 6

∑
j∈J p∗s·(y∗s + e∗js), in contradiction with the above relation. By

the same token, we show
∑

i∈I p
∗
0·(x∗i0− e∗i0) 6

∑
j∈J p∗0·(y∗0 + e∗j0). Assertion (ii) follows.

Assertion (iii) Let ∈ S be given. Assume, by contraposition, that there exists

h ∈ H1, such that
∑

i∈I (x∗his − ehis)−
∑

J∈J (y∗hjs + ehjs) < 0. Then, from Claim 3-(ii), the

relation p∗hs = 0 holds and, from Assumption A5, and Assertion (ii), given i ∈ I, there

exists (x, z∗i ) ∈ Pi(x∗i )×Z1 ∩B′i($∗, Y ∗). Let (x′, z′) ∈ B′′i ($∗, Y ∗) be given, a non-empty

set, from Claim 2, above. Then, from Assumption A7, for λ > 0, small enough, the

relation [1−λ](x, z∗i ) +λ(x′, z′) ∈ Pi(x∗i )×Z1 ∩B′′i ($∗, Y ∗) holds and contradicts Claim 3.
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We have, thus, shown that
∑

i∈I (x∗his − ehis)−
∑

J∈J (y∗hjs + ehjs) = 0, for every h ∈ H1.

Assume, now, that
∑

i∈I (x∗his − ehis) −
∑

J∈J (y∗hjs + ehjs) < 0, for some h ∈ H2. Again,

p∗hs = 0 and, from Assumption A2, the excess supply can, then, be redistributed

amongst producers, until all markets clear, and without affecting any property of

Claim 3-(ii). We let the reader check, as immediate from the fact that the total

endowment is given and finite, that this redistribution is always possible within the

sets B′j($∗), for every j ∈ J, by taking a suffi ciently large bound, r, along Lemma 1

at the outset. So, the allocation, [(x∗is), (y
∗
js)] may, indeed, be assumed to clear on all

spot markets in state s ∈ S. By the same arguments, spot markets at t = 0 may also

be assumed to clear, that is,
∑

i∈I p
∗
s·(x∗is − e∗is) =

∑
j∈J p∗s·(y∗s + e∗js), for every s ∈ S′. �

The following Claim completes the proof of Theorem 1.

Claim 5 The above collection, θ∗, of prices and actions, is an equilibrium of the

economy, E, such that 1 6 ‖(p∗0, q∗)‖ 6 2, p∗s ∈ (RH1
++)×(RH2

+ ) and ‖p∗s‖ = 1, for all s ∈ S.

Proof Given Claim 4 above and its proof, from which we infer that p∗ ∈

((RH1
++)×(RH2

+ ))S
′ , the proof of Claim 5 is given, mutatis mutandis, under De Boisdef-

fre’s (2017) Claims 10 to 12, to which we refer the reader. �

4 The existence Theorem with numeraire assets

We consider a standard production economy, E, of the above type, where assets

only pay off in a numeraire, e ∈ RH+ (with ‖e‖ = 1). Agents’preferences are now

represented by continuous, strictly concave, strictly increasing, separable functions,

ui : Xo
i → R, for each i ∈ I, and we let ui(x) =

∑
s∈Si u

s
i (x0, xs), for every x ∈ Xo

i .
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From the above Theorem 1, for every n ∈ N, there exists an equilibrium, Cn :=

($n := ((pn0 , q
n), pn := (pns )), V n, Y n := [(ynj , z

n
j )], Xn := [(xni , z

n
i )]), for some payoff matrix

V n ∈ Λ along Claim 1, such that ‖V n−V ‖ 6 1/n, where V is the numeraire asset payoff

matrix of the economy. The price sequence, {((pn0 , qn), pn := (pns ))}, may be assumed

to converge to some system, ((p∗0, q
∗), p∗ := (p∗s)) ∈ P0×P , such that 1 6 ‖(p∗0, q∗)‖ 6 2

and ‖p∗s‖ = 1, for each s ∈ S. We assume costlessly that the payoff and information

structure, [V, (Si)], is arbitrage-free along De Boisdeffre (2016).

The above sequence of equilibria, {Cn}, meets the following properties.

Claim 6 The following Assertions hold :

(i) ∃M > 0, ∀(n, i, s) ∈ N× I × S′, xnis ∈ [0,M ]H;

(ii) it may be assumed to exist X∗ := [(x∗i , z
∗
i )] = limn→∞Xn := [(xni , z

n
i )];

(iii) it may be assumed to exist Y ∗ := [(y∗i , z
∗
j )] = limn→∞ Y n := [(ynj , z

n
j )];

(iv) for each s ∈ S′,
∑
i∈I

(x∗is − eis) =
∑
j∈J

(y∗js + ejs) and
∑
k∈K

z∗k =
∑
i∈I

zi;

(v) ∃ε > 0 : ∀s ∈ S, p∗s ∈ [ε, 1]H1 × [0, 1]H2;

(vi) C∗ := ((p∗0, q
∗), p∗, V, Y ∗, X∗) is an equilibrium of the economy, E.

Claim 6-(vi) states the full existence property of the numeraire asset equilbrium.

Proof Assertion (i) is standard, from market clearance conditions of equilibrium

and from the fact that the total goods and services available for input are bounded,

and so is the total output, from Assumption A4.

Assertion (ii)-(iii): the fact that the sequences {Xn} and {Xn} are bounded, thus

assumed to converge, results from Lemma 1 (see the Appendix).

Assertion (iv) states market clearance conditions on {Cn}, passed to the limit.
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Assertion (v): we let the reader check the proof is a corollary of Lemmata 1 in

De Boisdeffre (2017), replacing the numeraire by any h ∈ H1, and passing to limit.

Assertion (vi): the fact that X∗ meets condition (b) of Definition 1 of equilibrium is

proved, mutatis mutandis, under Theorem 2 in De Boisdeffre (2017). From Assertion

(iv), C∗, also meets conditions (c)-(d) of Definition 1. Thus, we need only prove that

C∗ meets condition (a) of Definition 1, which we do as follows. Let $∗ := ((p∗0, q
∗), p∗),

along Claim 4, j ∈ J, and Vo := {M ∈ V : ‖M − V ‖ 6 1} be given. Consider the

correspondence ηj : ($,M) ∈ P0 × P × Vo 7→ ηj($,M) := arg max Πj($,M, (y, z)) for

(y, z := (z0, 0)) ∈ Bj($,M), where $ := ((p0, q), p := (ps)) ∈ P0 × P ,

Πj($,M, (y, z)) := (p0·(y0 + ej0)− q·z) +
∑

s∈Sj π
j
s(ps·(ys + ejs) +M(s, ps)·z0) and

Bj($,M) := {(y, z) ∈ Y oj ×ZJ : p0·(y0+ej0)−q·z > 0 and ps·(ys+ejs)+M(s, ps)·z0 > 0,∀s ∈ Sj}.

From Lemma 1 (see the Appendix), the set Y oj ×ZJ may be assumed (restricted) to

be compact. The scalar product and mapping, Πj, are continuous and the correspon-

dence, Bj, which has a closed graph, is upper semicontinuous. Then, the equilibrium

relations (ynj , z
n
j ) ∈ Bj(V n, $n), for all n ∈ N, yield in the limit: (y∗j , z

∗
j ) ∈ Bj($∗, V ).

We now show that the correspondence, ($,M) ∈ P0 × P × Vo 7→ Bj($,M), is lower

semicontinuous at ($∗, V ). Let (y∗, z∗) ∈ Bj($∗, V ) be given and, for each k ∈ N, let

($k,Mk) ∈ P0 × P × Vo be such that ‖($k,Mk)− ($∗, V )‖ 6 1/k. From Assumption A4

and Claim 6-(v), the interior, B′′j ($∗, V ), of Bj($∗, V ) is non-empty. So, we set as

given (y, z) ∈ B′′j ($∗, V ), and we let (ymj , z
m
j ) := ([1- 1m ]y∗+ 1

my, [1- 1m ]z∗+ 1
mz) ∈ B

′′
j ($∗, V ),

for every m ∈ N, converge to (y∗, z∗) ∈ Bj($∗, V ). From the continuity of the scalar

product, for every m ∈ N, there exists km ∈ N, such that (ymj , z
m
j ) ∈ B′′j ($k,Mk),

for every k > km. The latter relations imply, from the definition, that Bj is lower

semicontinuous at ($∗, V ).
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We have shown that the mapping, Πj, and correspondence, Bj, are continuous

at ($∗, V ) with non-empty compact values. Then, from Berge’s Theorem (see, e.g.,

Debreu, 1959, p. 19), ηj is upper semi-continuous at ($∗, V ), which yields, in the

limit, (y∗j , z
∗
j ) ∈ ηj($∗, V ) := arg max Πj($

∗, V, (y, z)) for (y, z) ∈ Bj($∗, V ), from the above

relations, (ynj , z
n
j ) ∈ ηj(V n, $n), for n∈N. That is, condition (a) of Definition 1 holds. �

Appendix

Lemma 1 ∃r > 0 : ∀$ ∈ P0×P, ∀Y ∈ ×j∈JBj($), ∀X ∈ A($,Y ), ‖X‖+ ‖Y ‖ < r

Proof

Lemma 1 in the general setting of of Section 3.

• Since total available inputs are uniformly bounded, so are outputs, from As-

sumption A3, for every $ ∈ P0×P and Y ∈ ×j∈JBj($), such that A($,Y ) 6= ∅. So,

we may assume that production sets are bounded and let Q := (
∑

j∈J supyj∈Y o
j
‖yj‖).

Then, from the definition, consumptions of the set A($,Y ) are uniformly

bounded, in $ ∈ P0×P , Y ∈ ×j∈JBj($) and s ∈ S′.

• From above and the definition of P , Lemma 1 will be proved if we show port-

folios are bounded independently of $. Portfolios in equities (z1 ∈ [0, 1]J1) are

bounded, from the definition. We show the same for assets.

• Let δ = (2 + ‖(ps)‖)(1 +Q+ ‖(ek)k∈K‖). Assume, by contraposition, that, for every

n ∈ N, there exists [(xni , z
n
i := (zni0, z

n
i1)] ∈ A($n, Y n), for some $n := ((pn0 , q

n), pn) ∈

P0×P , and some Y n := [(ynj , z
n
j := (znj0, 0)] ∈ ×j∈JBj($n), such that

∑
k∈K ‖znk0‖ > n.

Such relations yield:
∑

k∈K znk0 = 0, and V (sk, p
n
sk

)·znk0 > −δ, ∀(k, sk, n) ∈ K×Sk×N.

• The rest of the proof is identical to De Boisdeffre’s (2017) for its Lemma 1. �
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Lemma 1 for the numeraire asset economy.

• As above, we need only show portfolios are bounded, but across all economies,

En. We assume, by contraposition, that there exist double indexed sequences of

prices, $(n,m) := ((p
(n,m)
0 , q(n,m)), p(n,m)) ∈ P0×P , and strategies, Y (n,m) := [(y

(n,m)
j , z

(n,m)
j )] ∈

×j∈JBj($(n,m)) and [(x
(n,m)
i , z

(n,m)
i )] ∈ A($(n,m), Y (n,m), V n), with obvious nota-

tions, such that ‖(z(n,m)k0 )‖ > m. Then, the following relations hold from the

definitions:
∑

k∈K z
(n,m)
k0 = 0 , V n(sk, p

(n,m)
sk )·z(n,m)k0 > −δ,∀(k, sk, n,m) ∈ K×Sk×N2.

• The rest of the proof is identical to De Boisdeffre’s (2017) for its Lemma 1. �
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