

Brønsted Acid-Catalyzed Carbocyclization of 2-Alkynyl Biaryls

Julien Gicquiaud, Antoine Hacihasanoğlu, Philippe Hermange, Jean-Marc Sotiropoulos, Patrick Y. Toullec

▶ To cite this version:

Julien Gicquiaud, Antoine Hacihasanoğlu, Philippe Hermange, Jean-Marc Sotiropoulos, Patrick Y. Toullec. Brønsted Acid-Catalyzed Carbocyclization of 2-Alkynyl Biaryls. Advanced Synthesis and Catalysis, 2019, 361 (9), pp.2025-2030. 10.1002/adsc.201801526 . hal-02093077

HAL Id: hal-02093077 https://univ-pau.hal.science/hal-02093077

Submitted on 16 Nov 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PURE VACUUM. NOTHING ELSE.

10-3 mbar vacuum range

- + 100% oil-free
- + Chemically resistant
- + No wear parts

Learn more

VACUU·PURE®

www.vacuubrand.com/vacuu-pure

Brønsted Acid-Catalyzed Carbocyclization of 2-Alkynyl Biaryls

Julien Gicquiaud,^a Antoine Hacıhasanoğlu,^a Philippe Hermange,^a Jean-Marc Sotiropoulos,^b and Patrick Y. Toullec^{a,*}

^a University of Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France E-mail: patrick.toullec@u-bordeaux.fr

^b CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 avenue du Président Angot, 64053 Pau Cedex 09, France

Manuscript received: November 12, 2018; Revised manuscript received: February 18, 2019; Version of record online: March 22, 2019

Supporting information for this article is available on the WWW under https://doi.org/10.1002/adsc.201801526

Abstract: Ortho-alkynyl biaryls react in the presence of catalytic amount of Brønsted acids to give phenanthrenes in high yields under mild conditions. The activity and selectivity of this transformation are governed by the substitution pattern of the diarylalkyne moiety. Selectivity shifts are observed between the carbophilic Lewis and Brønsted acidcatalyzed cycloisomerization involving alkyne activation.

Keywords: Alkynes; Brønsted acid catalysis; Phenanthrenes; Electrophilic activation; Cycloisomerization

The 6-endo cycloisomerization of 2-alkynylbiphenyl represents one of the most straightforward methodology to access the phenanthrene core via an atomeconomical route. Such intramolecular hydroarylation reactions have been thoroughly investigated via a large set of reactions conditions, reagents or catalysts.^[1] The transformation of the parent substrate proceeds by thermal activation (700 °C), to deliver quantitatively a mixture of phenanthrene and benzazulene (scheme 1, eq. 1).^[2] This reaction has also been achieved via an oxidative radical cyclization^[3] in the presence of the Bu₃SnH/AIBN couple of reagents in toluene at reflux, followed by a protodestannylation in the presence of HCl (scheme 1, eq. 2). Metal-catalyzed cycloisomerizations of 2-alkynylbiaryls were extensively studied since the seminal work of the group of Fürstner.^[4] Two competitive pathways involving either (i) a metal vinylidene intermediate^[5] or (*ii*) carbophilic π -activation of the alkyne^[6] have been proposed to explain the reactivity observed with the different transition metals (scheme 1, eq. 3). Regioselectivity of the cycloisomerization represents a major issue as dibenzofulvenes,

resulting from a *5-exo* hydroarylation, were often observed as side products.

To date, significant catalytic activities have been obtained in the presence of metal salts or complexes obtained from the following elements: $Pt_{,}^{[4,7]}Au_{,}^{[4,8]}$ In,^[4] Ga,^[4] W,^[5b] Ru,^[5a,9] Pd,^[10] Nd,^[11] Cu,^[12] Ag,^[13] Fe,^[14] and Al.^[15] In most studies, metal catalysts only operate at high temperatures (from 80 to 120°C) with catalyst loadings ranging from 5 to 20 mol%. Stoichiometric amounts of electrophilic iodination reagents or excess Brønsted acids have also been reported as efficient mediators for this cycloisomerization of 2alkynylbiaryls, following the early investigation of the group of Swager^[16] on the use of main group electro-philes in these transformations^[17] (scheme 1, eq. 4). Over the years, this methodology showed its versatility and allowed the synthesis of a variety of polycyclic aromatic hydrocarbon skeletons.^[18] The phenanthrene moiety is also present in a large array of biologically active molecules^[19] and in materials possessing electronic and optic properties.^[16,20] Nevertheless, the use of a catalytic amount of Brønsted acid in this transformation was overlooked.^[21] Considering the working hypothesis that some of the metal-catalyzed reactions may indeed proceed under hidden Brønsted acid catalysis,^[22] we decided to engage in the study of the cycloisomerization of 2-alkynylbiaryls in the presence of Brønsted acid catalysts in order to assess the synthetic utility of this metal-free strategy.

As a model experiment, the cyclization of **1** a was engaged at room temperature in the presence of various Brønsted acids (Table 1). Using 5 mol% of trifluoromethanesulfonic acid^[23] (TfOH) in dichloromethane, the obtention of phenanthrene **2** a in a quantitative yield was observed after 2 h at room temperature. Full conversion was also observed with 5 mol% of bis (trifluoromethane-sulfonyl)amine (Tf₂NH) whereas 73% of conversion was obtained with 4-nitrobenzenesulfonic acid **3** after 70 h of reaction (table 1,

```
Adv. Synth. Catal. 2019, 361, 2025-2030 Wiley Online Library
```

2025

Scheme 1. Strategies for ortho-alkynylbiaryls cycloisomerization reactions.

1	a	OMe	x mol% solvent,	BA cat. time, rt	2a	OMe
Entry	Cat.	Cat.	Solvent	Time	Conv. ^[b]	Yield ^[c]
_		loading		(h)	(%)	(%)
1	TfOH	5	CH_2Cl_2	2	100	99
2	Tf ₂ NH	5	CH_2Cl_2	70	100	99
3	3 ^[d]	5	CH_2Cl_2	70	73	n. i.
4	HCl	5	CH_2Cl_2	70	0	_
5 ^[e]	TfOH	0.1	CH_2Cl_2	15	100	89
6 ^[e]	TfOH	0.01	CH_2Cl_2	16	19	n. i.
7	Tf ₂ NH	0.1	CH_2Cl_2	15	27	n. i.
8	TfOH	5	CHCl ₃	24	100	99
9	TfOH	5	toluene	24	100	99
10	TfOH	5	$C_{6}H_{12}$	24	100	80
11	TfOH	5	CH ₃ CN	24	100	99
12	TfOH	5	Et ₂ O	24	0	-
13	AgOTf/ <i>t</i> BuCl	1/4	CH ₂ Cl ₂	4	80	n. i.

 Table 1. Optimization of reaction conditions.^[a]

^[a] Reaction run on 0.1 mmol of **1 a** in 2 mL of solvent.

^[b] Determined by ¹H NMR analysis of the crude mixture.

^[c] Isolated yields after column chromatography on silica gel.

^[d] **3**: 4-nitrobenzenesulfonic acid.

[e] Reaction run using 5 mmol of 1 a in 20 mL of solvent. n. i.: not isolated. entries 2-3). Finally, no reaction was observed employing HCl as a catalyst (table 1, entry 4). Thus, TfOH was selected and the influence of the catalyst loading was further investigated. Full conversion and an isolated yield of 89% of 2a was obtained using 0.1 mol% of this catalyst after 70 h, whereas 19% of conversion was observed using 0.01 mol% of TfOH after the same time, corresponding to a turnover number of 1900 (table 1, entries 5-6). Surprisingly, at low catalysts loadings, Tf₂NH, the strongest Brønsted acid, turned out to exhibit a lower activity (table 1, entry 7). Solvent effect was studied fixing the reaction time to 24 h: the reaction took place with full conversion in CHCl₃, toluene, cyclohexane and MeCN (table 1, entries 8–11). In contrast, total inhibition of the acid catalysis was observed in diethyl ether (table 1. entry 12). Using the procedure of Hintermann^[22c] for the *in situ* formation of triflic acid from AgOTf and tert-BuCl in a 1:4 ratio, a good conversion was also observed (table 1, entry 13 vs 5).

Having these optimized conditions in hands, we decided to investigate the scope and limitations of this transformation (scheme 2). The reaction accommodated a variety of electron-donating groups on the distal aromatic ring (2 c-h), but also worked with a phenvl substituent 2b. The reaction proceeded with a modest 44% yield in the case of the 4-dimethylaminophenyl substituent under forcing conditions (2i), but failed with the free amino group (1n). The reaction also proceeded for substrate 1 j bearing a fluorine atom on the para position of the terminal phenyl ring. In contrast to the results obtained with aromatic rings bearing electron-donating substituents, no reactivity could be monitored with the para-nitro substrate (10). Regarding the nucleophilic aromatic ring, electron-rich anisole derivatives gave excellent yields (2k-l) whereas electron-poor benzonitrile-containing substrate 2 m required harsher reaction conditions (80 °C). Terminal alkynes and silyl-substituted substrates 1p and 1q exhibited no reactivity under these mild conditions.

The catalytic conditions were also not compatible with the presence of an alkyl substituent on the terminal position of the substrate (see substrate 1r for example). In contrast, a substrate possessing an internal alkyl substituent cleanly cyclized to deliver the corresponding 2*H*-chromene 2s in good yield.

The chemoselectivity observed for these transformations was excellent and favors exclusively the aromatic carbon nucleophile over O-nucleophiles. For example, the formation of phenanthrene **2f** from substrate **1f** occurred selectively by a 6-*endo* cyclization involving the aromatic ring (scheme 3, eq. 1). As the group of Alami^[24] previously showed that tolane substrates bearing a 2-methoxy substituent could cleanly cyclize to give benzofuran products in good yields in the presence of a stoichiometric amount of *para*-toluenesulfonic acid (PTSA) in ethanol at 130 °C

^[a] Reaction conditions: 0.1 mmol of substrate and 5 mol% of TfOH in CH₂Cl₂ (0.05 M). Isolated yield after column chromatography on silica gel. ^[b] 20 mol% of TfOH used.^[c] Reaction run at 80°C in (CH₂Cl)₂ (0.05 M). *r.r.* regiomeric ratio.

Scheme 2. Scope of the Brønsted acid-catalyzed phenanthrene synthesis.^[a]

under microwave irradiation, we treated substrate 1funder these conditions and observed the formation of a mixture of the phenanthrene 2f and benzofuran 5resulting from the C- and O-nucleophile attack on the alkyne in a 77:23 ratio with a moderate conversion (scheme 3, eq. 2). More interestingly, when the free *ortho*-phenol substrate 1t was reacted in presence of 5 mol% of TfOH, this alkyne was also cleanly transformed to the phenanthrene 2t in 94% yield (scheme 3, eq. 3). This result under Brønsted acid catalysis was in sharp contrast when compared to the previously

asc.wiley-vch.de

Scheme 3. Chemo- and regioselectivity of the Brønsted acid catalysed cyclization.

described metal-catalysed cyclizations.^[25] Indeed, when treated with 20 mol% PtCl₂ at 80 °C in toluene for 19 h, 1t exclusively furnished the corresponding benzofuran 5 (99% yield, scheme 3, eq. 4). To continue the comparison with the carbophilic Lewis acid cyclization of alkynylbiphenyls, we prepared the substrate 1 u used by Fürstner in his study of the transition metal-catalyzed synthesis of phenanthrenes.^[4a] In the presence of 5 mol% PtCl₂ in toluene at 100 °C for 24 h, this derivative was reported to cyclize to deliver a mixture of the phenanthrene 2 u and the dibenzofulvene 6 in 87% yield and 60/40 regioisomeric ratio, resulting from a 6-endo and 5-exo cyclization respectively (scheme 3, eq. 5). Remarkably, in the presence of catalytic TfOH, the product was obtained in 91% yield as an unseparable mixture of 2 u and **6** in a 95/5 ratio.

To further compare the activity of PtCl₂ and TfOH catalysts, the kinetics of the transformation from **1a** to **2a** (0.05 M) was recorded (Figure 1). With TfOH, the initial reaction rate was found to be of $1.23 \ 10^{-3} \text{ mol L}^{-1} \text{ min}^{-1}$ at room temperature, whereas in the presence of PtCl₂ at 80 °C, the reaction rate was only of 1.2 10 ⁻⁵ mol L⁻¹ min⁻¹. Thus, with a difference of two orders

Adv. Synth. Catal. 2019, 361, 2025-2030 Wiley Online Library

asc.wiley-vch.de

Figure 1. Reaction profile of the cyclization of 1a to 2a catalyzed by TfOH and PtCl₂.

of magnitude without taking in account the temperature effect, the TfOH catalytic system revealed to be much more active than the $PtCl_2$ one.

Such observations go against the accepted view that carbophilic Lewis acids require softer reactions conditions and exhibit higher selectivities than Brønsted ones. In the case of 1,2-diarylalkynes substrates with carbophilic acids such as Pt, the formation of a π complex A between the metal fragment and the carbon unsaturation is observed (scheme 4). The polarisability

Scheme 4. Mechanistic rationale.

of these Lewis acids induces a slippage of the metal fragment occurring reversibly on both ends of the C–C triple bond. The consecutive nucleophilic attack might therefore take places on both sites leading to a mixture of vinyl metal isomers **B** and **C**. Finally, protodemetallation completes the catalytic cycle and gives **D** and **E**.^[6] This situation implies that depending on the stability of the final products, the use of these catalysts may lead to the selective formation of the *anti*

Markovnikov product, as observed with 1t and PtCl₂ (Scheme 3, eq. 4). On the other hand, the substitution pattern of the aryl groups, i.e. the presence of electrondonating groups, polarizes the C-C triple bond and thus induces its selective reaction with a proton delivering the vinyl carbocation F.^[26,27] Trapping of this cationic intermediate with a nucleophile would deliver product **D**, i.e resulting from a 6-endo cyclization for 2-alkynylbiaryls substrates. For example, DFT calculations of vinyl cations F and F' revealed that intermediate F is more stable by 4.86 kcal/mol in the case of 1u (see supporting information for details). These results explain that the 6-endo cyclization, corresponding to a Markovnikov addition, is strongly favored whereas the 5-exo cyclization hardly takes place in the Brønsted acidcatalyzed intramolecular arylation of diarylalkynes under these mild reaction conditions.

In conclusion, a mild and selective protocol for the synthesis of phenanthrenes from 2-biarylarylalkynes has been developed based on the use of catalytic amounts of Brønsted acids. This transformation occurs with high activity under very mild reaction conditions. The selectivity of the cyclization event is governed by the substitution pattern of the aromatic rings linked to the alkyne. These results point towards the necessity to revisit the involvement of Brønsted acid catalysis in metal-catalyzed cycloisomerization transformations involving alkyne activation and pave the way for the development of synthetic methodologies using Brønsted acid catalysis.

Experimental Section

General Procedure for the Brønsted Acid-catalyzed 2-alkynylbiaryls Cycloisomerization

To a solution of 2-(arylethynyl)biphenyl **1** (0.1 mmol, 1 equiv.) in dichloromethane (1.5 mL) was added 0.5 mL of a solution of trifluoromethanesulfonic acid in CH_2Cl_2 ($C=10^{-2}$ molL⁻¹). The resulting mixture was stirred at room temperature. After completion of the reaction as checked by TLC, the mixture was quenched with an aqueous saturated solution of NaHCO₃ (2 mL) and extracted three times with DCM. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under vacuum to give product **2**.

CCDC-1828671 contains the supplementary crystallographic data for compound 2h. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

This work was supported by the Centre National e la Recherche Scientifique (CNRS) and the Ministère de l'Enseignement Supérieur et de la Recherche. J. G. acknowledges the Ministère

2028

de l'Enseignement Supérieur et de la Recherche for a PhD grant.

References

- [1] I. V. Alabugin, E. Gonzalez-Rodriguez, Acc. Chem. Res. 2018, 51, 1206.
- [2] a) R. F. C. Brown, K. J. Harrington, G. L. McMullen, J. Chem. Soc. Chem. Commun. 1974, 123; b) R. F. C. Brown, F. W. Eastwood, K. J. Harrington, G. L. McMullen, Aust. J. Chem. 1974, 27, 2391.
- [3] K. Pati, C. Michas, D. Allenger, I. Piskun, P. S. Coutros, G. dos Passos Gomez, I. V. Alabugin, J. Org. Chem. 2015, 80, 11706.
- [4] a) A. Fürstner, V. Mamane, J. Org. Chem. 2002, 67, 6264; b) A. Fürstner, V. Mamane, Chem. Commun. 2003, 2112; c) A. Fürstner, P. Hannen, V. Mamane, Chem. Eur. J. 2004, 10, 4556; d) A. Fürstner, J. W. J. Kennedy, Chem. Eur. J. 2006, 12, 7398.
- [5] a) C. A. Merlic, M. E. Pauly, J. Am. Chem. Soc. 1996, 118, 11319; b) K. Maeyama, N. Iwasawa, J. Org. Chem. 1999, 64, 1344.
- [6] For selected reviews on carbophilic Lewis acid activation, see: a) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410; Angew. Chem. 2007, 119, 3478b) B. L. Simmons and H. C. Shen, in Gold Catalysis An Homogeneous Approach, (Eds.: F. D. Toste, V. Michelet), Imperial College Press, London, 2014, 87; c) P. Y. Toullec, V. Michelet, Top. Curr. Chem. 2011, 302, 31.
- [7] For selected examples of Pt-catalyzed cycloisomerization of 2-alkynylbiaryls, see: a) J. Storch, J. Sykora, J. Čermák, J. Karban, I. Císařová, A. Růžiĉka, J. Org. Chem. 2009, 74, 3090; b) T.-A. Chen, R.-S. Liu, Chem. Eur. J. 2011, 17, 8023; c) J. Carreras, M. Patil, W. Thiel, M. Alcazaro, J. Am. Chem. Soc. 2012, 134, 16753; d) H. Oyama, K. Nakano, T. Harada, R. Kuroda, M. Naito, K. Nobusawa, K. Nozaki, Org. Lett. 2013, 15, 2104.
- [8] For selected examples of Au-catalyzed cycloisomerization of 2-alkynylbiaryls, see: a) T. Matsuda, T. Moriya, T. Goya, M. Murakami, *Chem. Lett.* 2011, 40, 40; b) T. Nakae, R. Ohnishi, Y. Kitahata, T. Soukawa, H. Sato, S. Mori, T. Okujima, H. Uno, H. Sakagushi, *Tetrahedron Lett.* 2012, 53, 1617; c) P. M. Byers, J. I. Rashid, R. K. Mohamed, I. V. Alabugin, *Org. Lett.* 2012, 14, 6032; d) O. V. Zatolochnaya, V. Gevorgyan, *Org. Lett.* 2013, 15, 2562; e) J. Carreras, G. Gopakumar, L. Gu, P. Linowski, J. Petuškova, W. Thiel, M. Alcazaro, *J. Am. Chem. Soc.* 2013, 135, 18815.
- [9] For selected examples of Ru-catalyzed cycloisomerization of 2-alkynylbiaryls and related substrates, see:
 a) P. M. Donovan, L. T. Scott, J. Am. Chem. Soc. 2004, 126, 3108; b) H.-C. Shen, J.-M. Tang, H.-K. Chang, C.-W. Yang, R.-S. Liu, J. Org. Chem. 2005, 70, 10113; c) Y. Yamamoto, K. Matsui, M. Shibuya, Chem. Eur. J. 2015, 21, 7245.
- [10] N. Kadoya, M. Murai, M. Ishiguro, J. Uenishi, M. Uemura, *Tetrahedron Lett.* 2013, 54, 512.

- [11] D. Xu, R. Jin, W. Liu, F. Ba, Y. Li, A. Ding, H. Guo, *Tetrahedron Lett.* 2016, 57, 3235.
- [12] a) Y.-L. Wang, W.-M. Zhang, J.-J. Dai, Y.-S. Feng, H.-J. Xu, *RSC Adv.* 2014, *4*, 61706; b) R. Jin, Y. Chen, W. Liu, D. Xu, Y. Li, A. Ding, H. Guo, *Chem. Commun.* 2016, *52*, 9909; c) R. Jin, J. Chen, Y. Chen, W. Liu, D. Xu, Y. Li, A. Ding, H. Guo, *J. Org. Chem.* 2016, *81*, 12553.
- [13] R. K. Saunthwal, A. K. Danodia, K. Mohan Saini, A. K. Verma, Org. Biomol. Chem. 2017, 15, 6934.
- [14] K. Komeyama, R. Igawa, K. Takaki, Chem. Commun. 2010, 46, 1748.
- [15] Y. Li, Y. Wang, D. Xu, R. Jin, G. Gu, H. Guo, Synlett 2017, 28, 2159.
- [16] M. B. Goldfinger, K. B. Crawford, T. M. Swager, J. Am. Chem. Soc. 1997, 119, 4578.
- [17] For a recent example of iodonium-initiated synthesis of extended helicenes structures, see: R. K. Mohamed, S. Mondal, J. V. Guerrera, T. M. Eaton, T. E. Albrecht-Schmitt, M. Shatruk, I. V. Alabugin, *Angew. Chem. Int. Ed.* 2016, *55*, 12054; *Angew. Chem.* 2016, *128*, 12233.
- [18] For selected examples of Brønsted-mediated cycloisomerization of 2-alkynylbiaryls, see: a) A. Mukherjee, K. Pati, R.-S. Liu, J. Org. Chem. 2009, 74, 6311; b) W. Yang, A. Lucotti, M. Tommasini, W. A. Chalifoux, J. Am. Chem. Soc. 2016, 138, 9137; c) W. Yang, J. H. S. K. Monteiro, A. de Bettencourt-Dias, V. J. Catalano, W. A. Chalifoux, Angew. Chem. Int. Ed. 2016, 55, 10427; Angew. Chem. 2016, 128, 10583;d) W. Yang, W. A. Chalifoux, Synlett 2017, 28, 625.
- [19] For a recent example, see: S. Song, X. Li, J. Guo, C. Hao, Y. Feng, B. Guo, T. Liu, Q. Zhang, Z. Zhang, R. Li, J. Wang, B. Lin, F. Li, D. Zhao, M. Cheng, *Org. Biomol. Chem.* 2015, 13, 3803.
- [20] a) J. E. Anthony, Chem. Rev. 2006, 106, 5028; b) J. Wu,
 W. Pisula, K. Müllen, Chem. Rev. 2007, 107, 718; c) L.
 Chen, Y. Hernandez, X. Feng, K. Müllen, Angew. Chem.
 Int. Ed. 2012, 51, 7640; Angew. Chem. 2012, 124, 7758.
- [21] During the preparation of this manuscript, a procedure involving the use of 50 mol% TfOH in anisole at 100 °C was reported for the cycloisomerization of 2-alkynylbirayls, see: J. Zhang, S. Li, Y. Qiao, C. Peng, X.-N. Wang, J. Chang, *Chem. Commun.* **2018**, *54*, 12455.
- [22] a) D. C. Rosenfeld, S. Shekhar, A. Takemiya, M. Utsunomiya, J. F. Hartwig, Org. Lett. 2006, 8, 4179;
 b) M. J.-L. Tschan, C. M. Thomas, H. Strub, J.-F. Carpentier, Adv. Synth. Catal. 2009, 351, 2496; c) T. T. Dhang, F. Boeck, L. Hintermann, J. Org. Chem. 2011, 76, 9353; d) I. Šolić, H. X. Lin, R. W. Bates, Tetrahedron Lett. 2018, 59, 4434.
- [23] To obtain reproducible results, trifluoromethanesulfonic acid is used as a freshly prepared dichloromethane solution (10^{-2} M) sonicated before use.
- [24] M. Jacubert, O. Provot, J.-F. Peyrat, A. Hamze, J.-D. Brion, M. Alami, *Tetrahedron* 2010, 66, 3775.
- [25] For a seminal example of Pt-catalyzed cycloisomerization of 2-alkynylphenols to benzofurans, see: A. Fürstner, P. W. Davies, J. Am. Chem. Soc. 2005, 127, 15024.

- [26] For a seminal contribution on the formation of vinyl cations by protonation of alkynes, see: G. A. Olah, H. Mayr, J. Am. Chem. Soc. 1975, 98, 7333.
- [27] For selected examples, see: a) T. Tsuchimoto, T. Joya, E. Shirakawa, Y. Kawakami, *Synlett* 2000, *11*, 1777; b) G. Le Bras, A. Hamze, S. Messaoudi, O. Provot, P.-B. Le

Calvez, J.-D. Brion, M. Alami, *Synthesis* **2008**, 1607; c) D. Kaiser, L. F. Veiros, N. Maulide, *Chem. Eur. J.* **2016**, *22*, 4727; d) M. Shibuya, S. Fujita, M. Abe, Y. Yamamoto, *ACS Catal.* **2017**, *7*, 2848.