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Implicit method and slope limiter in AHMR procedure

for high order discontinuous Galerkin methods for compressible flows

Introduction

Significant efforts have been made in the development of the discontinuous Galerkin finite element methods (DGFEM) for fluid flow and heat transfer applications. The DGFEM method has been successfully used to solve non-linear hyperbolic systems of conservation laws [START_REF] Bassi | A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations[END_REF][START_REF] Cockburn | Runge-kutta discontinuous galerkin methods for convection-dominated problems[END_REF]. Since it uses discontinuous piecewise polynomial bases, the discretization is locally conservative, and, in the considered lowest-order case, the method preserves the maximum principle for scalar equations.

Nevertheless, for high order schemes, around sharp gradients and discontinuities, if the solution does not remain smooth for a long period of time, there occurs oscillations commonly called Gibbs phenomenon.

Many studies in literature deal with this subject [START_REF] Cockburn | Runge-kutta discontinuous galerkin methods for convection-dominated problems[END_REF][START_REF] Klöckner | Viscous shock capturing in a time-explicit discontinuous galerkin method[END_REF][START_REF] Cockburn | Devising discontinuous galerkin methods for non-linear hyperbolic conservation laws[END_REF]. These oscillations due to discontinuities, are sometimes severe to cause stability problem [START_REF] Cockburn | Runge-kutta discontinuous galerkin methods for convection-dominated problems[END_REF][START_REF] Tu | A slope limiting procedure in discontinuous galerkin finite element method for gasdynamic applications[END_REF]. There are two strategies applied to deal with this situation. A shock-capturing method [START_REF] Aliabadi | Space-time finite element computation of compressible flows involving moving boundaries and interfaces[END_REF] or an appropriate slope limiter is commonly used to suppress these oscillations while preserving the high order accuracy in smooth regions [START_REF] Persson | Sub-cell shock capturing for discontinuous galerkin methods[END_REF] . For low approximation order (and polynomial degrees p < 3), the slope limiting procedure remains the alternative for shock capturing [START_REF] Klöckner | Viscous shock capturing in a time-explicit discontinuous galerkin method[END_REF]. In [START_REF] Cockburn | Devising discontinuous galerkin methods for non-linear hyperbolic conservation laws[END_REF], Cockburn argued that the slope limiter is equivalent to a nonlinear form of artificial viscosity.

The slope limiter proposed use the same technical approach as the one used in Tu et al [START_REF] Tu | A slope limiting procedure in discontinuous galerkin finite element method for gasdynamic applications[END_REF] for DG methods. This limiter is differentiable [START_REF] Jawahar | A high-resolution procedure for euler and navier-stokes computations on unstructured grids[END_REF] and used the area-weighted based formula [START_REF] Frink | Assessment of an unstructured grid method for predicting 3d turbulent viscous flow[END_REF][START_REF] Tu | A slope limiting procedure in discontinuous galerkin finite element method for gasdynamic applications[END_REF] to compute the gradient. Generally slope limiters are implemented in DG methods combined with explicit time schemes such as Runge-Kutta methods. The reason of not using implicit time scheme is that the slope limiters are non-differentiable [START_REF] Venkatakrishnan | Convergence to steady solutions of the euler equations on unstructured grids with limiters[END_REF]. A way of incorporating the slope limiter into an implicit time scheme (BDF2) procedure is proposed with varying time step by introducing a residual based on the limited solution. By so doing one can use a relatively coarse mesh with no restriction of the CFL to obtain an accurate solution in comparison to an explicit scheme.

Another aspect tackled is the combination of the proposed slope limiter incorporated into an implicit time scheme with an automatic h-adaptive mesh refinement (AHMR) with hanging-nodes designed in our DG methods library Concha, on both quadrilateral and triangular meshes. The adaptive mesh refinement is
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A N U S C R I P T 3 Implicit method and slope limiter in AHMR procedure for high order discontinuous Galerkin methods for compressible flows based on a posteriori error estimator using the jump at interface of physical quantity such as density. The strategy of the AHMR is to iteratively improve the quality of the approximate solutions at high order based on computed information (a posteriori error analysis). In this way, a sequence of locally refined meshes is constructed, which allows better efficiency compared to classical approaches in the presence of different kind of singularities. Thus by combining the AHMR with and implicit time scheme with a high order DG method, one can use a relatively coarse mesh with few number of adaptive refinement to obtain accurate solutions in a very reasonable computational time.

The organization of this paper is as follows: section 2 describes the governing equations and the spatial discretization, implementation of numerical fluxes schemes, and the time discretion scheme procedure.

Section 3 describes the implicit BDF2 time integration with varying time step scheme and the strategy of incorporating the slope limiter into the implicit time scheme procedure. Section 4 describes succinctly the limiting procedure on both triangular and quadrilateral meshes. In section 6, the Adaptive mesh refinement (AHMR) is described. In section 7 five numerical test cases are considered ranging from subsonic to supersonic flows to show :

• the performance of the combined implicit time scheme -slope limiter in comparison with explicit Runge-Kutta scheme at high order,

• the well behaving of the combine implicit time scheme -slope limiter with subsonic and transonic flows,

• comparison of the adaptive mesh refinement with the slope limiting procedure for triangular and quadrilateral meshes.

A C C E P T E D M

A N U S C R I P T 

Governing equations

The Euler equations which govern two-dimensional unsteady compressible inviscid flow can be written in the following conservative form,

∂u ∂t + ∂F (u) ∂x i = 0 in Ω T = Ω × (0, T ) (2.1)
where u is the vector of conserved variables and F = ( f 1 , f 2 ). f 1 and f 2 are the total flux vectors in the x i = (x, y) direction respectively. T > 0 is the length of time interval, and Ω is a two-dimensional bounded domain. The conservative variables u and the inviscid components of the fluxes

F = ( f 1 , f 2 ) are
given respectively :

u =                              ρ ρv 1 ρv 2 ρE                              , f 1 =                              ρv 1 ρv 1 v 1 + p ρv 1 v 2 ρHv 1                              , f 2 =                              ρv 2 ρv 1 v 2 ρv 2 v 2 + p ρHv 2                              (2.2)
where ρ is the density of the fluid, v 1 and v 2 are the cartesian velocity components of the flow, p is the pressure, and E is the total specific energy. E and H are defined as:

E = e + v 2 1 + v 2 2 2 ; H = E + p ρ = e + 1 2 V 2 + p ρ (2.3)
where e is the specific static internal energy. This system of equations is closed with the perfect gas equation of state given by equation (2.4):

p = (γ -1) ρ       E - v 2 1 + v 2 2 2       , (2.4) 
where γ is defined as the ratio of specific heats of the fluid (γ = 1.4 for air).

The system of equations (2.1) represents a hyperbolic system of equations to which are applied the initial
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u (x, 0) = u 0 (x) ; B (u) = 0 on ∂Ω × (0, T ) .

(2.5)

Discontinuous Galerkin spatial discretization

Suppose that the computational domain Ω is partitioned into disjoint open elements K such that Ω = K∈T h K. h represents de piecewise constant mesh function defined by h | K ≡ h K = diam (K) for all K ∈ T h . The DG finite element approximations u h and v h are obtained using truncated polynomial expansions combined with m shape functions φ i , expressed as:

u h = m i=1 u h φ i (x) ; v h = m i=1 v h φ i (x) (2.6) 
In this work, hierarchical shape functions are used on both triangles and quadrilaterals [START_REF] Becker | Concepts of the finite element library concha[END_REF][START_REF] Becker | Fully implicit adaptive method using discontinuous galerkin finite elements for high speed flows[END_REF][START_REF] Wang | Implicit solution of the unsteady euler equations for high-order accurate discontinuous galerkin discretizations[END_REF]. Considering possible choices of basis functions and then by multiplying by a test function v and integrating by parts, one obtains after discretization over the whole domain, the following formulation [START_REF] Cockburn | Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws iv: The multidimensional case[END_REF][START_REF] Hartmann | The role of the jacobian in the adaptive discontinuous galerkin method for the compressible euler equations[END_REF]:

K∈T h K ∂u ∂t v h - K F (u h ) .∇v h dx + ∂K\Γ H u + h , u - h , n v + h ds + ∂K∩Γ H u + h , u - h , n v + h ds = 0 (2.7)
where n = n x , n y is the outward to the boundary unit normal. The interfaces flux F (u) .n are replaced by Riemann numerical flux functions H u + h , u - h , n at the interfaces of two adjacent cells. Let's define u + h and u - h as the right and the left state of u. For the interior interfaces, the well known HLLC, Roe and Vijayasundaram Riemann solvers [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF][START_REF] Hartmann | The role of the jacobian in the adaptive discontinuous galerkin method for the compressible euler equations[END_REF] are used. For the boundaries numerical flux, a robust numerical flux is implemented and expressed as follows:

• The numerical flux implemented for boundary conditions where λ i denotes the eigenvalues of the Jacobian matrix A (w, n) = ∂F(w) ∂u .n in the neighborhood of ∂K, R (u, n) and L (u, n) are the right and the left eigenvectors matrix respectively. u Γ (u) = g D represents the state of u depending on the type of boundary condition applied (inflow supersonic or subsonic, outflow supersonic or subsonic, and slip wall boundary, see [START_REF] Hartmann | The role of the jacobian in the adaptive discontinuous galerkin method for the compressible euler equations[END_REF]).

H u + h , u Γ (u) , n                H u + h , u Γ (u) , n = R (u Γ (u) , n) λ i L (u Γ (u) , n) u + h i f λ i ≥ 0 H u + h , u Γ (u) , n = R (u Γ (u) , n) λ i L (u Γ (u) , n) u - h i f λ i < 0 (2.8) A C C E P T E D M A N U S C R I P T

Time integration : Implicit second order Backward Difference formula (BDF2) with variable time step

This section is devoted to the description of the implicit time scheme applied to the DGFEM discretization (2.7) of the problem (2.1). An adaptive time-stepping implicit two-step Backward Differentiation Formulas (BDF2) with Newton iterations is employed into which the limiter procedure has been incorporated. The system (2.7) can be written globally on the whole triangulation T h in the matrix-vector form as follows :

M d dt u h = R h (3.1)
where M is the mass matrix of the system, u h is the time-dependent vector of all unknowns, and R h is the vector of all the right hand sides of the equation (2.7). As already said, the explicit methods [START_REF] Cockburn | Runge-kutta discontinuous galerkin methods for convection-dominated problems[END_REF][START_REF] Luo | A p-multigrid discontinuous galerkin method for the euler equations on unstructured grids[END_REF][START_REF] Tu | A slope limiting procedure in discontinuous galerkin finite element method for gasdynamic applications[END_REF] are easy to apply but impose a time step restriction. Introducing an implicit time strategy can help avoiding small time step and allows the use of relatively coarse mesh to capture the sharp gradients and other sensitive features in the flow domain. The BDF2 scheme is coupled with Newton iteration method into which is introduced the limiting procedure to calculate the residual for updating the solution.

The BDF2 time integration scheme combined with variable time stepping reads:

M c 2 -1 c 2 -c 1 u n+1 + M c 2 c 2 -c 1 u n -M 1 c 2 -c 1 u n-1 -t n R h u n+1 = R e u n+1 (3.2)
where

c 1 = t n + t n-1 t n
, and c 2 = c 2 1 . n is the index of the time iteration. R e denotes the unsteady-state residual.
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To solve this implicit problem (3.2), for the n + 1 time step, the usual Newton iteration method reads :

(i)

w 1 = u n (ii) ∂R e ∂w k w k+1 = -R e w k , w k+1 = w k + α w k+1 , (iii) u n+1 = w m , when R e (w m ) ≤ max η 1 , η 2 * R m h L ∞ k = 1, 2, ....m (3.3)
where α is the relaxation parameter, which takes values between 0.8 and 1 according to the stiffness of the test case. w represents intermediate solutions in the Newton solver process for the solution of u n+1 , which is satisfied with ∂R e ∂u h = ∂R e ∂w . η 1 and η 2 are tolerance parameters fixed by the user. Generally, η 1 = 10 -6 and η 2 = 10 -12 are fixed arbitrary constants Now in order to introduce the slope limiting procedure in the implicit iteration, a modification to the Newton iteration is proposed. Thus the Newton iteration coupled with the limiting procedure becomes :

(i) w 1 = u n (ii) ∂R e ∂w k w k+1 = -R e w k , w k+1 = w k + α w k+1 , k = 1, 2, ... m (iii) u n+1 = L (w m ) , when limiterResidual ≤ max η 1 , η 2 * L (w m ) L ∞ (3.4)
where L denotes a generic limiting operator. The next section presents the slope limiting operator used in the case of limited gradients. The limiterResidual is computed as follows :

limiterResidual = ncomp i=1 ne j=1 u lim new -u lim old 2 ncomp * ne (3.5)
where u lim new and u lim old are the limited solutions at the current time step and the previous one respectively, calculated at the center of the element; ncomp is the number of component of the conservative state vector (4 for 2D Euler equations), ne is the total number of elements. Having modified the Newton iteration combined with the limiter procedure, for convergence purpose the first residual for the iterative Newton is computed as follows : 

Res = ncomp i=1 ne j=1 (u limnew -u lim old ) 2 ncomp * ne t u n+1 L ∞ (3.6) A C C E P T E D M A N U S C R I P T

Slope limiting procedure

It may be noted that the limiting method used in this paper for triangular or quadrilateral cells can be generalized to any type of cell in two dimension. Primitive variables are used in the limiting procedure in order to apply a positivity checks after variables gradients are limited. This is to prevent solutions with locally negative density and/or pressure solution values [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications[END_REF][START_REF] Lyra | A review and comparative study of upwind biased schemes for compressible flow computation. part iii: Multidimensional extension on unstructured grids[END_REF]. After computing the unlimited gradient of the primitive variables on the current cell and its neighbours according to the area-weighted formula [START_REF] Tu | A slope limiting procedure in discontinuous galerkin finite element method for gasdynamic applications[END_REF], following the patch in Figure 1, the limited gradient can be written in its generalized form as :

(∇V 0 ) l ≈ n i=1 w i (∇V) i (4.1)
where n is the number of segments per element. The weights in their generalized form read :

w i = n j i g j + n j=1 g 2 j + n (4.2)
with set to 10 -10 used to avoid division by zero and g j is chosen as the square of the L 2 norm of the unlimited element gradients, i.e.

g i = ||(∇V) j || 2 .
Then the product rule is used to reconstruct the gradients of the conservative variables and then evaluate the first order accurate three-term Taylor expansion of the conservative variables while preserving the cell
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V l = V0 +            dx dy            . (∇V 0 ) l | (x 0 ,y 0 ) (4.3)
where

V0 = 1 |K| K Vdx; dx = x -1 |K| K xdx; dy = y - 1 |K| K ydy. (4.4)
Due to the presence of high gradients, rarefaction zones and impulsive initial conditions, negative values of density and pressure can occur during the time integration process, mainly at the initial stages. To avoid the appearance of local spurious negative density and pressure values of the thermodynamic variables ρ and p during the iterative process, density and pressure are updated, if necessary, using some kind of relaxation (see equation 4.5). This must assure that they are always positive. For instance, pressure update is modified according to equation :

p n+1 = p n + p 1 + η α + p p n -1 (4.5)
whenever p p n ≤ α, where η = 2 and α = -0.2. Similar procedure is used for the density (see [START_REF] Lyra | A review and comparative study of upwind biased schemes for compressible flow computation. part iii: Multidimensional extension on unstructured grids[END_REF] for more details).

Boundary treatment for curved edges

As pointed out by many authors it is important, for DG methods, to modify the discretization scheme for high order at curved boundaries in order to avoid oscillations in the solution and spurious entropy production [START_REF] Bassi | High-order accurate discontinuous solution of the 2d euler equations[END_REF][START_REF] Mavriplis | Progress high-order discontinuous galerkin methods for aerospace applications[END_REF][START_REF] Krivodonova | High-orderaccurateimplementationofsolidwallboundary conditions in curved geometries[END_REF]. To have an accurate approximation of geometric boundaries, for adjacent elements to curved boundaries as the solid walls, the standard linear parametrization is replaced by a polynomial representation with respect to the analytical description of the boundary on a simplex element of higher order. In the transformation from a reference element to the curved element (Figure 2), the concerned edge is expressed in terms of Lagrange polynomials and is calculated from additional points on the curved boundary [START_REF] Bassi | High-order accurate discontinuous solution of the 2d euler equations[END_REF][START_REF] Mavriplis | Progress high-order discontinuous galerkin methods for aerospace applications[END_REF]. So, during the refinement process, more grid points are inserted on the solid wall in order 

Adaptive mesh refinement procedure

The adaptive mesh refinement strategy adopted here is classical (see [START_REF] Becker | Fully implicit adaptive method using discontinuous galerkin finite elements for high speed flows[END_REF] or [START_REF] Loseille | Fully anisotropic goal-oriented mesh adaptation for 3d steady Euler equations[END_REF]). Briefly, the standard refinement procedure reads: starting from an initial mesh, after a quasi-converged solution and accuracy, the cells are marked according to different tolerance levels for the error indicator. Then the new grid is obtained and calculation can go on. A full description of the present procedure with the necessary parameters can be found in [START_REF] Becker | Fully implicit adaptive method using discontinuous galerkin finite elements for high speed flows[END_REF]. The typical structure of this adaptive algorithm is the following : (quad) and (tri) stand for quadrangular or triangular mesh respectively.

Solve → Estimate → Mark → Refine. ( 6 

Shock tube

Simulation of the shock tube problem is adopted to validate the behavior of the limiting procedure with an analytic solution. Through a thin tube, 2D simulation of this 1D problem (see equations 7.1-7.3) is performed using the limiter implemented. The computational is 10 meters long and 1 meter thick.

ρ (x, 0) =            1.0 f or x ≤ 0 0.125 f or x > 0 , (7.1) p (x, 0) =            1.0 f or x ≤ 0 0.1 f or x > 0 , (7.2) 
u (x, 0) = 0. (

The HLLC Riemann solver is used. The mesh used is displayed in Figure 3 and contains 2400 cells. The Computed and analytical solutions are given at t = 1.s. The computed density distributions are shown in Figures (4 to 6). Looking at figure 4 explicit and implicit DG1 evolutions are overlapped. Note that regarding computational efficiency, implicit is more than twenty as fast as explicit. Figure 5 shows that the limiter suppress very well the numerical oscillations including numerical diffusion in the non-limited DG1 solution. In figure 6 the DG0 solution is slightly more diffusive compared to the DG1 limited solution.

Globally good agreement between the analytical solution and the computed one with the high order DG scheme using limiter is observed. Implicit method and slope limiter in AHMR procedure for high order discontinuous Galerkin methods for compressible flows

Supersonic inviscid flow passing a ramp

This case is about supersonic flow at Mach number 2 passing a ramp with 10 • slope. The steady-state solution contains an oblique shock. A structured mesh is used consisting of only 384 quadrilaterals. Figure 7 shows the mesh (left picture) and the pressure contours at the steady state (right picture). Figure 8 shows the density cutline distributions at y = 0.2 for both limited and non-limited solutions. One can observe that the numerical oscillations are suppressed and the oblique shock has been well captured. No overshoots or undershoots appear around regions with high gradients. The convergence history of the proposed limiting process is shown in Figure 9. One can notice that the mesh is relatively coarse but the limited procedure combined with the variable time step BDF2 implicit scheme is able to resolve the shock. With this implicit scheme the time step at the beginning of the calculation is t = 5.10 -4 s and the overall residual in time drops to 10 -6 after 25 iterations. The time step is allowed to increase during the calculation and it reached 10 -2 before convergence is achieved. Computing the case with RKDG explicit time scheme (see [START_REF] Luo | A p-multigrid discontinuous galerkin method for the euler equations on unstructured grids[END_REF]), the time step must remain constant and is t = 5.10 -5 s. So to reach the same final time 1860 iterations are required with the RKDG scheme. This shows clearly the importance of the implicit method incorporated into the slope limiting procedure for high order DG in terms of computational time saving. The figure [START_REF] Frink | Assessment of an unstructured grid method for predicting 3d turbulent viscous flow[END_REF] shows the comparison of the implicit and the RKDG schemes solutions by realizing a cutline on the density distributions at y = 0.2. One can notice with the same mesh, the implicit scheme captured more accurately the oblique shock than the RKDG scheme. 

Transsonic flow past a NACA0012 airfoil

The third case focuses on the transsonic flow around NACA0012 airfoil. This case is about a flow at Mach number 0.85 around the NACA0012 airfoil with an angle of attack of 1 • . Due to the acceleration of the subsonic flow on the intrados and the extrados, the flow will reach a supersonic state on part of the surface.

Hence, supersonic regions will be pocketed in a subsonic region, making the overall flow transsonic. This test case is to demonstrate the impact and the accuracy of the slope limiter for flows at various shock waves magnitudes.

The computational domain shown in Figure 11 is about 40 chord lengths away from the airfoil. The mesh consists of 7195 triangular cells. Figure 12 shows the entropy distribution around the solid body using DG0 and DG1 discretization schemes. One can observe that the higher order scheme DG1 provides low dissipation away from the shock around the body. Triangular meshes with DG0 and DG1.

In Figure (d) the red polygon is the initial mesh with the straight-lines. One can see that during the refinement process, the boundary curve is well resolved in fitting the curvature of the cylinder. The streamlines at the rear of the cylinder is the seat of a rarefaction zone with vortexes in Figure 17. These vortexes are captured respectively during the sixth and the seventh level of refinement for DG1 and DG0.

Figures 18 show the Mach number contour distribution on the local adaptive refined mesh for DG1 and DG0 at level six (mesh6) and seven (mesh7) respectively. The corresponding cells difference between the sixth and seventh level of refinement with DG0 discretization is shown in Figure 19. This picture shows the refined zones between to levels of the adaptive refinement procedure and can give an idea of the place where the error criterion is the most sensitive. This appreciation is very important to capture the main flow features all over the domain. The Figure 19 can be seen as the cells number that the DG0 calculation needed to add more to get a solution as accurate as the one with DG1. Nevertheless, considering the number of unknowns to solve both numerical experiences, DG1 has more. This time, the initial quadrangular mesh (figure 16 (a)) has been built ten times finer than the triangular one in the previous sub-section. This choice is done to observe the comportment of the AHMR procedure with a finer mesh from the beginning. In addition, the edges of the quadrangular cells respect some orthogonality properties. Detailed mesh evolution of the AHMR is shown in Table 3 for DG0 and DG1. Because of the fineness of the quadrangular initial mesh, only one and two levels of refinement are needed for DG1 and DG0 respectively to capture (or begin to capture for DG0) the expected vortexes at the rear of the obstacle.

Figure 20 shows the meshes at the first (Mesh1) and the second (Mesh2) level of refinement respectively The evolutions of streamlines in figure 22 underline the difficulty for DG0 to capture the re-circulation zone even with twice number of cells than DG1 solution. The rarefaction zone is correctly captured at the third level of refinement for the DG0 scheme.

It is not easy task to compare objectively results coming from triangular and quadrangular meshes.

Nevertheless, it seems that AHMR with an initial quadrangular mesh finer than triangular one gives a sequence of solutions more accurate even with less mesh points. Indeed, while 27758 and 12128 cells are respectively expected for DG0 and DG1 with triangles (cf. The meshes obtained at the seventh and fifth level of the AHMR process for DG0 and DG1 respectively 27 shows the excellent behavior of the DG1 solution from the beginning with Mesh0. Comparing the DG0 solution obtained with the third level mesh DG0 with the DG1 solution on the initial, one can observe the good behavior of the DG1 scheme (see Figure 27-b). In fact the density evolution seem to be more diffusive with the DG0 scheme. Through the isolines of the Mach number field in Figure 30, it can be observed that the DG1 solution (a) seems to depict very well the interactions between the shock-waves and the wall in comparison to the DG0 solution (b) even at the seventh mesh refinement level solution. This tendency is also confirmed when looking at the density cutline of Figure 27. In fact, stronger gradients are notable with the DG1 (red line) than with the DG0 (black line). Furthermore, the maximum value of the density (x ∼ 9.2) and the re-compression zone (x∼ 10.5) phenomenon in the nozzle extension of the Scramjet are more pronounced with the DG1 scheme.

Comparing the results using AHMR between triangular and quadrangular meshes leads to the same conclusion as previously : Ceteris paribus in relation to the number of degree of freedom, it is undisputable that the very best result is obtained with quadrangular meshes. 
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Conclusion

An efficient higher-order numerical scheme for the solution of the compressible Euler equations has been presented. Several important aspects have been investigated in this paper :

• application of the discontinuous Galerkin method for the space discretization and boundary conditions treatment for curved edges,

• presentation of a limiter for quadrilateral as for triangular meshes suitable for the discontinuous Galerkin method structure's,

• incorporation of the slope limiting procedure into a second order accurate implicit time scheme using DGFEM,

• adaptive mesh refinement with the slope limiting procedure,

• adaptive procedure with hierarchical meshes using hanging-nodes,

• comparison of solutions using triangular and quadrilateral meshes,

• comparison of solutions of DG1 and DG0 schemes during mesh refinement procedure.

The slope limiting procedure method implemented appears to be robust to test cases ranging from transsonic to supersonic flows. The incorporation of the limiting procedure into the implicit time scheme allows to obtain relevant and interesting results in term of accuracy and computational time. So under these conditions and considering the results, a summary of this work can be:

• when comparing DG0 to limited DG1 scheme with the implicit method for transient flow, DG1 gives solutions with more accuracy and efficiency,

• the comparison of this implicit method with explicit Runge-Kutta scheme shows that the Runge-Kutta scheme is much more diffusive for high Mach number flows,

• comparing the numerical solution obtained with AHMR procedure in terms of type of cells on the Cylinder and Scramjet test cases, advantage is given to quadrangular non-conforming meshes. In fact, for the same number of unknowns, solutions obtained with quadrangular cells depict the behavior of the flow with higher accuracy and with more efficiency. In one of our previous papers [START_REF] Becker | Fully implicit adaptive method using discontinuous galerkin finite elements for high speed flows[END_REF] it has been shown that the result is the opposite with DG0. Taking into consideration all these results some perspectives and directions can be expressed as :

• extend the limiting process to any high order elements in hp-typed mesh adaptation,

• evaluate rigorously the advantage-disadvantage of the spending CPU time and the cost of the storage memory as far as the order increases with DGFEM,

• compare several types of criterion of mesh refinement on triangular and quadrangular grids,

• improve the AHMR procedure to investigate adjoint-based mesh refinement.

Numerical simulation in engineering sciences is very open because of the important number of parameters which can be used and which can significantly impact. Efficiency, accuracy and robustness, the famous T riptych of numerical simulation depends here again on the choice of the AHMR procedure, the geometry of the element and the time scheme. Furthermore this list is not exhaustive.
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Figure 1 :

 1 Figure 1: Patch neighborhood used for the limiting algorithm.

  A C C E P T E D M A N U S C R I P T 10 E. Schall and N. Chauchat to take into account the curvature of the geometric boundaries.

Figure 2 :

 2 Figure 2: Geometric transformation to a cell with curved edge.
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 1 For implicit calculations during the refinement procedure, the non-linear and the stationary residuals (see equation(3.5)) must drop to 10 -4 for any given mesh.

Figure 3 :Figure 4 :Figure 5 :

 345 Figure 3: Zoom in the middle of the thin tube for : (a) Quadrilateral mesh, (b) Triangular mesh, both with 2400 cells

Figure 6 :

 6 Figure 6: Density evolution. Comparison between DG0 and DG1 limited.

Figure 7 :

 7 Figure 7: Supersonic flow (Mach = 2) passing a 10 • ramp. Left: mesh containing 384 quadrilaterals; right: pressure contours.

Figure 8 :

 8 Figure 8: Density distributions (cutline at y = 0.2): comparison between the non-limited solution and the limited solution on quadrangular mesh.

Figure 9 :Figure 10 :

 910 Figure 9: Supersonic flow (Mach = 2) passing a 10 • ramp : convergence history.

Figure 11 :

 11 scheme observed on the unlimited pressure and Mach number contour have been removed by the limiter without deteriorating the subsonic flow around the shock waves. The accuracy of the isolines depends on the mesh density. The pressure coefficient C p shown in Figure 15 (left) compares the current DG1's limited solution to the DG1 non-limited and DG0 solutions. One can see that the DG1 limited solution well fitted the unlimited solution without the oscillations. The figure 15 (right), is in comparison of the current DG1limited solution with the one from Tu & al.[START_REF] Tu | A slope limiting procedure in discontinuous galerkin finite element method for gasdynamic applications[END_REF]. Good agreement can be seen in terms of the location and strength of shocks.

Figure 12 :

 12 Figure 12: Entropy distribution around the NACA0012 body. Left: DG0 result; right: DG1 limited result.

Figure 13 :

 13 Figure 13: Flow past a NACA airfoil test case (Mach = 0.85, angle of attack α = 1. • ). Left : Unlimited pressure contours; right : Limited Pressure contours.

Figure 14 :Figure 15 : 7 . 4

 141574 Figure 14: Flow past a NACA airfoil test case (Mach = 0.85, angle of attack α = 1. • ). Left : Unlimited Mach number contours; right : Limited Mach number contours.

Figure 16 : 7 . 4 . 1

 16741 Figure 16: Initial meshes for the cylinder test case. Left : Quadrilateral mesh with 1680 cells; right : Triangular mesh with 104 cells.
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 24 . Schall and N. Chauchat(a) DG1 solution with mesh5. (b) DG0 solution with mesh6. (c) DG1 solution with mesh6. (d) DG0 solution with mesh7. In red mesh0.

Figure 17 :Figure 18 :

 1718 Figure 17: Streamlines around the cylinder with triangular meshes.

Figure 19 : 7 . 4 . 2

 19742 Figure 19: Refined cells from mesh6 to mesh7 (DG0).

  ) and (b) for Mesh1 and Mesh2.

Figure 20 :

 20 Figure 20: Cylinder test case : meshes obtained at the first level (left) and second level of adaptive refinement for DG1 and DG0 respectively on quadrangular cells.

Figure 21 :

 21 Figure 21: Pressure isovalues.

Figure 22 :

 22 Figure 22: Streamlines around the cylinder with quadrangular meshes

  (a) DG0 with mesh7. (b) DG1 with mesh5. (c) Zoom of (a) in the central area. (d) Zoom of (b) in the central area.

Figure 24 :

 24 Figure 24: Global and close-up of the observation region view of the adapted meshes for DG0 and DG1 calculations (tri).

Figure 25 :

 25 Figure 25: Refined cells from mesh5 with DG1 to mesh7 with DG0 (tri).

Figure 26 : 7 . 5 . 2

 26752 Figure 26: Density cutline along the axis of symmetry -In red DG1-Mesh5 -In black DG0-Mesh7 (tri).

  and N. Chauchat(a) In black DG1-Mesh0 -In red DG0-Mesh0. (b) In black DG1-Mesh0 -In blue DG0-Mesh3.

Figure 27 :

 27 Figure 27: Density cutline along the axis of symmetry (quad).

  (a) DG0 with mesh7. (b) DG1 with mesh4. (c) Zoom of (a) in the central area. (d) Zoom of (b) in the central area.

Figure 28 :

 28 Figure 28: Global and close-up of the observation region view of the adapted meshes for DG0 and DG1 calculations (quad).

Figure 29 :

 29 Figure 29: Refined cells from mesh4 with DG1 to mesh7 with DG0 (quad).

Figure 30 :

 30 Figure 30: Isovalues of Mach number (quad).

Figure 31 :

 31 Figure 31: Density cutline along the axis of symmetry -In red DG1-Mesh4 -In black DG0-Mesh7 (quad).

  

  

  

Table 2 :

 2 Successive adaptive meshes -Cylinder test case

	DG0	Mesh0 Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 Mesh6 Mesh7
	Cells	104	242	539	1190	2480	5783	13889 27758
	Points	68	161	330	711	1438	3323	7895	15400
	DG1	Mesh0 Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 Mesh6	
	Cells	104	236	485	1100	2228	5213	12128	
	Points	68	159	293	659	1299	3005	6881	

Table 3 :

 3 Successive adaptive meshes -Cylinder test case

	DG0	Mesh0 Mesh1 Mesh2 Mesh3
	Cells	1680	3162	6570	14292
	Points	1764	3368	7035	15236
	DG1	Mesh0 Mesh1 Mesh2 Mesh3
	Cells	1680	3132	6444	13611
	Points	1764	3327	6905	14500
	Quadrangular meshes with DG0 and DG1.
	with DG1 and DG0. The pressure distribution is shown in Figures 21 (a

Table 2

 2 

	), only 6570 and 3132 cells are

Table 4 :

 4 Successive

				adaptive meshes -Scramjet test case
	DG0	Mesh0 Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 Mesh6 Mesh7
	Cells	912	1482	2793	5961	11235 22503	45702 90756
	Points	552	933	1723	3540	6459	12708	25727 50549
	DG1	Mesh0 Mesh1 Mesh2 Mesh3 Mesh4 Mesh5	
	Cells	912	1476	2667	5679	11112 21621	
	Points	552	942	1639	3361	6456	12368	
				Triangular meshes with DG0 and DG1.	

Table 5 :

 5 Successive

				adaptive meshes -Scramjet test case
	DG0	Mesh0 Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 Mesh6 Mesh7
	Cells	1040	1994	3674	6782	12824 23708	45074 84653
	Points	1175	2284	4151	7571	14219 25768	48774 90948
	DG1	Mesh0 Mesh1 Mesh2 Mesh3 Mesh4	
	Cells	1040	1769	2747	4361	6518	
	Points	1175	2095	3266	5247	7703	
			Quadrangular meshes with DG0 and DG1.	

contain 84653 and 6518 cells. The axial cutlines of the density in Figure
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Implicit method and slope limiter in AHMR procedure for high order discontinuous Galerkin methods for compressible flows

Numerical experiments

Numerical results are presented with the implicit time scheme combined with the limiting procedure to show the robustness and the accuracy of the solutions for 5 test cases ranging from subsonic to supersonic flows : Shock-tube, NACA0012, Ramp, Cylinder and Scramjet. The last two cases will be run with the adaptive mesh refinement procedure (AHMR) on both triangular and quadrilateral mesh for comparison.

Through these numerical experiments particular attention is paid to some relevant aspects of numerical simulations such as :

• spacial interpolation, comparing the accuracy of the DG scheme at high order when using the slope limiter (all the test cases),

• time integration, comparing the explicit and the implicit schemes in term of precision and mesh resolution ( Shock-tube and Ramp test cases),

• robustness of the slope limiter, testing the slope limiter for transsonic flow with various shock waves magnitudes (NACA0012 test case),

• geometry type of mesh, comparing the solutions obtained while dealing with quadrangular and triangular type of mesh in an adaptive mesh refinement (AHMR) procedure (Cylinder and Scramjet test cases). The AHMR process combined with high order schemes with limiting procedure give good results in capturing the discontinuities and others sensitive features of the flow in the computational domains. However, some significant differences appear depending on the type of mesh in comparing results on triangular and quadrangular meshes.