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Abstract
In this paper the robustness and the performance of adaptive hierarchical mesh refinement
(AHMR) for high order Discontinuous Galerkin (DG) finite element method with slope limit-
ing procedure combined with an implicit time scheme for the 2D non-linear Euler equations are
shown. A slope limiting procedure based on triangular meshes is implemented and has been
extended and amended accordingly to suit quadrilateral elements. The combination of DG
methods and slope limiters is generally used with explicit time schemes. Here, the slope lim-
iter implemented is incorporated into a quasi implicit time scheme procedure combined with
an automatic h-adaptive hierarchical mesh refinement allowing non-conforming meshes. The
time scheme is the implicit Second Order Backward Difference Formula (BDF2) with vary-
ing time step. The numerical test cases including subsonic, transsonic and supersonic flows
show that the current slope limiting with quadrilateral meshes process together with the im-
plicit time scheme is able to remove overshoots and undershoots around high gradient regions
while preserving the high accuracy of the DG method. While combining this procedure with
the automatic h-adaptive mesh refinement, one can improve the accuracy of the solutions and
be able to capture quite precisely the features of the flows under consideration. The AHMR
automatic procedure presented can easily be implemented in the numerical resolution of any
physical models. Furthermore the limiting method used in this paper can be generalized to any
type of mesh in two dimensions.

key words: Non-linear Euler equations, Discontinuous Galerkin finite elements meth-
ods (DGFEM), Implicit time scheme, Slope limiter, Adaptive hierarchical mesh refinement
(AHMR), hierarchical and non-hierarchical meshes, non-conforming meshes, a posteriori er-
ror estimate, wall boundary condition with curvature.
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2 E. Schall and N. Chauchat

1 Introduction

Significant efforts have been made in the development of the discontinuous Galerkin finite element methods

(DGFEM) for fluid flow and heat transfer applications. The DGFEM method has been successfully used

to solve non-linear hyperbolic systems of conservation laws [2, 9]. Since it uses discontinuous piecewise

polynomial bases, the discretization is locally conservative, and, in the considered lowest-order case, the

method preserves the maximum principle for scalar equations.

Nevertheless, for high order schemes, around sharp gradients and discontinuities, if the solution does not

remain smooth for a long period of time, there occurs oscillations commonly called Gibbs phenomenon.

Many studies in literature deal with this subject [9, 14, 7]. These oscillations due to discontinuities, are

sometimes severe to cause stability problem [9, 22]. There are two strategies applied to deal with this sit-

uation. A shock-capturing method [1] or an appropriate slope limiter is commonly used to suppress these

oscillations while preserving the high order accuracy in smooth regions [20] . For low approximation order

(and polynomial degrees p < 3), the slope limiting procedure remains the alternative for shock capturing

[14]. In [7], Cockburn argued that the slope limiter is equivalent to a nonlinear form of artificial viscosity.

The slope limiter proposed use the same technical approach as the one used in Tu et al [22] for DG meth-

ods. This limiter is differentiable [13] and used the area-weighted based formula [10, 22] to compute the

gradient. Generally slope limiters are implemented in DG methods combined with explicit time schemes

such as Runge-Kutta methods. The reason of not using implicit time scheme is that the slope limiters are

non-differentiable [23]. A way of incorporating the slope limiter into an implicit time scheme (BDF2) pro-

cedure is proposed with varying time step by introducing a residual based on the limited solution. By so

doing one can use a relatively coarse mesh with no restriction of the CFL to obtain an accurate solution in

comparison to an explicit scheme.

Another aspect tackled is the combination of the proposed slope limiter incorporated into an implicit

time scheme with an automatic h-adaptive mesh refinement (AHMR) with hanging-nodes designed in our

DG methods library Concha, on both quadrilateral and triangular meshes. The adaptive mesh refinement is

Journal of Computational Physics JCP***
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based on a posteriori error estimator using the jump at interface of physical quantity such as density. The

strategy of the AHMR is to iteratively improve the quality of the approximate solutions at high order based

on computed information (a posteriori error analysis). In this way, a sequence of locally refined meshes

is constructed, which allows better efficiency compared to classical approaches in the presence of different

kind of singularities. Thus by combining the AHMR with and implicit time scheme with a high order DG

method, one can use a relatively coarse mesh with few number of adaptive refinement to obtain accurate

solutions in a very reasonable computational time.

The organization of this paper is as follows: section 2 describes the governing equations and the spa-

tial discretization, implementation of numerical fluxes schemes, and the time discretion scheme procedure.

Section 3 describes the implicit BDF2 time integration with varying time step scheme and the strategy of

incorporating the slope limiter into the implicit time scheme procedure. Section 4 describes succinctly the

limiting procedure on both triangular and quadrilateral meshes. In section 6, the Adaptive mesh refine-

ment (AHMR) is described. In section 7 five numerical test cases are considered ranging from subsonic to

supersonic flows to show :

• the performance of the combined implicit time scheme - slope limiter in comparison with explicit

Runge-Kutta scheme at high order,

• the well behaving of the combine implicit time scheme - slope limiter with subsonic and transonic

flows,

• comparison of the adaptive mesh refinement with the slope limiting procedure for triangular and

quadrilateral meshes.

JCP*** Journal of Computational Physics
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4 E. Schall and N. Chauchat

2 Governing Equations and DG discretizations

2.1 Governing equations

The Euler equations which govern two-dimensional unsteady compressible inviscid flow can be written in

the following conservative form,

∂u
∂t

+
∂F (u)
∂xi

= 0 in ΩT = Ω × (0,T ) (2.1)

where u is the vector of conserved variables and F = ( f1, f2). f1 and f2 are the total flux vectors

in the xi = (x, y) direction respectively. T > 0 is the length of time interval, and Ω is a two-dimensional

bounded domain. The conservative variables u and the inviscid components of the fluxes F = ( f1, f2) are

given respectively :

u =



ρ

ρv1

ρv2

ρE



, f1 =



ρv1

ρv1v1 + p

ρv1v2

ρHv1



, f2 =



ρv2

ρv1v2

ρv2v2 + p

ρHv2



(2.2)

where ρ is the density of the fluid, v1 and v2 are the cartesian velocity components of the flow, p is

the pressure, and E is the total specific energy. E and H are defined as:

E = e +
v2

1 + v2
2

2
; H = E +

p
ρ = e + 1

2 V2 +
p
ρ (2.3)

where e is the specific static internal energy. This system of equations is closed with the perfect gas equation

of state given by equation (2.4):

p = (γ − 1) ρ

E − v2
1 + v2

2

2

 , (2.4)

where γ is defined as the ratio of specific heats of the fluid (γ = 1.4 for air).

The system of equations (2.1) represents a hyperbolic system of equations to which are applied the initial

Journal of Computational Physics JCP***
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and boundary conditions denoted by (2.5), respectively, where ∂Ω represents the boundary of Ω.

u (x, 0) = u0 (x) ; B (u) = 0 on ∂Ω × (0,T ) . (2.5)

2.2 Discontinuous Galerkin spatial discretization

Suppose that the computational domain Ω is partitioned into disjoint open elements K such that Ω̄ =

tK∈Th K̄. h represents de piecewise constant mesh function defined by h |K≡ hK = diam (K) for all K ∈
Th. The DG finite element approximations uh and vh are obtained using truncated polynomial expansions

combined with m shape functions φi , expressed as:

uh =

m∑

i=1

uhφi (x) ; vh =
∑m

i=1 vhφi (x) (2.6)

In this work, hierarchical shape functions are used on both triangles and quadrilaterals [6, 5, 24]. Consider-

ing possible choices of basis functions and then by multiplying by a test function v and integrating by parts,

one obtains after discretization over the whole domain, the following formulation [8, 11]:

∑

K∈Th

{∫

K

∂u
∂t

vh −
∫

K
F (uh) .∇vhdx +

∫

∂K\Γ
H

(
u+

h ,u
−
h , n

)
v+

h ds +

∫

∂K∩Γ

H
(
u+

h ,u
−
h , n

)
v+

h ds

}
= 0 (2.7)

where n =
(
nx, ny

)
is the outward to the boundary unit normal. The interfaces flux F (u) .n are replaced

by Riemann numerical flux functions H
(
u+

h ,u
−
h , n

)
at the interfaces of two adjacent cells. Let’s define u+

h

and u−h as the right and the left state of u. For the interior interfaces, the well known HLLC, Roe and

Vijayasundaram Riemann solvers [21, 11] are used. For the boundaries numerical flux, a robust numerical

flux is implemented and expressed as follows:

• The numerical flux implemented for boundary conditionsH
(
u+

h , uΓ (u) , n
)



H
(
u+

h , uΓ (u) , n
)

= R (uΓ (u) , n) λiL (uΓ (u) , n) u+
h i f λi ≥ 0

H
(
u+

h , uΓ (u) , n
)

= R (uΓ (u) , n) λiL (uΓ (u) , n) u−h i f λi < 0

(2.8)

JCP*** Journal of Computational Physics
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where λi denotes the eigenvalues of the Jacobian matrix A (w, n) =
∂F(w)
∂u .n in the neighborhood of ∂K,

R (u, n) and L (u, n) are the right and the left eigenvectors matrix respectively. uΓ (u) = gD represents the

state of u depending on the type of boundary condition applied (inflow supersonic or subsonic, outflow

supersonic or subsonic, and slip wall boundary, see [11]).

3 Time integration : Implicit second order Backward Difference formula

(BDF2) with variable time step

This section is devoted to the description of the implicit time scheme applied to the DGFEM discretization

(2.7) of the problem (2.1). An adaptive time-stepping implicit two-step Backward Differentiation Formulas

(BDF2) with Newton iterations is employed into which the limiter procedure has been incorporated. The

system (2.7) can be written globally on the whole triangulation Th in the matrix-vector form as follows :

M d
dt

uh = Rh (3.1)

whereM is the mass matrix of the system, uh is the time-dependent vector of all unknowns, and Rh is the

vector of all the right hand sides of the equation (2.7). As already said, the explicit methods [9, 17, 22] are

easy to apply but impose a time step restriction. Introducing an implicit time strategy can help avoiding

small time step and allows the use of relatively coarse mesh to capture the sharp gradients and other sensitive

features in the flow domain. The BDF2 scheme is coupled with Newton iteration method into which is

introduced the limiting procedure to calculate the residual for updating the solution.

The BDF2 time integration scheme combined with variable time stepping reads:

M c2 − 1
c2 − c1

un+1 +M c2

c2 − c1
un −M 1

c2 − c1
un−1 − 4tnRh

(
un+1

)
= Re

(
un+1

)
(3.2)

where c1 =
4tn+4tn−1
4tn

, and c2 = c2
1. n is the index of the time iteration. Re denotes the unsteady-state

residual.

Journal of Computational Physics JCP***
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To solve this implicit problem (3.2), for the n + 1 time step, the usual Newton iteration method reads :

(i) w1 = un

(ii)
[
∂Re
∂w

]k 4wk+1 = −Re

(
wk

)
, wk+1 = wk + α4wk+1,

(iii) un+1 = wm, when Re (wm) ≤ max
(
η1, η2 ∗

∥∥∥Rm
h

∥∥∥
L∞

)
k = 1, 2, ....m (3.3)

where α is the relaxation parameter, which takes values between 0.8 and 1 according to the stiffness

of the test case. w represents intermediate solutions in the Newton solver process for the solution of un+1,

which is satisfied with
[
∂Re
∂uh

=
∂Re
∂w

]
. η1 and η2 are tolerance parameters fixed by the user. Generally, η1 =

10−6 and η2 = 10−12 are fixed arbitrary constants

Now in order to introduce the slope limiting procedure in the implicit iteration, a modification to the Newton

iteration is proposed. Thus the Newton iteration coupled with the limiting procedure becomes :

(i) w1 = un

(ii)
[
∂Re
∂w

]k 4wk+1 = −Re

(
wk

)
, wk+1 = wk + α4wk+1, k = 1, 2, ... m

(iii) un+1 = L (wm) , when limiterResidual ≤ max
(
η1, η2 ∗ ‖L (wm)‖L∞

)

(3.4)

where L denotes a generic limiting operator. The next section presents the slope limiting operator

used in the case of limited gradients. The limiterResidual is computed as follows :

limiterResidual =

√√∑ncomp
i=1

∑ne
j=1

(
ulimnew − ulimold

)2

ncomp ∗ ne
(3.5)

where ulimnew and ulimold are the limited solutions at the current time step and the previous one respec-

tively, calculated at the center of the element; ncomp is the number of component of the conservative state

vector (4 for 2D Euler equations), ne is the total number of elements. Having modified the Newton iteration

combined with the limiter procedure, for convergence purpose the first residual for the iterative Newton is

computed as follows :

Res =

√∑ncomp
i=1

∑ne
j=1(ulimnew−ulimold )2

ncomp∗ne

4t
∥∥∥un+1

∥∥∥
L∞

(3.6)

JCP*** Journal of Computational Physics
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4 Slope limiting procedure

It may be noted that the limiting method used in this paper for triangular or quadrilateral cells can be

generalized to any type of cell in two dimension. Primitive variables are used in the limiting procedure

in order to apply a positivity checks after variables gradients are limited. This is to prevent solutions with

locally negative density and/or pressure solution values [12, 18].

Figure 1: Patch neighborhood used for the limiting algorithm.

After computing the unlimited gradient of the primitive variables on the current cell and its neigh-

bours according to the area-weighted formula [22], following the patch in Figure 1, the limited gradient can

be written in its generalized form as :

(∇V0)l ≈
n∑

i=1

wi (∇V)i (4.1)

where n is the number of segments per element. The weights in their generalized form read :

wi =

n∏

j,i

g j + ε

n∑

j=1

g2
j + nε

(4.2)

with ε set to 10−10 used to avoid division by zero and g j is chosen as the square of the L2 norm of the

unlimited element gradients, i.e. gi = ||(∇V) j||2.

Then the product rule is used to reconstruct the gradients of the conservative variables and then evaluate

the first order accurate three-term Taylor expansion of the conservative variables while preserving the cell

Journal of Computational Physics JCP***
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averages of the unlimited conserved variables.

V l = V̄0 +


dx

dy

 . (∇V0)l |(x0,y0) (4.3)

where

V̄0 =
1
|K|

∫

K
Vdx; dx = x − 1

|K|
∫

K
xdx; dy = y − 1

|K|
∫

K
ydy. (4.4)

Due to the presence of high gradients, rarefaction zones and impulsive initial conditions, negative values of

density and pressure can occur during the time integration process, mainly at the initial stages. To avoid the

appearance of local spurious negative density and pressure values of the thermodynamic variables ρ and p

during the iterative process, density and pressure are updated, if necessary, using some kind of relaxation

(see equation 4.5). This must assure that they are always positive. For instance, pressure update is modified

according to equation :

pn+1 = pn + 4p

[
1 + η

(
α +

∣∣∣∣∣
4p
pn

∣∣∣∣∣
)]−1

(4.5)

whenever 4p
pn ≤ α, where η = 2 and α = −0.2. Similar procedure is used for the density (see [18] for more

details).

5 Boundary treatment for curved edges

As pointed out by many authors it is important, for DG methods, to modify the discretization scheme

for high order at curved boundaries in order to avoid oscillations in the solution and spurious entropy

production [3, 19, 15]. To have an accurate approximation of geometric boundaries, for adjacent elements

to curved boundaries as the solid walls, the standard linear parametrization is replaced by a polynomial

representation with respect to the analytical description of the boundary on a simplex element of higher

order. In the transformation from a reference element to the curved element (Figure 2), the concerned

edge is expressed in terms of Lagrange polynomials and is calculated from additional points on the curved

boundary [3, 19]. So, during the refinement process, more grid points are inserted on the solid wall in order

JCP*** Journal of Computational Physics
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to take into account the curvature of the geometric boundaries.

Figure 2: Geometric transformation to a cell with curved edge.

6 Adaptive mesh refinement procedure

The adaptive mesh refinement strategy adopted here is classical (see [5] or [16]). Briefly, the standard

refinement procedure reads: starting from an initial mesh, after a quasi-converged solution and accuracy, the

cells are marked according to different tolerance levels for the error indicator. Then the new grid is obtained

and calculation can go on. A full description of the present procedure with the necessary parameters can be

found in [5]. The typical structure of this adaptive algorithm is the following :

Solve → Estimate → Mark → Refine. (6.1)

For implicit calculations during the refinement procedure, the non-linear and the stationary residuals (see

equation (3.5)) must drop to 10−4 for any given mesh.

Journal of Computational Physics JCP***
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7 Numerical experiments

Numerical results are presented with the implicit time scheme combined with the limiting procedure to

show the robustness and the accuracy of the solutions for 5 test cases ranging from subsonic to supersonic

flows : Shock-tube, NACA0012, Ramp, Cylinder and Scramjet. The last two cases will be run with the

adaptive mesh refinement procedure (AHMR) on both triangular and quadrilateral mesh for comparison.

Through these numerical experiments particular attention is paid to some relevant aspects of numerical

simulations such as :

• spacial interpolation, comparing the accuracy of the DG scheme at high order when using the slope

limiter (all the test cases),

• time integration, comparing the explicit and the implicit schemes in term of precision and mesh

resolution ( Shock-tube and Ramp test cases),

• robustness of the slope limiter, testing the slope limiter for transsonic flow with various shock waves

magnitudes (NACA0012 test case),

• geometry type of mesh, comparing the solutions obtained while dealing with quadrangular and trian-

gular type of mesh in an adaptive mesh refinement (AHMR) procedure (Cylinder and Scramjet test

cases). The AHMR process combined with high order schemes with limiting procedure give good

results in capturing the discontinuities and others sensitive features of the flow in the computational

domains. However, some significant differences appear depending on the type of mesh in comparing

results on triangular and quadrangular meshes.

Table 1 represents the various test cases considered and the panel of calculations performed with them.

Test Case / Num. Method. Explicit Implicit Quad. Tri. DG0 DG1 Physical

Shock Tube X X X X X Limited & not limited Quasi 1D / Transient flow
Ramp X X X X Limited & not limited 2D / Supersonic external flow
Naca X X Limited 2D / Transsonic external flow

Cylinder+AHMR X X X X Limited Supersonic external flow
Scramjet+AHMR X X X X Limited Supersonic internal flow

Table 1: Description of the numerical experiments. Test cases on the first left column and numerical
methods on the first line.

JCP*** Journal of Computational Physics
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(quad) and (tri) stand for quadrangular or triangular mesh respectively.

7.1 Shock tube

Simulation of the shock tube problem is adopted to validate the behavior of the limiting procedure with

an analytic solution. Through a thin tube, 2D simulation of this 1D problem (see equations 7.1-7.3) is

performed using the limiter implemented. The computational is 10 meters long and 1 meter thick.

ρ (x, 0) =



1.0 f or x ≤ 0

0.125 f or x > 0
, (7.1)

p (x, 0) =



1.0 f or x ≤ 0

0.1 f or x > 0
, (7.2)

u (x, 0) = 0. (7.3)

The HLLC Riemann solver is used. The mesh used is displayed in Figure 3 and contains 2400 cells. The

Computed and analytical solutions are given at t = 1.s. The computed density distributions are shown

in Figures(4 to 6). Looking at figure 4 explicit and implicit DG1 evolutions are overlapped. Note that

regarding computational efficiency, implicit is more than twenty as fast as explicit. Figure 5 shows that the

limiter suppress very well the numerical oscillations including numerical diffusion in the non-limited DG1

solution. In figure 6 the DG0 solution is slightly more diffusive compared to the DG1 limited solution.

Globally good agreement between the analytical solution and the computed one with the high order DG

scheme using limiter is observed.

Journal of Computational Physics JCP***
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a)

b)

Figure 3: Zoom in the middle of the thin tube for : (a) Quadrilateral mesh, (b) Triangular mesh, both with
2400 cells

Figure 4: Density evolution. Comparison with both Implicit and Explicit.

JCP*** Journal of Computational Physics
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Figure 5: Density evolution. Comparison with and without any limiter.

Figure 6: Density evolution. Comparison between DG0 and DG1 limited.

Journal of Computational Physics JCP***
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7.2 Supersonic inviscid flow passing a ramp

This case is about supersonic flow at Mach number 2 passing a ramp with 10 ◦ slope. The steady-state so-

lution contains an oblique shock. A structured mesh is used consisting of only 384 quadrilaterals. Figure 7

shows the mesh (left picture) and the pressure contours at the steady state (right picture). Figure 8 shows

the density cutline distributions at y = 0.2 for both limited and non-limited solutions. One can observe that

the numerical oscillations are suppressed and the oblique shock has been well captured. No overshoots or

undershoots appear around regions with high gradients. The convergence history of the proposed limiting

process is shown in Figure 9. One can notice that the mesh is relatively coarse but the limited procedure

combined with the variable time step BDF2 implicit scheme is able to resolve the shock. With this implicit

scheme the time step at the beginning of the calculation is 4t = 5.10 −4s and the overall residual in time

drops to 10 −6 after 25 iterations. The time step is allowed to increase during the calculation and it reached

10 −2 before convergence is achieved. Computing the case with RKDG explicit time scheme (see [17]), the

time step must remain constant and is 4t = 5.10 −5s. So to reach the same final time 1860 iterations are

required with the RKDG scheme. This shows clearly the importance of the implicit method incorporated

into the slope limiting procedure for high order DG in terms of computational time saving. The figure (10)

shows the comparison of the implicit and the RKDG schemes solutions by realizing a cutline on the density

distributions at y = 0.2. One can notice with the same mesh, the implicit scheme captured more accurately

the oblique shock than the RKDG scheme.

(a) (b)

Figure 7: Supersonic flow (Mach = 2) passing a 10 ◦ ramp. Left: mesh containing 384 quadrilaterals;
right: pressure contours.

JCP*** Journal of Computational Physics
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Figure 8: Density distributions (cutline at y = 0.2): comparison between the non-limited solution and the
limited solution on quadrangular mesh.

Figure 9: Supersonic flow (Mach = 2) passing a 10 ◦ ramp : convergence history.
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Figure 10: Density distributions (cutline at y = 0.2): comparison between RKDG and BDF2 scheme
solutions.
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7.3 Transsonic flow past a NACA0012 airfoil

The third case focuses on the transsonic flow around NACA0012 airfoil. This case is about a flow at Mach

number 0.85 around the NACA0012 airfoil with an angle of attack of 1◦. Due to the acceleration of the

subsonic flow on the intrados and the extrados, the flow will reach a supersonic state on part of the surface.

Hence, supersonic regions will be pocketed in a subsonic region, making the overall flow transsonic. This

test case is to demonstrate the impact and the accuracy of the slope limiter for flows at various shock waves

magnitudes.

The computational domain shown in Figure 11 is about 40 chord lengths away from the airfoil. The

mesh consists of 7195 triangular cells. Figure 12 shows the entropy distribution around the solid body

using DG0 and DG1 discretization schemes. One can observe that the higher order scheme DG1 provides

low dissipation away from the shock around the body. Figures 13 and 14 show the unlimited and limited

pressure and Mach number contours near the airfoil surface. As it can clearly be seen, two shocks appear

on the surface. The shock on the upper surface is stronger and located at a more down-stream place than

the shock on the lower surface due to the angle of attack. The numerical oscillations due to high order

scheme observed on the unlimited pressure and Mach number contour have been removed by the limiter

without deteriorating the subsonic flow around the shock waves. The accuracy of the isolines depends on

the mesh density. The pressure coefficient Cp shown in Figure 15 (left) compares the current DG1’s limited

solution to the DG1 non-limited and DG0 solutions. One can see that the DG1 limited solution well fitted

the unlimited solution without the oscillations. The figure 15 (right), is in comparison of the current DG1

limited solution with the one from Tu & al. [22]. Good agreement can be seen in terms of the location and

strength of shocks.
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(a) Initial quadrangular mesh with 8960 cells (b) zoom

Figure 11: Mesh around NACA0012 airfoil. Left: whole; right: zoom near the airfoil.

(a) Initial quadrangular mesh with 8960 cells (b) zoom

Figure 12: Entropy distribution around the NACA0012 body. Left: DG0 result; right: DG1 limited result.
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Figure 13: Flow past a NACA airfoil test case (Mach = 0.85, angle of attack α = 1. ◦). Left : Unlimited
pressure contours; right : Limited Pressure contours.

Figure 14: Flow past a NACA airfoil test case (Mach = 0.85, angle of attack α = 1. ◦). Left : Unlimited
Mach number contours; right : Limited Mach number contours.
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Figure 15: Flow past a NACA airfoil test case (Mach = 0.85, angle of attack α = 1. ◦). Pressure coefficient
distribution Cp. Left : Present results. Right: Comparison with others authors.
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7.4 Supersonic external flow past a Cylinder with AHMR procedure

This test case consists of a steady flow past a circular cylinder, at a free stream Mach number of 3 [4]. The

presence of shocks, stagnation, rarefaction and vortex zones, as antagonist phenomena make this problem

challenging in terms of stability behavior. So the choice of the physical criterion to minimize the local error

is crucial in the adaptive mesh procedure. The error indicator is chosen to be the jump (between to cells)

in Mach number. To show the robustness and the accuracy of the method the Riemann solver HLL flux is

chosen which is rather diffusive.

Triangular and quadrangular meshes with DG0 and DG1 schemes have been successively investigated and

evaluated. Figures 16 show initial meshes of both type of cells. The curved edges treatment’s accuracy is

evaluated on the solid boundary during the mesh refinement procedure with the limiter. In order to test the

AHMR behavior, two different strategies are used : a coarse triangular mesh and a fine quadrilateral mesh

are considered.

Figure 16: Initial meshes for the cylinder test case. Left : Quadrilateral mesh with 1680 cells; right :
Triangular mesh with 104 cells.
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7.4.1 AHMR procedure on triangular meshes: Cylinder test case

The starting mesh named Mesh0 containing only 104 cells is chosen very coarsely with only eight segments

(or straight-lines) as boundary edges to demonstrate at the same time the robustness of the adaptive method

and the treatment of curved edges on solid wall boundary. Detailed mesh evolution of the AHMR is shown

in Table 2 for DG0 and DG1.

Table 2: Successive adaptive meshes - Cylinder test case
DG0 Mesh0 Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 Mesh6 Mesh7
Cells 104 242 539 1190 2480 5783 13889 27758
Points 68 161 330 711 1438 3323 7895 15400
DG1 Mesh0 Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 Mesh6
Cells 104 236 485 1100 2228 5213 12128
Points 68 159 293 659 1299 3005 6881

Triangular meshes with DG0 and DG1.

In Figure (d) the red polygon is the initial mesh with the straight-lines. One can see that during

the refinement process, the boundary curve is well resolved in fitting the curvature of the cylinder. The

streamlines at the rear of the cylinder is the seat of a rarefaction zone with vortexes in Figure 17. These

vortexes are captured respectively during the sixth and the seventh level of refinement for DG1 and DG0.

Figures 18 show the Mach number contour distribution on the local adaptive refined mesh for DG1 and

DG0 at level six (mesh6) and seven (mesh7) respectively. The corresponding cells difference between the

sixth and seventh level of refinement with DG0 discretization is shown in Figure 19. This picture shows

the refined zones between to levels of the adaptive refinement procedure and can give an idea of the place

where the error criterion is the most sensitive. This appreciation is very important to capture the main flow

features all over the domain. The Figure 19 can be seen as the cells number that the DG0 calculation needed

to add more to get a solution as accurate as the one with DG1. Nevertheless, considering the number of

unknowns to solve both numerical experiences, DG1 has more.
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(a) DG1 solution with mesh5. (b) DG0 solution with mesh6.

(c) DG1 solution with mesh6. (d) DG0 solution with mesh7. In red mesh0.

Figure 17: Streamlines around the cylinder with triangular meshes.
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Figure 18: Mach number isovalues. Left : DG1 solution on mesh6; right : DG0 solution on mesh7.
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Figure 19: Refined cells from mesh6 to mesh7 (DG0).
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7.4.2 AHMR procedure on quadrangular meshes: Cylinder test case

This time, the initial quadrangular mesh (figure 16 (a)) has been built ten times finer than the triangular one

in the previous sub-section. This choice is done to observe the comportment of the AHMR procedure with a

finer mesh from the beginning. In addition, the edges of the quadrangular cells respect some orthogonality

properties. Detailed mesh evolution of the AHMR is shown in Table 3 for DG0 and DG1. Because of the

fineness of the quadrangular initial mesh, only one and two levels of refinement are needed for DG1 and

DG0 respectively to capture (or begin to capture for DG0) the expected vortexes at the rear of the obstacle.

Figure 20 shows the meshes at the first (Mesh1) and the second (Mesh2) level of refinement respectively

Table 3: Successive adaptive meshes - Cylinder test case
DG0 Mesh0 Mesh1 Mesh2 Mesh3
Cells 1680 3162 6570 14292
Points 1764 3368 7035 15236
DG1 Mesh0 Mesh1 Mesh2 Mesh3
Cells 1680 3132 6444 13611
Points 1764 3327 6905 14500

Quadrangular meshes with DG0 and DG1.

with DG1 and DG0. The pressure distribution is shown in Figures 21 (a) and (b) for Mesh1 and Mesh2.

The evolutions of streamlines in figure 22 underline the difficulty for DG0 to capture the re-circulation

zone even with twice number of cells than DG1 solution. The rarefaction zone is correctly captured at the

third level of refinement for the DG0 scheme.

It is not easy task to compare objectively results coming from triangular and quadrangular meshes.

Nevertheless, it seems that AHMR with an initial quadrangular mesh finer than triangular one gives a

sequence of solutions more accurate even with less mesh points. Indeed, while 27758 and 12128 cells

are respectively expected for DG0 and DG1 with triangles (cf. Table 2), only 6570 and 3132 cells are

respectively expected for DG0 and DG1with quadrangles (cf. Table 3) for the same results in term of

accuracy. If one compares DG1 solutions, to get similar results only 12528 (4* 3132) degree of freedoms

are required with a quadrangular mesh against 36384 (3* 12128) with a triangular mesh. To explain this

surprising result, specific studies like the choice of the indicator might be investigated.
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Figure 20: Cylinder test case : meshes obtained at the first level (left) and second level of adaptive
refinement for DG1 and DG0 respectively on quadrangular cells.

(a) DG1 with mesh1 (b) DG0 with mesh2.

Figure 21: Pressure isovalues.
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(a) DG1 solution with mesh1. (b) DG0 solution with mesh2.

Figure 22: Streamlines around the cylinder with quadrangular meshes
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7.5 Supersonic internal flow through a Scramjet with AHMR procedure

This case consists of an internal supersonic flow in a Scramjet inlet at Mach = 3 (see [5] for detailed

description of this test case). This test case is very interesting because of the various interactions of different

waves between each other and the wall. The error indicator used for the mesh refinement is based on

the jump in density at the cell interface [4]. As previously said, triangular and quadrangular meshes are

computed using DG0 and DG1 scheme. The initial meshes employed are shown in Figure 23 contain

approximatively the same number of cells (1040 for quadrangular and 912 for triangular).

Figure 23: Initial meshes for the Scramjet test case. Left : quadrangular mesh with 1040 cells; right:
triangular mesh with 912 cells.

7.5.1 AHMR procedure on triangular meshes: Scramjet test case

To have an idea of the global mesh evolution with AHMR procedure in both DG0 and DG1 schemes, the fi-

nal level meshes are presented in Figures 24. The refinement behavior in capturing the multi-scale physical

phenomena of the flows in the scramjet inlet is clearly shown. Figure 25 represents the difference between

the meshes mesh5 and mesh7 obtained from DG1 and DG0 respectively. This to shows the number of cells

roughly to be added to the calculation of DG0 scheme to approximatively obtain the same solution of the

calculation of DG1scheme. Although the gradients are slightly more pronounced with DG1, looking at

the cutline of the density evolution with DG0 and DG1 in Figure 26, both results look alike. Indeed, these

schemes capture as well as the double compression phenomena, the constant density zone between the two

shocks and the re-compression in the nozzle extension part of the Scramjet.
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Table 4: Successive adaptive meshes - Scramjet test case
DG0 Mesh0 Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 Mesh6 Mesh7
Cells 912 1482 2793 5961 11235 22503 45702 90756
Points 552 933 1723 3540 6459 12708 25727 50549
DG1 Mesh0 Mesh1 Mesh2 Mesh3 Mesh4 Mesh5
Cells 912 1476 2667 5679 11112 21621
Points 552 942 1639 3361 6456 12368

Triangular meshes with DG0 and DG1.

(a) DG0 with mesh7. (b) DG1 with mesh5.

(c) Zoom of (a) in the central area. (d) Zoom of (b) in the central area.

Figure 24: Global and close-up of the observation region view of the adapted meshes for DG0 and DG1
calculations (tri).
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Figure 25: Refined cells from mesh5 with DG1 to mesh7 with DG0 (tri).

Figure 26: Density cutline along the axis of symmetry - In red DG1-Mesh5 - In black DG0-Mesh7 (tri).
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7.5.2 AHMR procedure on quadrangular meshes: Scramjet test case

The meshes obtained at the seventh and fifth level of the AHMR process for DG0 and DG1 respectively

Table 5: Successive adaptive meshes - Scramjet test case
DG0 Mesh0 Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 Mesh6 Mesh7
Cells 1040 1994 3674 6782 12824 23708 45074 84653
Points 1175 2284 4151 7571 14219 25768 48774 90948
DG1 Mesh0 Mesh1 Mesh2 Mesh3 Mesh4
Cells 1040 1769 2747 4361 6518
Points 1175 2095 3266 5247 7703

Quadrangular meshes with DG0 and DG1.

contain 84653 and 6518 cells. The axial cutlines of the density in Figure 27 shows the excellent behavior

of the DG1 solution from the beginning with Mesh0. Comparing the DG0 solution obtained with the third

level mesh DG0 with the DG1 solution on the initial, one can observe the good behavior of the DG1 scheme

(see Figure 27-b). In fact the density evolution seem to be more diffusive with the DG0 scheme. Through

the isolines of the Mach number field in Figure 30, it can be observed that the DG1 solution (a) seems to

depict very well the interactions between the shock-waves and the wall in comparison to the DG0 solution

(b) even at the seventh mesh refinement level solution. This tendency is also confirmed when looking at the

density cutline of Figure 27. In fact, stronger gradients are notable with the DG1 (red line) than with the

DG0 (black line). Furthermore, the maximum value of the density (x ∼ 9.2) and the re-compression zone

(x∼ 10.5) phenomenon in the nozzle extension of the Scramjet are more pronounced with the DG1 scheme.

Comparing the results using AHMR between triangular and quadrangular meshes leads to the same

conclusion as previously : Ceteris paribus in relation to the number of degree of freedom, it is undisputable

that the very best result is obtained with quadrangular meshes.
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(a) In black DG1-Mesh0 - In red DG0-Mesh0. (b) In black DG1-Mesh0 - In blue DG0-Mesh3.

Figure 27: Density cutline along the axis of symmetry (quad).

(a) DG0 with mesh7. (b) DG1 with mesh4.

(c) Zoom of (a) in the central area. (d) Zoom of (b) in the central area.

Figure 28: Global and close-up of the observation region view of the adapted meshes for DG0 and DG1
calculations (quad).
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Figure 29: Refined cells from mesh4 with DG1 to mesh7 with DG0 (quad).

(a) DG0 with Mesh7. (b) DG1 with Mesh4.

Figure 30: Isovalues of Mach number (quad).
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Figure 31: Density cutline along the axis of symmetry - In red DG1-Mesh4 - In black DG0-Mesh7 (quad).
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8 Conclusion

An efficient higher-order numerical scheme for the solution of the compressible Euler equations has been

presented. Several important aspects have been investigated in this paper :

• application of the discontinuous Galerkin method for the space discretization and boundary condi-

tions treatment for curved edges,

• presentation of a limiter for quadrilateral as for triangular meshes suitable for the discontinuous

Galerkin method structure’s,

• incorporation of the slope limiting procedure into a second order accurate implicit time scheme using

DGFEM,

• adaptive mesh refinement with the slope limiting procedure,

• adaptive procedure with hierarchical meshes using hanging-nodes,

• comparison of solutions using triangular and quadrilateral meshes,

• comparison of solutions of DG1 and DG0 schemes during mesh refinement procedure.

The slope limiting procedure method implemented appears to be robust to test cases ranging from transsonic

to supersonic flows. The incorporation of the limiting procedure into the implicit time scheme allows

to obtain relevant and interesting results in term of accuracy and computational time. So under these

conditions and considering the results, a summary of this work can be:

• when comparing DG0 to limited DG1 scheme with the implicit method for transient flow, DG1 gives

solutions with more accuracy and efficiency,

• the comparison of this implicit method with explicit Runge-Kutta scheme shows that the Runge-Kutta

scheme is much more diffusive for high Mach number flows,

• comparing the numerical solution obtained with AHMR procedure in terms of type of cells on the

Cylinder and Scramjet test cases, advantage is given to quadrangular non-conforming meshes. In fact,

for the same number of unknowns, solutions obtained with quadrangular cells depict the behavior of

the flow with higher accuracy and with more efficiency. In one of our previous papers [5] it has been

shown that the result is the opposite with DG0.
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Taking into consideration all these results some perspectives and directions can be expressed as :

• extend the limiting process to any high order elements in hp-typed mesh adaptation,

• evaluate rigorously the advantage-disadvantage of the spending CPU time and the cost of the storage

memory as far as the order increases with DGFEM,

• compare several types of criterion of mesh refinement on triangular and quadrangular grids,

• improve the AHMR procedure to investigate adjoint-based mesh refinement.

Numerical simulation in engineering sciences is very open because of the important number of parameters

which can be used and which can significantly impact. Efficiency, accuracy and robustness, the famous

Triptych of numerical simulation depends here again on the choice of the AHMR procedure, the geometry

of the element and the time scheme. Furthermore this list is not exhaustive.
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