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a basic model of full existence
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Abstract

We consider a pure exchange economy, where agents, typically asymmetrically

informed, exchange securities, on financial markets, and commodities, on spot mar-

kets. Consumers have private characteristics, anticipations and beliefs, and no

model to forecast prices. They are dispensed with rational expectation and bounded

rationality assumptions, such as Radner’s (1972, 1979), Kurz’(1994) or Koutsougeras-

Yannelis’(1999). We show that they face an incompressible uncertainty, represented

by a so-called "minimum uncertainty set". This uncertainty typically adds to the

exogenous one, on the state of nature, an ‘endogenous uncertainty’over future spot

prices. At equilibrium, all agents expect the ‘true’price on every spot market as a

possible outcome, and elect optimal strategies, ex ante, which clear on all markets,

ex post. We show this sequential equilibrium exists whenever agents’prior anticipa-

tions embed the minimum uncertainty set. This outcome differs from the standard

generic existence results of Hart (1975), Radner (1979), and Duffi e-Shaffer (1985),

among others, based on the rational expectations of prices.

.
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1 Introduction

When agents’information is incomplete or asymmetric, the issue of how markets

may reveal information is essential and, yet, debated. Quoting Ross Starr (1989),

“the theory with asymmetric information is not well understood at all. In short, the

exact mechanism by which prices incorporate information is still a mystery and an

attendant theory of volume is simply missing.”A traditional response is given by

the REE (rational expectations equilibrium) model by assuming, quoting Radner

(1979), that “agents have a ‘model’or ‘expectations’of how equilibrium prices are

determined”. Under this assumption, agents know the relationship between private

information signals and equilibrium prices, along a so-called "forecast function".

Cornet-De Boisdeffre (2002) suggests an alternative approach, where agents’

asymmetric information is represented by private information signals, which cor-

rectly inform each agent that tomorrow’s state of nature will be in a subset of the

state space. The latter paper extends the classical definitions of equilibrium, prices

and no-arbitrage condition to asymmetric information. Generalizing Cass (1984),

De Boisdeffre (2007) shows the existence of equilibrium on purely financial markets

is characterized, in this setting, by that no-arbitrage condition. This existence result

differs from Radner’s (1979) REE generic one. Finally, Cornet-De Boisdeffre (2009)

shows the above no-arbitrage condition may always be reached by agents, with no

price model, from observing exchange opportunities on financial markets.

The above papers may picture the information transmission on actual markets

and restore a full existence property of equilibrium. But they still retain Arrow’s

(1953) and Radner’s (1972) rational expectation hypothesis (also called the con-

ditional perfect foresight hypothesis), stating that agents know the map between
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future realized states and equilibrium prices. In such a setting, the states of nature

are exogenous and represent all individual ex ante uncertainty.

Yet, actual states typically encompass unobservable variables. Arrow (1953)

acknowleges this by noticing that a complete market of exogenous state-contingent

claims does not exist and should be replaced by state-contingent financial transfers.

In his setting, Kurz and Wu (1996) notice, "agents need to know the maps from

states at future dates to prices in the future and it is entirely unrealistic to assume

that agents can find out what this sequence of maps is." Quoting Radner (1982)

himself, this condition "seems to require of the traders a capacity for imagination

and computation far beyond what is realistic". So the question of the possibility and

the way to discard rational expectations in the sequential equilibrium model.

Radner’s (1972-79) rational expectation assumptions would be justified if agents

knew all the primitives of the economy (endowments, preferences, etc...) and their

relations to equilibrium prices, and if they had elected one common price anticipa-

tion in each state (amongst typically many possibilities and interests), with the com-

mon knowledge of game theory. Otherwise, the equilibrium outcome would typically

differ from the standard sequential equilibrium. Such conditions are unrealistic.

Probably the first, best known and most radical escape to rational expectations

was the temporary equilibrium model, introduced by J. Hicks and later developed

by J.-M. Grandmont. It is traditionally presented as dichotomic from the sequential

equilibrium model (see Grandmont, 1982). At a temporary equilibrium, agents have

exogenous anticipations, which need not be self-fulfilling. Current markets clear at

agents’ initial plans, which are typically revised, at each period, after observing

realized prices and events. Equilibrium allocations need not clear on future spot

markets, where agents may face bankruptcy, due to mistaken anticipations. This
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outcome explains why the temporary equilibrium did not thrive as the perfect fore-

sight’s, which lets agents coordinate across periods, on perfectly anticipated prices.

A less radical approach is referred to as bounded rationality. In this line of

research, Kurz’(1994) rational belief equilibrium (RBE) allows agents to lack the

"structural knowledge" of how equilibrium prices are determined. This unawareness

may be due to uncertainty about the beliefs, characteristics and actions of other

agents. It leads to an additional uncertainty on future variables, which Kurz calls

"endogenous uncertainty", describes as the major cause of economic fluctuations,

and shows to be consistent with heterogenous beliefs.

Bounded rationality models also serve to study learning processes with differ-

ential information (alternative to the REE’s), and the links between the informa-

tion structure and equilibrium or core allocations. This is done, in particular, by

Koutsougeras and Yannelis (1999), who emphasize "that the study of cooperative

solution concepts (e.g., the core and the (Shapley) value) in differential information

economies appears to be a successful alternative to the traditional rational expecta-

tions equilibrium, because they provide sensible and reasonable outcomes in situa-

tions where any rational expectations equilibrium (REE) notion fails to do so."

The current paper departs from both perfect foresight and bounded rationality

models, though it resumes endogenous uncertainty in defining the state space. Its

asymmetric information concerns the probability assessments over future prices,

but also the sets of possible states of nature and anticipations in each state. In our

view, bounded rationality still demands inference and computational skills, as well

as informations, which typically exceed agents’possibilities. In the real world, their

beliefs, actions and characteristics are all private and their observations are limited.
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This restricts their reckonning capacities to a bare minimum and, consequently,

their ability to construct any model, such as one of consistent beliefs. Kurz’RBE

focusses on non-stationnary price solutions, so as to allow for heterogeneity of beliefs

and dynamic fluctuations. An asymptotic limit to the probability distributions over

price series is assumed to exist and to be approximated on the finite observations

that agents can make. Yet, with non-stationnary distributions, the asymptotic

limits typically differ from their finite proxies. This is one example of why we think

bounded rationality is still too demanding from the layman’s reckonning skills. The

model we propose requires no structural knowledge, nor computation from agents.

Due to their private characteristics, agents face an incompressible uncertainty

over the set of clearing market prices to expect, represented by a so-called and never

empty "minimum uncertainty set". The set consists of all possible equilibrium prices

along agents’private beliefs today and is consistent with Kurz and Wu’s (1996)

notice that price uncertainty and economic fluctuations are "primarily endogenous

and internally propagated phenomena (...) generated by the actions and beliefs of

the agents (...) and by their uncertainty about the actions of other agents".

That set (or a bigger one) might be inferred, we argue, by a tradehouse or a

financial institution from observing and treating past data on long time series, rather

than by consumers themselves. Yet, future equilibrium prices cannot be reckonned

precisely by any agent or institution, because this would require to know every

agent’s beliefs and characteristics. Only a set of possible equilibrium prices could

be assessed ex ante, or the minimum uncertainty set, but not the precise location

of future prices within that set. Locating equilibrium prices obeys an uncertainty

principle. The uncertainty over a set of anticipations is assessed by agents privately.

The current model’s sequential equilibrium concept of "correct foresight equilib-
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rium" (CFE) is thus defined as De Boisdeffre’s (2007), except for agents’forecasts,

which need no longer be unique, but form sets containing the prices to prevail. The

CFE, we argue, reconciles into one concept the sequential and temporary equilibria.

It is sequential, since anticipations are self-fulfilling ex post. It is also temporary

since forecasts are exogenously given. Along our main Theorems, whether the fi-

nancial stucture be nominal or real, and beliefs be symmetric or asymmetric, a CFE

exists whenever agents’anticipation sets include the minimum uncertainty set.

In our view, this approach to information transmission and equilibrium pictures

actual behaviours on markets. Endowed with no price model, unaware of the prim-

itives of the economy, and with limited observational and reckonning capacities,

consumers have exogenous anticipations and face endogenous uncertainty. They

infer, first, the coarsest arbitrage-free refinement of their initial anticipations from

observing trade, along De Boisdeffre (2016). Whence reached, they have no means

of further refining their anticipation sets. Then, market forces, driven by price and

demand correspondences, lead to equilibrium.

The paper is organized as follows: Section 2 presents the model. Section 3 states

the existence Theorem for purely financial markets. Section 4 proves this Theorem.

Section 5 shows the full existence of equilibria when assets are nominal , or real, or

a mix of both. An Appendix proves technical Lemmas.

2 The basic model

We consider, throughout, a two-period economy, with private information sig-

nals, a consumption market and a financial market. The sets, I, S, L and J, respec-

tively, of consumers, states of nature, goods and assets are all finite. The first period
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is also referred to as t = 0 and the second, as t = 1. At t = 0, there is an uncertainty

upon which state of nature, s ∈ S, will prevail tomorrow. The non random state

at t = 0 is denoted by s = 0 and, whenever Σ ⊂ S, we let Σ′ := {0} ∪ Σ. Similarly, we

denote by l = 0 the unit of account and let L′ = {0} ∪ L.

2.1 Markets, information and beliefs

Agents consume and may exchange the same consumption goods, l ∈ L, on the

spot markets of each period. The generic ith agent’s welfare is measured, ex post,

by a utility index, ui : RL×L+ → R+, over her consumptions at both dates.

At the first period (t = 0), each agent, i ∈ I, receives a private information signal,

Si ⊂ S, about which states of the world may occur at t = 1. That is, she knows that

no state, s ∈ S\Si, will prevail tomorrow. Each set Si is assumed to contain the true

state. Hence, the pooled information set, denoted by S := ∩i∈ISi, is non-empty and

we let, w.l.o.g., S = ∪i∈ISi. Such a collection of #I finite sets, whose intersection is

non-empty, is called an information structure. Agents’information structure, (Si),

is henceforth set as given and always referred to.

Agents are unaware of the primitives of the economy and of other agents’beliefs

and actions. They fail to know how market prices are determined and face uncer-

tainty over future spot prices. Thus, at t = 0, the generic ith agent elects a private

set of anticipations, out of the price set, P := {p ∈ RL++ : ‖p‖ = 1}, in each state s ∈ Si.

We refer to Ω := S × P as the set of forecasts and denote by ω its generic element,

and by B(Ω) its Borel σ-algebra. A forecast, ω := (s, p) ∈ Ω, is thus a pair of a random

state, s ∈ S, and a conditional spot price, p ∈ P , expected in that state.

Remark 1 Strictly positive prices in P are related to strictly increasing prefer-

ences, as assumed below. For simplicity, but w.l.o.g., the set, P , normalizes all
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agents’price expectations to one. In each state, this common value of one could be

replaced by any other positive value without changing the model’s properties.

We now define anticipation structures and beliefs.

Definition 1 An anticipation set is a closed subset of Ω := S×P . A collection of

anticipation sets, Ωi := ∪s∈Si{s}×P is, for each i ∈ I, is an anticipation structure if:

(a) P is 6= ∅, for every (i, s) ∈ I × Si, and ∩i∈I P is 6= ∅, for every s ∈ S.

Let (Ωi) be a given anticipation structure. An anticipation structure, (Ω′i), which

is smaller (for the inclusion relation) than (Ωi), is called a refinement of (Ωi), and

denoted by (Ω′i) ≤ (Ωi). It is said to be self-attainable if ∩i∈I Ω′i = ∩i∈I Ωi.

A belief is a probability distibution over (Ω,B(Ω)), whose support is an anticipation

set. A collection of beliefs, (πi), whose supports define an anticipation structure,

(Ωi), is called a structure of beliefs, said to support (Ωi) and denoted by (πi) ∈ Π(Ωi).

Only spot markets in states s ∈ S′ may open. We therefore restrict admissible

commodity prices in states of s ∈ S′ to the set P := {p ∈ RL++ : ‖p‖ 6 1} × PS, which is

consistent with consumers’anticipations.

Agents may operate financial transfers across states in S′ by exchanging, at t = 0,

finitely many assets, j ∈ J, which pay off, at t = 1, conditionally on the realization

of forecasts. According to Sections, these assets may be nominal (i.e., pay in cash)

or real (i.e., pay in godds) or a mix of both. All assets’payoffs define a (S × L′)× J

return matrix, V , whose generic row across forecasts, ω ∈ Ω, is denoted V (ω) ∈ RJ .

We let V be the set of (S×L′)× J matrices. Since payoffs will face "trembles" in the

fifth Section, for every n ∈ N, we let Vn := {V ′ ∈ V : ‖V ′ − V ‖ 6 1/n}.

The generic payoff of an asset, j ∈ J, in a state, s ∈ S, is a bundle vjs := (vjls ) ∈ RL′ ,

of the quantities, vj0s , of cash, and vjls , of each good l ∈ L, that the asset delivers
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if state s ∈ S obtains.2 We restrict asset prices to the set Q := {q ∈ RJ : ‖q‖ 6 1}

w.l.o.g. and let P0 := {p ∈ RL++ : ‖p‖ 6 1} × Q be the set of first period prices. Along

the forecast ω = (s, p := (pl)) ∈ Ω, the generic jth asset is a contract which promises

to pay vj0s +
∑
l∈L plvjls in cash if the forecast, ω, obtains. Thus, at asset price, q ∈ Q,

agents may buy or sell unrestrictively portfolios of assets, z = (zj) ∈ RJ , for q · z units

of account at t = 0, against the promise of delivery of a flow, V (ω) · z, of conditional

cash payoffs across forecasts, ω ∈ Ω.

We now define arbitrage-free anticipation structures.

Definition 2 Given price q ∈ Q, an anticipation structure, (Ωi), is said to be q-

arbitrage-free if following Condition holds:

(a) @(i,z) ∈ I × RJ : −q · z > 0 and V (ω) · z > 0, ∀ω ∈ Ωi, with one strict inequality.

An anticipation structure, (Ωi), is said to be arbitrage-free if it is q-arbitrage-free for

some price, q ∈ Q, and we denote by AS their set. We denote by SB the set of struc-

tures of beliefs, which support an arbitrage-free anticipation structure, (Ωi) ∈ AS.

2.2 The agent’s behaviour and the concept of equilibrium

The generic ith agent receives an endowment, ei := (eis) ∈ RL×S
′
i

++ , granting the

commodity bundles, ei0 ∈ RL++ at t = 0, and eis ∈ RL++, in each state s ∈ Si, if it

prevails. We let e := (ei) ∈ ×i∈IRL×S
′
i

++ be the bundle of endowments across agents.

Since endowments will face "trembles" in the fifth Section, for every n ∈ N, we

let En := {e′ ∈ ×i∈IRL×S
′
i

+ : ‖e′ − e‖ 6 1/n} and assume w.l.o.g. that E1 ⊂ ×i∈IRL×S
′
i

++ ,

henceforth considered as a fixed set.

2 if the asset, j ∈ J, is nominal vjls = 0, for every pair (s, l) ∈ S × L. If the asset is real,
vj0s = 0, for every s ∈ S.
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Agents’forecasts are represented by an arbitrage-free anticipation structure, say

(Ωi) ∈ AS, which is reached when they elect their strategies at t = 0, jointly with

beliefs, (πi) ∈ Π(Ωi), along Definition 1. The assumption that agents’forecasts are

arbitrage-free is proved to be non restrictive in De Boisdeffre (2016), since they may

always infer from markets a (unique coarse) self-attainable arbitrage-free refinement

of any anticipation structure. Then, the ith the agent’s consumption set is that of

continuous mappings, x : Ω′i→RL+ (where Ω′i := {0}∪Ωi), denoted by XΩi
:= C (Ω′i, RL+).

Given the observed prices, ω0 := (p0, q) ∈ P0, at t = 0, and her anticipation set,

Ωi, the generic ith agent’s consumptions, x ∈ XΩi
, are mappings, relating s = 0 to

a consumption decision, xω0 := x0 ∈ RL+, at t = 0, and, continuously on Ωi, every

forecast, ω ∈ Ωi, to a consumption decision, xω ∈ RL+, at t = 1, which is conditional

on the realization of the forecast ω. Her budget set is defined as follows:

Bi(ω0,Ωi) := {(x, z) ∈ XΩi×RJ : p0·(x0-ei0)6 −q·z, ps·(xω-eis)6V (ω)·z, ∀ω := (s, ps) ∈ Ωi}.

Given agents’structure of beliefs at the time of trading, (πi) ∈ Π(Ωi), each con-

sumer, i ∈ I, has preferences represented by the V.N.M. utility function:

x ∈ XΩi
7→ Uπii (x) :=

∫
ω∈Ωi

ui(x0, xω)dπi(ω).

The above economy, denoted E(πi) = {(I, S, L, J), V, (Si), (Ωi), (πi), (ei), (ui)}, retains

the small consumer price-taker hypothesis, by which no single agent may, alone, have

a significant impact on prices. It is called standard under the following Conditions:

• Assumption A1 (strong survival): for each i ∈ I, ei ∈ RL×S
′
i

++ ;

• Assumption A2: for each i ∈ I, ui is continuous, strictly concave and in-

creasing: [(x, y, x′, y′) ∈ R4L
+ , (x, y) 6 (x′, y′), (x, y) 6= (x′, y′)]⇒ [ui(x

′, y′) > ui(x, y)].
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Strict concavity is retained to alleviate the proof of a selection amongst optimal

strategies (see proof of Lemma 4). The consumer elects an optimal strategy in her

budget set. This yields the following concept of sequential equilibrium:

Definition 3 A collection of prices, p := (ps) ∈ P and q ∈ Q, of an anticipation struc-

ture, (Ωi) ∈ AS, beliefs, (πi) ∈ Π(Ωi), and strategies, (xi, zi) ∈ Bi(ω0,Ωi), defined for

each i ∈ I (where ω0 := (p0, q)) is a sequential equilibrium of the economy, E(πi), or

correct foresight equilibrium (C.F.E.), if the following Conditions hold:

(a) ∀i ∈ I, ∀s ∈ S, ωs := (s, ps) ∈ Ωi;

(b) ∀i ∈ I, (xi, zi) ∈ arg max(x,z)∈Bi(ω0,Ωi) Uπii (x);

(c)
∑
i∈I (xi0−ei0) = 0;

(d)
∑
i∈I (xiωs−eis) = 0, ∀s ∈ S;

(e)
∑
i∈I zi = 0.

Under the above conditions, price p ∈ P, and each forecast, ωs := (s, ps) ∈ Ω, for s ∈ S,

are said to support equilibrium. A collection, {p, q, (Ωi), (πi), (xi), (zi)}, which meets

Conditions (b)-(c)-(e) is called a temporary equilibrium.

2.3 The model’s notations

For convenience, we summarize the model’s notations in this single sub-Section:

• E(πi) = {(I, S, L, J), V, (Si), (Ωi), (πi), (ei), (ui)} summarizes the economy’s charac-

teristics. There are two periods, t ∈ {0, 1}, finite sets, I, S, L, J, respectively, of

consumers, states of nature, goods and assets, a payoffmatrix, V , information

sets, Si ⊂ S, and S := ∩i∈ISi 6= ∅, an anticipation structure, (Ωi) ∈ AS, and

beliefs, (πi) ∈ Π(Ωi), along Definition 1, endowments, e := (ei) ∈ ×i∈IRL×S
′
i

++ , and

utility indexes, ui, defining a V.N.M. utility function, Uπii , for each i ∈ I.
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• For every n ∈ N, we let En := {e′ ∈ ×i∈IRL×S
′
i

+ : ‖e′− e‖ 6 1/n} and assume w.l.o.g.

that E1 ⊂ ×i∈IRL×S
′
i

++ , henceforth considered as fixed.

• We let s = 0 be the non-random state at t = 0 and denote S′ := {0} ∪ S and

S′i := {0} ∪ Si, for each i ∈ I. We let l = 0 be the account unit and L′ := {0} ∪ L.

• Q := {q ∈ RJ : ‖q‖ 6 1}, P := {p := (pl) ∈ RL++ : ‖p‖ = 1}, P := {p ∈ RL++ : ‖p‖ 6 1}×PS

and Ω := S × P are the sets, respectively, of asset prices, expected spot prices,

market prices (for goods) and forecasts.

• V is the set of all (S × L′) × J matrices (V ∈ V). For every n ∈ N, we let Vn :=

{V ′ ∈ V : ‖V ′ − V ‖ 6 1/n}.

3 The core existence theorem

With the model’s endogenous uncertainty, only the set of possible equilibrium

forecasts could be assessed. No agent or institution would know the true forcasts’

location within that set, because this would require to know all agents’ private

beliefs, characteristics and actions.

This set is the "minimum uncertainty set", defined below. The following The-

orems of Section 3 and 5 show that equilibrium exists, whenever agents’forecasts

embed the latter set. This existence result holds whatever the anticipations and

beliefs agents have, and the types of assets (nominal or real or a mix of both) they

exchange. This full existence result is worth noticing, so it differs from the generic

ones of the classical sequential equilibrium models. It builds on a core Theorem 1.

3.1 Endogenous uncertainty and the existence of equilibrium

We start with a definition.
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Definition 4 Let Λ be the set of prices, p := (ps) ∈ P, which support the equilibrium

of an economy, E(πi), for some arbitrary structure of beliefs, (πi) ∈ SB. The set

of forecasts, ∆ := {ω ∈ Ω : ∃p := (ps) ∈ Λ, ∃s ∈ S, ω = (s, ps)}, which support an

equilibrium, is called the minimum uncertainty set.

Lemma 1 Under Assumptions A1-A2, the following Assertions hold:

(i) ∃δ > 0 : Λ ⊂ RL+ × [δ, 1]L×S, hence, ∆ ⊂ S× [δ, 1]L;

(ii) the bound, δ, may be chosen independent of V ∈ V1 and (ei) ∈ E1.

Proof See the Appendix. �

Assumption A3 (correct foresight): for each i ∈ I, the relation ∆ ⊂ Ωi holds, in

which (Ωi) ∈ AS is the given anticipation structure of the economy, E(πi).

Theorem 1 Under Assumptions A1-A2-A3, an economy, E(πi), with purely financial

markets admits an equilibrium (C.F.E.), for any structure of beliefs, (πi) ∈ SB.

3.2 Endogenous uncertainty and how to reach correct anticipations

Along Theorem 1, above, as long as agents have correct foresight (i.e., meet

Assumption A3 ), a C.F.E. exists whatever their beliefs. Markets clear ex post at

one self-fulfilling common anticipation. We now argue why the set of all equilibrium

forecasts may be one of "minimum uncertainty" and how it could be assessed.

On the first issue, when today’s beliefs are private, no equilibrium price should be

ruled out a priori, given agents’unknown anticipations today. Theoretically, this set

is of incompressible uncertainty. Practically, it would be so because no agent knows

the beliefs and characteristics of other agents, nor has structural knowledge, along

Kurz (1994). Past price series confirm that erratic fluctuations may occur not only

in periods of enhanced uncertainty. Yet, if no agent has structural knowledge and
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access to private data, how can this minimum uncertainty set, or a bigger set, be

inferred ? The response may simply be empirical, that is, only require observations.

On this issue, the model specifies normalized prices (extended by Remark 1). It

is often possible to observe past prices and reckon their relative values, in a wide

array of situations, or states, which typically replicate over time (hence, embed S).

Relative prices vary between observable upper and lower bounds.

Along a sensible assumption, markets are mostly at equilibrium and, with long

enough series, all equilibrium forecasts would lie within the bounds of the series’

convex hulls.3 Such a statistical method and its iterative verification across pe-

riods require no price model and need not be performed by consumers, but by a

tradehouse or financial institution, having greater computational facilities. The

applications to finance they might infer are obvious. On consumer side, if agents

should agree on a minimal span of price risk, they typically keep private their beliefs

and have idiosyncratic anticipations, explaining their likely asymmetries.

4 The existence proof

Hereafter, we set as given an arbitrary anticipation structure, (Ωi) ∈ AS, and

beliefs, (πi) ∈ Π(Ωi), and assume that the economy, E (πi), meets Assumptions A1-A2-

A3. In the following sub-Section 4.1, the financial structure is represented by an

arbitrary payoffmatrix V ∈ V (which needs not be nominal), to present results that

3 e.g., if the future reflects the past, if S is also a set of past states and, for every
s ∈ S, the past price serie, (pts) ∈ (P )Ts (where Ts ∈ N) is large, then, iteratively, the set

{(s, ys) ∈ S × P : ys =

Ts∑
t=1

αtpts /‖
Ts∑
t=1

αtpts‖, (αt) ∈ RTs+ ,

Ts∑
t=1

αt = 1}, could easily be checked to

always contain the self-fulfilling forecasts.

13



will serve in the following Section 5. In sub-Sections 4.2 and 4.3, the payoff matrix

is restricted to be nominal.

The proof proceeds in three steps. Sub-Section 4.1 defines, via finite partitions,

a non-decreasing sequence, {(Ωni )}n∈N, of finite refinements of (Ωi), whose limit is

dense in (Ωi). Sub-Section 4.2 constructs a sequence of finite auxiliary economies,

which all admit equilibria along De Boisdeffre (2007). Sub-Section 4.3 derives a

CFE of the economy E (πi) from these auxiliary equilibria.

4.1 Finite partitions of agents’anticipation sets

• Let (i, n) ∈ I × N be given. We define an integer, K(i,n) ∈ N, and a partition,

Pni = {Ωk(i,n)}16k6K(i,n)
, of Ωi, such that πi(Ωk(i,n)) > 0, for each k ∈ {1, ..., K(i,n)}.

• In each set Ωk(i,n) (for k 6 K(i,n)), we select exactly one element, ωk(i,n), to form

the discrete sub-set, Ωni := {ωk(i,n)}16k6K(i,n)
, of Ωi.

• We define mappings, πni : Ωni → R+, by πni (ωk(i,n)) = πi(Ω
k
(i,n)) and Φni : Ωi → Ωni , by

its restrictions, Φn
i / Ωk

(i,n)

(ω) = ωk(i,n), for each k 6 K(i,n) and every ω ∈ Ωk(i,n).

And we henceforth assume that the Assertions of the following Lemma hold.

Lemma 2 For each (i, n) ∈ I × N, we may choose the above Pni , Ωni , Φni , such that:

(i) Ωni ⊂ Ωn+1
i and Pn+1

i is finer than Pni ;

(ii) ∪n∈N Ωni is everywhere dense in Ωi;

(iii) for every ω ∈ Ωi, ω = limn→∞ Φni (ω), and Φni (ω) converges uniformly to ω;

(iv) there exist N ∈ N, such that (Ωni ) is arbitrage-free for every n > N.

For simplicity, we henceforth assume that N = 1.

Proof See the Appendix, which provides one example of such sets and maps. �
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4.2 The auxiliary economies, En

Given n ∈ N, we define an economy, En ={(I, S, L, J), V, (Ω′ni ), (ei), (u
n
i )}, with same

periods, sets of agents, goods and endowments as above. The realizable states and

the generic ith agent’s expectations are artefactual and defined as follows:

• Ω′ni := S ∪Ωni is the agent’s information set, defining the information structure,

(Ω′ni ), of a formal state space, Ωn := ∪i∈IΩ′ni , whose set of realizable states is S.

• In each state s ∈ S, the ith agent has a perfect foresight of the spot price.

• In each state (s, p) ∈ Ωni , the ith agent is certain that price p ∈ P will prevail.

By induction on n ∈ N, we define a sequence of equilibrium prices, (pn, qn) ∈ P ×Q

in the following way. For all prices, (p := (ps), q) ∈ P ×Q, we let the generic ith agent’s

consumption set, budget set, and utility function in the economy En be:

Xn
i := RL×Ω′ni

+ , whose generic element is denoted by x := [(xs)s∈S′ , (xω)ω∈Ωn
i
];

Bni (p, q) := { (x, z) ∈ Xn
i ×RJ : p0·(x0−ei0)6 −q·z, ps·(xs−eis)6 V (s, ps)·z, ∀s ∈ S

and p·(xω−eis)6 V (ω)·z, ∀ω := (s, p) ∈ Ωni };

and x ∈ Xn
i 7→ uni (x) := 1

n#S

∑
s∈S

ui(x0, xs) + (1− 1
n )

∑
ω∈Ωn

i

ui(x0, xω)πni (ω).

Henceforth, the payoff matrix, V , is assumed to be nominal, so that V (s) :=

V (s, p), for every (s, p) ∈ Ω, only depends on s ∈ S. The above economy, En, is of

the De Boisdeffre’s (2007) type. Hence, from its Theorem 1 and proof, it admits an

equilibrium, for every n ∈ N, defined as follows:

Definition 5 A collection of prices, (p, q) ∈ P ×Q, and strategies, (xi, zi) ∈ Bni (p, q), for

each i ∈ I, is an equilibrium of the economy En, if the following Conditions hold:

(a) ∀i ∈ I, (xi, zi) ∈ arg max(x,z)∈Bn
i (p,q) uni (x);

15



(b)
∑
i∈I (xis−eis) = 0, ∀s ∈ S′;

(c)
∑
i∈I zi = 0.

We set as given, for every n ∈ N, such equilibria, Cn:= {pn, qn, (xni ), (zni )}, in each

economy En. From the proof of Theorem 1 in De Boisdeffre (2007), the elected

equilibrium satisfies ‖pn0‖+ ‖qn‖ > 1, for each n ∈ N, hence, ‖p∗0‖+ ‖q∗‖ > 1. Moreover,

the sequence, {Cn} := {n ∈ N 7→ Cn}, meets the following properties:

Lemma 3 For each i ∈ I, we let Zi := {z ∈ RJ : V (ω) · z = 0, ∀ω ∈ Ωi}, Z⊥i be its ortho-

gonal complement and Z :=
∑
i∈I Zi. Given {Cn}, we let zni = zoni + z⊥ni be the decom-

position of zni on Zi × Z⊥i , for each (i, n) ∈ I × N. The following Assertions hold:

(i) the price sequence {(pn, qn)} may be assumed to converge to (p∗, q∗) ∈ P×Q, such

that {(s, p∗s)}s∈S ⊂ ∆ ⊂ (∩i∈IΩi);

(ii) the sequences {(xnis)s∈S′} and {(z⊥ni )i∈I} may be assumed to converge, say to

(x∗is)s∈S′ and (z⊥∗i ) ∈ RJ×I, such that
∑
i∈I (x∗is−eis)s∈S′ = 0 and

∑
i∈I z⊥∗i ∈ Z;

(iii) there exists (z∗i ) ∈ RJ×I, such that
∑
i∈I z

∗
i = 0 and (z∗i − z⊥∗i ) ∈ Zi for every i ∈ I.

Lemma 4 Let Bi(ω, z) = {x ∈ RL+ : p·(x− eis) 6 V (ω)·z}, be given sets, for every z ∈ RJ

and all ω := (s, p) ∈ Ωi. Along Lemma 3, the following Assertions hold for all i ∈ I:

(i) the correspondence ω ∈ Ωi 7→ arg max ui(x
∗
i0, x), for x ∈ Bi(ω, z∗i ), is a continuous

map, whose embedding, x∗i : ω ∈ Ω′i 7→ x∗iω, is a consumption, that is, x∗i ∈ XΩi
;

(ii) Uπii (x∗i ) = limn→∞ uni (xni ).

Proof of the Lemmas See the Appendix. �

4.3 An equilibrium of the initial economy

We now prove Theorem 1, via the following Claim.
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Claim 1 The collection, {p∗, q∗, (Ωi), (πi), (x
∗
i ),(z

∗
i )}, of prices, anticipation sets, beliefs,

allocation and portfolios of Lemmas 3-4, defines a CFE of the economy E (πi).

Proof We let C∗ := {p∗, q∗, (Ωi), (πi), (x∗i ), (z∗i )} be defined as in Claim 1. From Lemma

3, C∗ meets Conditions (a)-(c)-(d)-(e) of Definition 3 of equilibrium, above. We now

show that C∗ meets Condition (b) of the same Definition 3.

From the definition of Cn, the relations pn0 ·(xni0− ei0) 6 −qn·zni hold, for each (i, n) ∈

I × N, and yield p∗0·(x∗i0 − ei0) 6 −q∗·z∗i , for each i ∈ I, in the limit (n → ∞). We let

ω∗0 := (p∗0, q
∗). From Lemma 4-(i), the relations x∗i ∈ XΩi

and ps·(x∗iω−eis) 6 V (ω)·z∗i also

hold, for every i ∈ I and every ω = (s, ps) ∈ Ωi, and imply [(x∗i , z
∗
i )]i∈I ∈ ×i∈IBi(ω∗0,Ωi).

Next, we assume, by contraposition, that C∗ fails to meet Condition (b) of Defi-

nition 3, that is, there exist i ∈ I, (x, z) ∈ Bi(ω∗0,Ωi) and ε ∈ R++, such that:

(I) ε+ Uπii (x∗i ) < Uπii (x).

We may, moreover, assume that (x, z) ∈ Bi(ω∗0,Ωi) is such that:

(II) ∃ (δ,M) ∈ R2
++: xω ∈ [δ,M ]L, ∀ω ∈ Ωi.

The existence of an upper bound to consumptions xω (for ω ∈ Ωi) results from

the relation (x, z) ∈ Bi(ω∗0,Ωi), which implies a bound to financial transfers and from

the fact that Ωi is closed in S ×P . Moreover, for α ∈]0, 1] small enough, the strategy

(xα, zα) := ((1− α)x+ αei, (1− α)z) ∈ Bi(ω∗0,Ωi) meets both relations (I) and (II), from

Assumption A1 and from the uniform continuity (on a compact set) of the mapping

(α, ω) ∈ [0, 1]× Ωi 7→ (xαω, ui(xα0 , xαω)). So, relations (II) may indeed be assumed.

From Lemmas 1-3, p∗ ∈ RL+ × [δ, 1]L×S. Then, from the relations (I)-(II) and

(x, z) ∈ Bi(ω
∗
0,Ωi), the definition of Ωi, Assumptions A1-A2 and uniform continu-

ity arguments, we may also assume there exists γ ∈ R++, such that:
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(III) p∗0·(x0 − ei0) 6 −q∗·z and ps·(xω − eis) < −γ + V (ω)·z, ∀ω := (s, ps) ∈ Ωi.

From relations (I)-(II)-(III), we may also assume there exists γ′ ∈]0, γ[, such that:

(IV ) p∗0·(x0 − ei0) 6 −γ′ − q∗·z and ps·(xω − eis) 6 −γ′ + V (ω)·z, ∀ω := (s, ps) ∈ Ωi.

We recall from above that ‖p∗0‖ + ‖q∗‖ > 1. The above assertion is obvious, from

relations (III), if p∗0·(x0−ei0) < −q∗·z. Assume that p∗0·(x0−ei0) = −q∗·z. If p∗0 = 0, then,

q∗ 6= 0, and relations (IV ) hold if we replace z by z − q∗/N , for N ∈ N big enough.

If p∗0 6= 0 and x0 6= 0, the desired assertion results from Assumption A1 and above.

Else, −q∗ · z = −p∗0 · ei0 < 0, and a slight change in portfolio insures relations (IV ).

From relations (IV ), the continuity of the scalar product and Lemmas 1-2-3,

there exists N1 ∈ N, such that, for every n > N1:

(V )


pn0 ·(x0 − ei0) 6 −qn·z

pns ·(x(s,p∗s) − eis) 6 V (s, pns )·z, ∀s ∈ S

ps·(xω − eis) 6 V (s, ps)·z, ∀ω := (s, ps) ∈ Ωni

Along relations (V ), for each n > N1, we define, in En, the strategy (xn, z) ∈

Bni (pn, qn) by xn0 := x0, xns := x(s,p∗s), xnω := xω, for (s, ω) ∈ S× Ωni , and recall that:

• Uπii (x) :=
∫
ω∈Ωi

ui(x0, xω)dπi(ω);

• uni (xn) := 1
n#S

∑
s∈S

ui(x0, x
n
s ) + (1− 1

n )
∑
ω∈Ωn

i

ui(x0, xω)πni (ω).

Then, from above, from relation (II), Lemma 2, and the uniform continuity of

x ∈ XΩi
and ui on compact sets, there exists N2 > N1 such that:

(V I) |Uπii (x)-uni (xn)| <
∫
ω∈Ωi

|ui(x0, xω)-ui(x0, xΦn
i (ω))|dπi(ω) + ε

4 <
ε
2 , for every n > N2.

From equilibrium conditions and Lemma 4-(ii), there exists N3 > N2, such that:
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(V II) uni (xn) 6 uni (xni ) < ε
2 + Uπii (x∗i ), for every n > N3.

Let n > N3 be given. The above Conditions (I)-(V I)-(V II) yield, jointly:

Uπii (x) < ε
2 + uni (xn) 6 ε

2 + uni (xni ) < ε+ Uπii (x∗i ) < Uπii (x).

This contradiction proves that C∗ meets Condition (b) of Definition 3, hence, from

above, is a C.F.E. of the economy E (πi). This completes the proof of Theorem 1. �

Theorem 1, above, holds for nominal asset structures when agents have correct

foresight. We now examine existence for other financial and anticipation structures.

5 The existence theorems with arbitrary assets

In sub-Section 5.1, we show that temporary equilibria always exist, that is, for

arbitrary beliefs and financial structures. In the following sub-Sections, we extend

the above Theorem 1 to an economy with smooth preferences and arbitrary assets.

5.1 Temporay equilibria with arbitrary structures of payoffs and beliefs

Theorem 2 Under Assumptions A1-A2, an economy, E(πi), with an arbitrary payoff

matrix, V ∈ V, admits a temporary equilibrium, for any structure of beliefs, (πi) ∈ SB.

Proof In the definition of auxiliary economies in Section 4, we may assume that the

set of realizable states, S, is empty. This assumption is purely formal, artefactual.

Then, for each n ∈ N, the economy, En, is well defined, anticipation sets, (Ωni ), are

exogenous, whereas, for ω0 := (p0, q) ∈ P0, the generic ith agent’s budget set is:

Bni (ω0) := {(x, z) ∈ Xn
i ×RJ : p0·(x0−ei0)6 −q·z and p·(xω−eis)6 V (ω)·z, ∀ω := (s, p) ∈ Ωni }.
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From De Boisdeffre’s (2007) existence theorem and proof, for every n ∈ N, the above

economy, En, admits a temporary equilibrium, defined as follows:

Definition 6 A collection of prices, ω0 := (p0, q) ∈ P0, such that ‖ω0‖ > 1, and strate-

gies, (xi, zi) ∈ Bni (ω0), defined for each i ∈ I, is an equilibrium of the economy En, if

the following Conditions hold:

(a) ∀i ∈ I, (xi, zi) ∈ arg max(x,z)∈Bn
i (ω0) uni (x);

(b)
∑
i∈I (xi0−ei0) = 0;

(c)
∑
i∈I zi = 0.

Indeed, all arguments of the proof of Theorem 1 in De Boisdeffre (2007) apply,

mutatis mutandis, with the artefactual assumption that S is empty and yield an

equilibrium along the above Definition, say Cn:= {ωn0 , (xni ), (zni )}. Similarly, all argu-

ments of Lemmas 3 and 4 and Claim 1 above apply, mutatis mutandis, and yield a

temporary equilibrium, C∗ := {ω∗0, (Ωi), (πi), (x∗i ), (z∗i )}, along Definition 3. �

5.2 The economy with arbitrary assets and correct beliefs

We have to change the framework slightly, so as to be able to apply standard

generic existence results of the litterature. We will conform to Duffi e-Shafer’s (1985)

setting. Admissible commodity prices are now restricted to the new price set:

P := {p := (pls) ∈ R
L×S′
++ :

∑
(l,s)∈L×S′ p

l
s = 1}.4

The set Q = {q ∈ RJ : ‖q‖ 6 1} may still be retained for admissible asset prices

(with a bound of one w.l.o.g.). Indeed, asset prices may always be bounded via

individual state prices - or price functions along De Boisdeffre’s (2016). Since an-

ticipation structures are arbitrage-free, the asset price weighs the rows of payoffs

4 We keep the same notations as in Section 2, so as to refer to the same Defini-
tions as above, with reference to the new sets. In particular, with Section 5’s new
definitions of the price and forecast sets, Definitions 1, 2 and 3 may be kept as is.
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on every agent’s forecasts, and can always be bounded uniformly. Moreover, Duffi e-

Shafer (1985) proceeds in the same way. It sets as given a state price vector (whose

components are all ones, p. 295), instead of an upper bound to asset prices.

Consistently with the latter definition of the price set, P, the set of forecasts is

now Ω := S × {p ∈ RL++ : ‖p‖ < 1}. An anticipation set is a closed subset of Ω, and the

structures of anticipations and beliefs are defined accordingly, along Definition 1.

We assume that one agent, say i = 1, is fully informed upon the true states

(S1 = S) and true spot price that can prevail in any state and that she is endowed

with exactly one unit of each good in any state, s ∈ S′. Thus, every price p ∈ P

satisfies p · e1 = 1. The latter relation, p · e1 = 1, holds at so called pseudo-equilibria

in Duffi e-Shafer (1985), and below. Under the above small consumer hypothesis,

the latter assumption is a costless artefact, which will permit to choose equilibrium

prices in the unit simplex, P. The other characteristics of the current economy are

the same as above, in Section 2, to which we add the following assumptions:

• Assumption A3: for each i ∈ I, ui is C∞ on RL×L++ ;

• Assumption A4: ∀(i, x) ∈ I×RL×L++ , {x ∈ RL×L++ : ui(x) > ui(x)} is closed in RL×L++ ;

• Assumption A5: for each i ∈ I, ui meets the Inada Conditions;

• Assumption A6: there exists one asset, with non-negative payoffs in all

states, and having at least one positive payoff in one state s ∈ S.

In the current economy, denoted by E(πi) = {(I, S, L, J), V, (Si), (Ωi), (πi), (ei), (ui)},

the definition of equilibrium is Definition 3, above. The proof of its full existence

builds on auxiliary finite economies, which we now present.
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5.2 The auxiliary economies, En(πi)

We set as given (generic) beliefs, (πi), whose supports define an anticipation

structure, (Ωi) ∈ AS. We construct, for each n ∈ N, an auxiliary economy, denoted

En(πi), which resumes all definitions and notations of Section 4, but for budget sets.

For every tuple, (i, p, q, V ′) ∈ I ×RL×S
′

+ ×Q×V and endowment bundles, e′ := (e′i) ∈

E1 := {(e′i) ∈ ×i∈IR
L×S′i
+ : ‖(e′i)− (ei)‖ 6 1}, the generic ith agent’s budget set is now:

Bni (p, q, V ′, e′i) := { (x, z) ∈ Xn
i ×RJ : p0·(x0−e′i0)6 −q·z, ps·(xs−e′is)6 V ′(s, ps)·z, ∀s ∈ S

and p·(xω−eis)6 V (ω)·z, ∀ω := (s, p) ∈ Ωni }.

In the above budget sets, payoffs and endowments may differ from those of

Section 4 in realizable states only (i.e., s ∈ S′).5 All other definitions are resumed

from Section 4. This yields the following concept of auxiliary equilibrium:

Definition 7 A collection of prices, (p, q) ∈ RL×S
′

++ × Q, payoff matrix, V ′ ∈ V, endow-

ments, (e′i) ∈ E1, and strategies, (xi, zi) ∈ Bni (p, q, V ′, e′i), defined for each i ∈ I, is an

equilibrium of the economy En(πi), if the following conditions hold:

(a) ∀i ∈ I, (xi, zi) ∈ arg max(x,z)∈Bn
i (p,q,V ′,e′i)

uni (x);

(b)
∑
i∈I (xis−e′is) = 0, ∀s ∈ S′;

(c)
∑
i∈I zi = 0;

(d) p · e′1 = 1.

We introduce a related concept of pseudo-equilibrium, after the following sets:

5 Formally, endowments should be allowed to vary in all states, ω ∈ Ω′n. As ex-
plained in Remark 2, below, this slight abuse simplifies exposition without hamper-
ing or reducing the generality of the model’s results.
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• we let G be the set of all S× J matrices with full column ranks;

• for every L ∈ G, we denote by < L > the #J-dimensional span of L in RS;

• for every V ′ ∈ V and p := (ps) ∈ RL×S
′

++ , we let V ′(p) be the S × J matrix, whose

generic row is V ′(s, ps) ∈ RJ (for s ∈ S) and denote by < V ′(p) > its span in RS;

• for every triple (p, i, x) ∈ RL×S
′

++ × I×Xn
i , we let p � x ∈ RΩ′ni be the vector, whose

first components are the scalar products, ps · xs, for each s ∈ S, and subsequent

components are the scalar products, pω · xω, for each ω := (s, pω) ∈ Ωni ;

• we let E∗n := RL×Ω′ni ×I
++ be the sets (for n ∈ N) of arbitrary endowment bundles,

i.e., for each agent, i ∈ I, the bundles of conditional endowments, e′is ∈ RL++, in

each realizable state, s ∈ S′, and e′iω ∈ RL++, in each idiosyncratic state, ω ∈ Ωni ;

• for every L := (Ls)s∈S ∈ G, and every (i, n) ∈ I×N, we let [ LVi ] be the Ω′ni ×J matrix

whose first generic rows are the Ls ∈ RJ , in each state s ∈ S, and subsequent

rows are the V (ω) ∈ RJ , in each state ω ∈ Ωni . We denote < L
Vi
> its span in RΩ′ni .

We now define the following concept of pseudo-equilibrium in the economy En(πi):

Definition 8 A collection of prices, p := (ps) ∈ RL×S
′

++ , payoff matrices, L ∈ G and

V ′ ∈ V, endowments, e′ := (e′i) ∈ E∗n, and an allocation, x := (xi) ∈ ×i∈IXn
i , defines a

pseudo-equilibrium of the economy En(πi) if the following conditions hold:

(a) x1 ∈ arg max uni (x), for x ∈ { x ∈ Xn
1 : p · (x− e′1) = 0 };

(b) for every i ∈ I\{1}, xi ∈ arg max uni (x),

for x ∈ { x ∈ Xn
i :

∑
s∈S′ ps ·(xs−e′is)+

∑
ω∈Ωn

i
pω ·(xω−e′iω) = 0 and p � (x−e′i) ∈ < L

Vi
> };

(c) < V ′(p) > ⊂ < L >;

(d)
∑
i∈I (xis−e′is) = 0, ∀s ∈ S′;

(e)
∑
i∈I zi = 0;

(f) p · e′1 = 1.
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Given (e′, V ′) ∈ E∗n × V, we say that (p, L) is a pseudo-equilibrium, if there exists

x ∈ ×i∈IXn
i , such that (x, p, L, e′, V ′) is a pseudo-equilibrium. We let E be the pseudo-

equilibrium manifold, that is, the set of collections, (p, L, e′, V ′), such that (p, L) is a

pseudo-equilibrium. We define the projection, π : (p, L, e′, V ′) ∈ E 7→ (e′, V ′) ∈ E∗n × V.

The above definitions extend Duffi e-Shafer’s (1985, pp. 288-289) to the economy

En(πi). The following Claim states the full existence of pseudo-equilibria.

Claim 2 Given Definition 8, the following Assertions hold:

(i) E is a smooth manifold without boundary of the same dimension than π(E);

(ii) π is proper;

(iii) there exists a regular value (e∗, V ∗) of π, such that #π−1(e∗, V ∗) = 1;

(iv) π−1(e′, V ′) 6= ∅, for every (e′, V ′) ∈ E∗n × V;

(v) the set of singular values of π is closed and null.

Proof As we let the reader check, no argument (but Facts 4-(1) and 5-(1), pp. 292-93,

which are unconsequential) in Duffi e-Shafer (1985) is altered by the presence of the

fixed set of unrealizable states, Ωn\S, in which payoffs are fixed and exogenous, as

are anticipations. Only the spans generated by payoffs in realizable states (s ∈ S)

matter. No argument is altered either by the presence of nominal payoffs. Hence,

Assertions (i)-(ii) result, mutatis mutandis, from Duffi e-Shafer’s Facts 9-10, p. 295.�

Assertion (iii) We set a price, p∗ := (p∗s) ∈ R
L×S′
++ , and matrix, V ∗ ∈ V, as given,

as Duffi e-Shafer on p. 296, such that V ∗(p∗) ∈ G, and we let L∗ := V ∗(p∗). The fact

that there exist endowments, e∗ := (e∗i ) ∈ E∗n, which are optimal for each agent (i.e.,

meet Conditions (a)-(b) of Definition 8) is obvious from Assumption A5. It suffi ces to

choose endowments so as to align gradients with the common and individual prices
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(in idiosyncratic states). That is, the elected price, p∗, and endowments, (e∗i ), yield

a pseudo-equilibrium, (p∗, L∗), with no trade. It follows that the restrictions, e∗∗i =

(e∗is)s∈S′ , defined for each i ∈ I, form a Pareto optimal allocation, by construction. We

may also choose endowments, (e∗i ), so as to meet Definition 8-(f), that is, p∗ · e∗1 = 1.

Let i ∈ I and an arbitrary market price, p := (ps) ∈ RL×S
′

++ , be given. The agent

has an Arrow-Debreu buget constraint,
∑
s∈S′ ps · (xs− e∗is) +

∑
ω∈Ωn

i
pω · (xω − e∗iω) = 0,

along Definition 8, in the above economy. Given the fact that prices are fixed (with

payoffs) in each idiosyncratic state and colinear to gradients, an infenitesimal real-

location of consumptions, say to xi 6= e∗i , satisfying the budget constraint, can only

increase utility if (xis)s∈S′ Pareto improves e∗∗i . Then, it results from Assumption

A2, from the fact that e∗ ∈ E∗n is affordable (to any agent at any price and for

any payoffs), from the Pareto optimality of (e∗∗i ), and from above, that e∗ ∈ E∗n is

the only pseudo-equilibrium allocation of the economy. By construction, price p∗

(aligned to gradients) is the only pseudo-equilibrium price for the allocation e∗ and

payoff matrix V ∗. We have thus proved that {(p∗, L∗, e∗, V ∗)} = π−1(e∗, V ∗), hence,

#π−1(e∗, V ∗) = 1. Moreover, the value (e∗, V ∗) is regular, as demonstrated, mutatis

mutandis, by Duffi e-Shafer on pp. 296-297, to which we refer the reader. �

Assertion (iv) From Assertions (i)-(ii)-(iii), above, and mod. 2 degree theory, there

is an odd number of pseudo-equilibria (hence, they exist) at any regular value of π

(p. 289). Moreover, the value (e′, V ′) is regular from the Definition, if π−1(e′, V ′) = ∅,

which contradicts the above result. Hence, π−1(e′, V ′) 6= ∅ for all (e′, V ′) ∈ E∗n×V. �

Assertion (v) is a standard application of Sard’theorem and demonstrated, mu-

tatis mutandis, in Duffi e-Shafer (p. 297), to which we refer the reader. �

Remark 2 The above payoffs and anticipations are fixed in all idiosyncratic states
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(ω ∈ Ωn\S). Contrarily, endowments, (e′i) ∈ E∗n, may vary in the same states, along

Definition 8. This flexibility was required to find a unique pseudo-equilibrium along

Claim 2-(iii). Consequently, the set of regular values of π is defined as a generic

sub-set of E∗n×V, along Claim 2. To simplify exposition, but w.l.o.g., we henceforth

assume that this set of regular values is a generic subset of E∗∗n × V instead, where

E∗∗n := {(e′i) ∈ E∗n : e′iω = eis, ∀i ∈ I, ∀ω = (s, p) ∈ Ωni }. That is, endowments are

set fixed in all idiosyncratic states (ω ∈ Ωn\S). Under this condition, the proof of

Lemma 4 is the same, in this Section, as for nominal assets. Without it, Lemma 4 is

proved by the same token, at the cost of heavier definitions and notations, in which

idiosyncratic endowments tend to the initial values of Section 2 (see the Appendix).

Claim 2 and Remark 2 yield the following existence result.

Claim 3 For every n ∈ N and every (πi) ∈ SB, there exist prices, (pn, qn) ∈ RL×S
′

++ ×Q,

endowments, (eni ) ∈ En, a payoff matrix, V n ∈ Vn, and strategies, (xni , z
n
i ) ∈ Bni (pn, qn, V n, eni ),

for each i ∈ I, which define an equilibrium of the economy, En(πi), along Definition 7.

Proof Let n ∈ N and (πi) ∈ SB be given. From Claim 2-(iv)-(v) there exist a regular

value, (en, V n) ∈ En×Vn, and a pseudo-equilibrium, (pn, Ln, en, V n) ∈ π−1(en, V n). From

the definitions of regularity and pseudo-equilibria, the relations Ln = V n(pn) ∈ G hold.

As standard (e.g., Duffi e-Shafer, p. 289), the pseudo-equilibrium, (pn, Ln, en, V n), is

equivalent to an equilibrium, {pn, qn, V n, (eni ), (xni ), (zni )}, along Definition 7. �

Henceforth, we set as given one equilibrium, Cn(πi):= {pn, qn, V n, (eni ), (xni ), (zni )}, in

the economy, En(πi), for each n ∈ N. The sequences, {(s, pns )}, for s ∈ S, meet the lower

bound condition of Lemma 1, as shown in the Appendix, and admit cluster points,

whose set is denoted by ∆(πi). The above structure of beliefs, (πi) ∈ SB, was generic.
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We may proceed in the same way as above for all structures of beliefs, (πi) ∈ SB.

This leads to a well defined set, ∆∗ := ∪(πi)∈SB∆(πi), and to the following Assumption.

Assumption A7 : for every i ∈ I, the relation ∆∗ ⊂ Ωi holds, in which (Ωi) ∈ AS

is the given anticipation structure of the economy, E(πi).

We will show that ∆∗ is in fact a subset of ∆. Before, we have to prove Theorem 3.

Theorem 3 Under Assumptions A1-A2-A4-A5-A6-A7, the economy with arbitrary

assets, E(πi), admits an equilibrium (C.F.E.), for any structure of beliefs, (πi) ∈ SB.

Proof First, we set fixed and given an arbitrary structure of beliefs, (πi) ∈ SB.

For each n ∈ N, an equilibrium, Cn(πi):= {pn, qn, V n, (eni ), (xni ), (zni )}, is well defined from

above. Under Assumptions A1-A2-A4-A5-A6-A7, their sequence, {Cn(πi)}, meets the

above Assertions of Lemma 3, upon replacing ∆ by ∆∗, and Lemma 4, as is. Both

results are demonstrated in the Appendix. Then, Theorem 3 results from Claim 4.

Claim 4 The collection, {p∗, q∗, (Ωi), (πi), (x
∗
i ),(z

∗
i )}, of prices, anticipations, beliefs,

allocation and portfolios of Lemmas 3-4 is a CFE of the economy E (πi).

Proof The proof of Claim 4 is identical to that of Claim 1, as we let the reader

check. The only diffi culty is for proving relations (IV ) of sub-Section 4.3, which is

solved as follows. From Lemma 1, Lemma 2-(iv) and Assumption A6 the sequence

{‖qn‖} has a positive lower bound, for an appropriate choice of individual state

prices in the auxiliary economies. It follows that ‖q∗‖ > 0 and that relations (IV ) of

sub-Section 4.3 hold. All arguments of Claim 1 apply, and lead to a price p∗ ∈ P,

from Lemma 1 and Definition 8-(f), which is shown to be an equilibrium price. �

It follows from the above proof that any element in ∆∗ is an equilibrium forecast,

that is, ∆∗ ⊂ ∆. Hence, Asssumption A7 can be replaced by A3, in Theorem 3.
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Appendix

Lemma 1 Under Assumptions A1-A2, the following Assertions hold:

(i) ∃δ > 0 : Λ ⊂ RL+ × [δ, 1]L×S, hence, ∆ ⊂ S× [δ, 1]L;

(ii) the bound, δ, may be chosen independent of V ∈ V1 and (ei) ∈ E1.

Proof First, we introduce new notations and let, for every (i, s, x) ∈ I × S× RL×S
′
i

+ :

• ẽ ∈ RL++ have all components equal to α = min e′lis > 0 for (i, s, l, (e′i)) ∈ I×S′i×L×E1;

• y �is x denote a consumption, s.t. ui(y0, ys) > ui(x0, xs) and ys′ = xs′ , ∀s′ ∈ S′i\{s};

• A := {(xi) ∈ ×i∈I RL×S
′
i

+ :
∑
i∈I xis =

∑
i∈I eis, ∀s ∈ S′};

• Ps := {p ∈ P : ∃j ∈ I, ∃(xi) ∈ A, such that (y �js xj)⇒ (ps·ys > ps·xjs > ps·ẽ)}.

Since all equilibrium prices belong to ∩s∈SPs, from the definition, it suffi ces to

prove that the following Lemmata 1 holds with an independent bound, δ.

Lemmata 1 The following Assertions hold:

(i) ∀s ∈ S, Ps is a closed, hence, compact set;

(ii) ∃ δ > 0 : ∀(s, l) ∈ S× L, ∀p := (pls′) ∈ Ps, pls > δ.

Proof of Lemmata 1 Assertion (i) From the definition, for each (n, s) ∈ N × S

the set Ps contains pn. Let s ∈ S and a converging sequence {pk}k∈N of elements

of Ps be given. Its limit, p, is in P, a closed set. We may assume there exist (a

same) j ∈ I and a sequence, {xk}k∈N := {(xki )}k∈N, of elements of A, converging to

some x := (xi) in the closure of A in ×i∈I(R+ ∪ {+∞})L×S
′
i, such that, for each k ∈ N,

(pk, j, xk) satisfies the conditions of the definition of Ps. From the definition of A,

{(xkis′)}k∈N, is bounded, hence, xs′ := (xis′) ∈ RL×I+ is finite, for each s′ ∈ S′.
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For every k ∈ N, we let x̃k := (x̃ki ) ∈ A be defined by (x̃ki0) := (xi0) ∈ RL×I+ and

(x̃kis) := (xis) ∈ RL×I+ and (x̃kis′) := (xkis′), for each (i, s′) ∈ I × S′i\{s}. Then, the relations

pks ·(xkjs−ẽ) > 0, which hold for every k ∈ N, yield, in the limit, ps ·(x̃kjs−ẽ) = ps ·(xjs−ẽ) >

0. We now show that there exists k ∈ N, such that (p, j, x̃k) satisfies the conditions of

the definition of Ps (i.e., p = lim pk ∈ Ps and Ps is closed).

By contraposition, assume that, for each k ∈ N, there exists yk ∈ RL×S
′
j

+ , such that

yks′ = x̃kjs′ , for each s′ ∈ S′j\{s}, uj(xj0, yks ) > uj(xj0, xjs) and ps·(yks −xjs) < 0. Then, given

k ∈ N, we show the following relations:

(I) ∀K > k, ∃k′ > K, uj(xk
′

j0, y
k
s ) > uj(x

k′

j0, x
k′

js).

If not, one has uj(xk
′

j0, y
k
s ) 6 uj(x

k′

j0, x
k′

js), for k′ big enough, which implies, in the

limit (k′ → ∞), uj(xj0, yks ) 6 uj(xj0, xjs), in contradiction with the above assumption

that uj(xj0, yks ) > uj(xj0, xjs). Hence, relations (I) hold. From the definition of the

sequence {xk}k∈N, relations (I) imply pk
′

s · (yks − xk
′

js) > 0, and, in the limit (k′→∞),

ps · (yks − xjs) > 0, in contradiction with the inequality, ps · (yks − xjs) < 0, assumed

above. This contradiction proves that p := lim pk ∈ Ps, hence, all Ps are compact. �

Assertion (ii) Let (s, l) ∈ S × L and p := (pls′) ∈ Ps be given. Let e ∈ RL have

zero components but the lth, equal to 1. We prove that pls = ps · e > 0. Indeed, let

(p, j, (xi)) ∈ Ps × I × A meet the conditions of the definition of Ps. For every n > 1,

we let xnj ∈ R
L×S′j
+ be such that xnjs := (1 − 1

n )xjs and xnjs′ := xjs′ for s′ 6= s. It satisfies

ps · (xnjs − xjs) < 0 (since ps · xjs > ps · ẽ > 0).

Let E := (El
′

s′) ∈ R
L×S′j
+ be defined by Els = 1 and El

′

s′ = 0, for every (s′, l′) 6= (s, l).

Along Assumption A2, there exists n ∈ N, such that y := (xnj + (1 − 1
n )E) satisfies

uj(y0, ys) > uj(xj0, xjs), implying ps ·xjs 6 ps ·ys = ps · (xnjs+(1− 1
n )e) < ps ·xjs+(1− 1

n )ps ·e.

Hence, pls = ps · e > 0. The mapping ϕ(s,l) : Ps → R++, defined by ϕ(s,l)(p) := ps · e is
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continuous and attains its minimum for some element p on the compact set Ps, say

δ(s,l) > 0. Then, Assertion (ii) holds for δ := min δ(s,l), for (s, l) ∈ S× L. �

Lemmata 1 proves the first part of Lemma 1. Since δ was chosen independent of

V ∈ V1 and of (ei) ∈ E1, the second part of Lemma 1 also holds. �

Lemma 1 also holds for the economy of sub-Section 5.2 above. To see this, for

every s ∈ S, and every n ∈ N, we replace in the definition of the above sets Ps, the

price set, P, of Section 2 by those of Section 5, namely, Pn := {p ∈ RL×S
′

++ : p · en1 = 1}.

We let the reader check that Lemma 1 holds by the very same arguments as above

(with a bound, δ, which does not depend on n ∈ N). �

Lemma 2 For each (i, n) ∈ I × N, we may choose the above Pni , Ωni , Φni , such that:

(i) Ωni ⊂ Ωn+1
i and Pn+1

i is finer than Pni ;

(ii) ∪n∈N Ωni is everywhere dense in Ωi;

(iii) for every ω ∈ Ωi, ω = limn→∞ Φni (ω), and Φni (ω) converges uniformly to ω;

(iv) there exist N ∈ N, such that (Ωni ) is arbitrage-free for every n > N.

For simplicity, we henceforth assume that N = 1.

Proof Let i ∈ I, n ∈ N and Kn := {1, ..., 2n−1}L be given (letting N start from n = 1).

From the definition, Ωi := ∪s∈Si{s}×P is ⊂ S×P . For each pair (s, k := (kl)) ∈ Si×Kn,

we define the (possibly empty) subset, Ω
(s,k)
(i,n) := {s} × (P is ∩ ×l∈L]k

l−1
2n−1 ,

kl

2n−1 ]), of Ωi. To

simplify notations, we let K(i,n) := # {(s, k) ∈ Si ×Kn : πi(Ω
(s,k)
(i,n)) > 0} and identify the

latter set, {(s, k) ∈ Si×Kn : πi(Ω
(s,k)
(i,n)) > 0}, to the subset, {1, ...,K(i,n)}, of N. Then, the

partitions, Pni := {Ωk(i,n)}16k6K(i,n)
, of Ωi are ever finer as n ∈ N increases.

For every integer, k 6 K(i,n), we choose one element, ωk(i,n) ∈ Ωk(i,n), and just one.

We may always construct the sets, Ωni := {ωk(i,n)}16k6K(i,n)
, such that Ωni ⊂ Ωn+1

i , for
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every n ∈ N. And we define the mapping, Φni , as in sub-Section 4.1. Then, Assertions

(i)-(ii)-(iii) of Lemma 2 hold. �

Assertion (iv): for each (i, n) ∈ I×N, we let Zni := {z ∈ RJ : V (ω)·z = 0,∀ω ∈ Ωni }

include Zi := {z ∈ RJ : V (ω) · z = 0,∀ω ∈ Ωi}. Since the sequence {(Zni )} is non-

increasing in RJ×I , it is stationary. We let the reader check, from Assertion (ii) and

the continuity of the scalar product that its limit is (Zi). Hence, there exists N ∈ N,

such that (Zni ) = (Zi) for every n > N . For simplicity, we assume costlessly that N = 1.

Then, for every pair (i, n) ∈ I ×N, we let Zn⊥i = Z⊥i be the orthogonal of Zni = Zi and

Z := {(zi) ∈ ×i∈IZ⊥i : ‖(zi)‖ = 1, (
∑
i∈I zi) ∈

∑
i∈I Zi} be a compact set.

Assume, by contraposition, that Assertion (iv) fails. Then, from De Boisdeffre’s

(2016) Claim 2, for every n ∈ N, there exist n′ > n and portfolios, (zn
′

i ) ∈ Z, such

that: V (ωi) · zn
′

i > 0, for every (i, ωi) ∈ I ×Ωn
′

i . The sequence, {(zn
′

i )}, may be assumed

to converge, say to (zi) ∈ Z. From the continuity of the scalar product, Assertion (ii)

and above, the relations V (ωi) · zi > 0 hold, for every (i, ωi) ∈ I ×Ωi. The latter imply

(zi) ∈ ×i∈IZi ∩ Z = ∅, from above, and from De Boisdeffre’s (2016) Claim 2 jointly

with the fact that (Ωi) is arbitrage-free. This contradiction completes the proof. �

Lemma 3 For each i ∈ I, we let Zi := {z ∈ RJ : V (ω) · z = 0, ∀ω ∈ Ωi}, Z⊥i be its ortho-

gonal complement and Z :=
∑
i∈I Zi. Given {Cn}, we let zni = zoni + z⊥ni be the decom-

position of zni on Zi × Z⊥i , for each (i, n) ∈ I × N. The following Assertions hold:

(i) the price sequence {(pn, qn)} may be assumed to converge to (p∗, q∗) ∈ P×Q, such

that {(s, p∗s)}s∈S ⊂ ∆ ⊂ (∩i∈IΩi);

(ii) the sequences {(xnis)s∈S′} and {(z⊥ni )i∈I} may be assumed to converge, say to

(x∗is)s∈S′ and (z⊥∗i ) ∈ RJ×I, such that
∑
i∈I (x∗is−eis)s∈S′ = 0 and

∑
i∈I z⊥∗i ∈ Z;

(iii) there exists (z∗i ) ∈ RJ×I, such that
∑
i∈I z

∗
i = 0 and (z∗i − z⊥∗i ) ∈ Zi for every i ∈ I.
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Proof Assertion (i) is obvious from the definitions, Lemma 1, the relations pn ∈ Λ

(in sub-Section 4.2) for every n ∈ N, Assumption A3 and compactness arguments.�

Assertion (ii) The non-negativity and market clearance conditions over auxiliary

equilibrium allocations imply that {(xnis)s∈S′} is bounded, hence, may be assumed

to converge. The market clearance conditions of equilibrium,
∑
i∈I (xnis−eis)s∈S′ = 0,

which hold for each n ∈ N, yield the limit:
∑
i∈I (x∗is−eis)s∈S′ = 0.

By contraposition, assume that there exists an extracted sequence, {(z⊥ϕ(n)
i )},

such that limn→∞ kϕ(n) := ‖(z⊥ϕ(n)
i )‖ = ∞. To simplify, we assume w.l.o.g. that

ϕ(n) = n for every n ∈ N, and we let α := sup ‖e′‖ > 0, for e′ := (e′i) ∈ E1. From the

definition, for every n ∈ N, the matrix V n of sub-Section 5.2 is identical to V in all

rows except those of states s ∈ S, that is, V n(ωni ) = V (ωni ) for every (i, ωni ) ∈ I × Ωni .

Then, for every n ∈ N, the definition of (Ωi), the budget constraints and market

clearing conditions of the equilibrium, Cn, yield, in both sub-Sections 4.2 and 5.2:

(
∑
i∈I z⊥ni ) ∈ Z and V (ωni ) · z⊥ni > −α, ∀(i, n, ωni ) ∈ I × N× Ωni .

For every (i, n) ∈ I × N, let z′ni :=
z⊥ni

kn
. The bounded sequence {(z′ni )} admits a

cluster point, (zi), such that ‖(zi)‖ = 1. The above relations and Lemma 2 yield:

(
∑
i∈I z′ni ) ∈ Z and V (ωni ) · z′ni > −α/kn, ∀(i, n, ωni ) ∈ I × N× Ωni , and

(
∑
i∈I zi) ∈ Z and V (ωi) · zi > 0, ∀(i, ωi) ∈ I × Ωi, when passing to the limit.

The structure (Ωi) ∈ AS is arbitrage-free, along Definition 2, above. The latter

relations, imply zi ∈ Zi ∩ Z⊥i = {0}, from De Boisdeffre’s (2016) Claim 2 and above,

for each i ∈ I. This contradicts the fact that ‖(zi)‖ = 1. It follows that the sequence,

{(z⊥ni )}, is bounded and may be assumed to converge, say to (z⊥∗i ), and the above

relations, (
∑
i∈I z

⊥n
i ) ∈ Z, for all n ∈ N, pass to the limit, that is, (

∑
i∈I z

⊥∗
i ) ∈ Z. �
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Assertion (iii) is obvious from the definitions and Assertion (ii). �

Lemma 4 Let Bi(ω, z) = {x ∈ RL+ : p·(x− eis) 6 V (ω)·z}, be given sets, for every z ∈ RJ

and all ω := (s, p) ∈ Ωi. Along Lemma 3, the following Assertions hold for all i ∈ I:

(i) the correspondence ω ∈ Ωi 7→ arg max ui(x
∗
i0, x), for x ∈ Bi(ω, z∗i ), is a continuous

map, whose embedding, x∗i : ω ∈ Ω′i 7→ x∗iω, is a consumption, that is, x∗i ∈ XΩi
;

(ii) Uπii (x∗i ) = limn→∞ uni (xni ).

Proof Assertion (i) Let i ∈ I be given. We denote simply Cn:= {pn, qn, (xni ), (zni )},

for each n ∈ N, the equilibrium chosen in either sub-Sections 4.2 or 5.2.

To simplify notations, we henceforth let $ := (ω, z) for every (ω, z) ∈ Ωi×RJ , we let

$∗i := (ω, z⊥∗i ), for every (i, ω) ∈ I×Ωi and $n
i := (Φni (ω), z⊥ni ), for every (i, ω, n) ∈ I×Ωi×N.

We recall that in sub-Section 5.2, the relation V n(ω) = V (ω) holds, and we notice

that Bi(ω, z) = Bi(ω, z
⊥), for every (n, ω, z) ∈ N × Ωni × RJ , where z⊥ is the orthogonal

projection of z on Z⊥i := {z ∈ RJ : V (ω) · z = 0, ∀ω ∈ Ωi}⊥, whereas Bi(ω, z∗i ) = Bi($
∗
i ).

For every (ω, n) ∈ Ωi × N, the fact that Cn is an equilibrium of En (or En(πi)) and

Assumption A2 imply: {xniΦni (ω)} = arg maxx∈Bi($n
i ) ui(x

n
i0, x).

Let R be the subset of Ωi × RJ upon which the correspondence $ 7→ Bi($) has

non-empty values. These values are convex compact from the definition of Ωi. As

standard from Berge Theorem (see, e.g., Debreu, 1959, p. 19) the correspondence

(a mapping from Assumption A2 ), (x0, $) ∈ RL+ ×R 7→ arg maxx∈Bi($) ui(x0, x), is con-

tinuous, since ui is continuous, and, from the definition of Ωi, Bi is also continuous.

From Lemmas 2 and 3, the relations (x∗i0, $
∗
i ) = limn→∞(xni0, $

n
i ) hold for every

(i, ω) ∈ I×Ωi. Hence, fromBerge’s theorem, the relations, {xniΦni (ω)} = arg maxx∈Bi($n
i ) ui(x

n
i0, x),

33



for n ∈ N, pass to the limit and yield a continuous map, ω ∈ Ωi 7→ x∗iω := arg maxx∈Bi($∗i ) ui(x
∗
i0, x),

whose embedding, x∗i : ω ∈ {0} ∪Ωi 7→ x∗iω, is a consumption of the economy E(πi). �

Assertion (ii) Let i ∈ I be given and x∗i ∈ XΩi
be defined from above. By the same

token (with same notations as above), we let ϕi : (x0, $) ∈ RL+×R 7→ arg maxx∈Bi($) ui(x0, x)

be defined continuous on its domain. The continuity of ui implies that of Ui :

(x0, $) ∈ RL+×R 7→ ui(x0, ϕi(x0, $)). Moreover, the relations (x∗i0, $
∗
i ) = limn→∞(xni0, $

n
i ),

ui(x
∗
i0, x

∗
iω) = Ui(x

∗
i0, $

∗
i ) and ui(x

n
i0, x

n
iΦn

i (ω)) = Ui(x
n
i0, $

n
i ) hold, for every (ω, n) ∈ Ωi×N.

Then, Lemma 2 and the uniform continuity of ui and Ui on compact sets, yield:

(I) ∀ε > 0, ∃N ∈ N : ∀n > N, ∀ω ∈ Ωi, | ui(x∗i0, x∗iω)− ui(xni0, xniΦn
i (ω)) | < ε.

Moreover, we recall the following definitions, for every n ∈ N:

(II) Uπii (x∗i ) :=
∫
ω∈Ωi

ui(x
∗
i0, x

∗
iω)dπi(ω);

(III) uni (xn) := 1
n#S

∑
s∈S

ui(x
n
0 , x

n
s ) + (1− 1

n )
∑
ω∈Ωn

i

ui(x
n
0 , x

n
ω)πni (ω).

Then, Assertion (ii) results immediately from relations (I)-(II)-(III) above. �
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