Brønsted Acid-Catalyzed Carbocyclization of 2-Alkynyl Biaryls

Julien Gicquiaud, Antoine Hacihasanoğlu, Philippe Hermange, Jean-Marc Sotiropoulos, Patrick Y. Toullec

To cite this version:

HAL Id: hal-02093077
https://univ-pau.hal.science/hal-02093077
Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PURE VACUUM. NOTHING ELSE.

NEW

10^{-3} mbar vacuum range
+ 100% oil-free
+ Chemically resistant
+ No wear parts

VACUU·PURE®

Learn more

www.vacuubrand.com/vacuu-pure
Supporting information for this article is available on the WWW under https://doi.org/10.1002/adsc.201801526

Brønsted Acid-Catalyzed Carbocyclization of 2-Alkynyl Biaryls

Julien Gicquiaud, a Antoine Hachhasanoğlu, a Philippe Hermange, a Jean-Marc Sotiropoulos, b and Patrick Y. Toullec a,*

a University of Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
E-mail: patrick.toullec@u-bordeaux.fr
b CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-Chimie pour l‘Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 avenue du Président Angot, 64053 Pau Cedex 09, France

Manuscript received: November 12, 2018; Revised manuscript received: February 18, 2019; Version of record online: March 22, 2019

Supporting information for this article is available on the WWW under https://doi.org/10.1002/adsc.201801526

Abstract: Ortho-alkynyl biaryls react in the presence of catalytic amount of Brønsted acids to give phenanthrenes in high yields under mild conditions. The activity and selectivity of this transformation are governed by the substitution pattern of the diarylalkyne moiety. Selectivity shifts are observed between the carbophilic Lewis and Brønsted acid-catalyzed cycloisomerization involving alkyne activation.

Keywords: Alkynes; Brønsted acid catalysis; Phenanthrenes; Electrophilic activation; Cycloisomerization

The 6-endo cycloisomerization of 2-alkynylbiphenyl represents one of the most straightforward methodology to access the phenanthrene core via an atom-economical route. Such intramolecular hydroarylation reactions have been thoroughly investigated via a large set of reactions conditions, reagents or catalysts. The transformation of the parent substrate proceeds by thermal activation (700 °C), to deliver quantitatively a mixture of phenanthrene and benzazulene (scheme 1, eq. 1). This reaction has also been achieved via an oxidative radical cyclization in the presence of the Bu3SnH/AIBN couple of reagents in toluene at reflux, followed by a protodestannylation in the presence of HCl (scheme 1, eq. 2). Metal-catalyzed cycloisomerizations of 2-alkynylbiaryls were extensively studied since the seminal work of the group of Fürstner. Two competitive pathways involving either (i) a metal vinylidene intermediate or (ii) carbophilic π-activation of the alkyne have been proposed to explain the reactivity observed with the different transition metals (scheme 1, eq. 3). Regioselectivity of the cycloisomerization represents a major issue as dibenzofulvenes, resulting from a 5-exo hydroarylation, were often observed as side products.

To date, significant catalytic activities have been obtained in the presence of metal salts or complexes obtained from the following elements: Pt, Au, In, Ga, W, Ru, Pd, Nd, Cu, Ag, Fe, and Al. In most studies, metal catalysts only operate at high temperatures (from 80 to 120 °C) with catalyst loadings ranging from 5 to 20 mol%. Stoichiometric amounts of electrophilic iodonation reagents or excess Brønsted acids have also been reported as efficient mediators for this cycloisomerization of 2-alkynylbiaryls, following the early investigation of the group of Swager on the use of main group electrophiles in these transformations (scheme 1, eq. 4). Over the years, this methodology showed its versatility and allowed the synthesis of a variety of polycyclic aromatic hydrocarbon skeletons. The phenanthrene moiety is also present in a large array of biologically active molecules and in materials possessing electronic and optic properties. Nevertheless, the use of a catalytic amount of Brønsted acid in this transformation was overlooked. Considering the working hypothesis that some of the metal-catalyzed reactions may indeed proceed under hidden Brønsted acid catalysis, we decided to engage in the study of the cycloisomerization of 2-alkynylbiaryls in the presence of Brønsted acid catalysts in order to assess the synthetic utility of this metal-free strategy.

As a model experiment, the cyclization of 1a was engaged at room temperature in the presence of various Bronsted acids (Table 1). Using 5 mol% of trifluoromethanesulfonic acid (TfOH) in dichloromethane, the obtention of phenanthrene 2a in a quantitative yield was observed after 2 h at room temperature. Full conversion was also observed with 5 mol% of bis (trifluoromethane-sulfonyl)amine (Ts2NH) whereas 73% of conversion was obtained with 4-nitrobenzenesulfonic acid 3 after 70 h of reaction (table 1,
entries 2–3). Finally, no reaction was observed employing HCl as a catalyst (table 1, entry 4). Thus, TfOH was selected and the influence of the catalyst loading was further investigated. Full conversion and an isolated yield of 89% of 2a was obtained using 0.1 mol% of this catalyst after 70 h, whereas 19% of conversion was observed using 0.01 mol% of TfOH after the same time, corresponding to a turnover number of 1900 (table 1, entries 5–6). Surprisingly, at low catalysts loadings, Tf$_2$NHH, the strongest Brønsted acid, turned out to exhibit a lower activity (table 1, entry 7). Solvent effect was studied fixing the reaction time to 24 h: the reaction took place with full conversion in CHCl$_3$, toluene, cyclohexane and MeCN (table 1, entries 8–11). In contrast, total inhibition of the acid catalysis was observed in diethyl ether (table 1, entry 12). Using the procedure of Hintermann$^{[22c]}$ for the in situ formation of triflic acid from AgOTf and tert-BuCl in a 1:4 ratio, a good conversion was also observed (table 1, entry 13 vs 5).

Having these optimized conditions in hands, we decided to investigate the scope and limitations of this transformation (scheme 2). The reaction accommodated a variety of electron-donating groups on the distal aromatic ring (2c–h), but also worked with a phenyl substituent 2b. The reaction proceeded with a modest 44% yield in the case of the 4-dimethylaminophenyl substituent under forcing conditions (2i), but failed with the free amino group (1n). The reaction also proceeded for substrate 1j bearing a fluorine atom on the para position of the terminal phenyl ring. In contrast to the results obtained with aromatic rings bearing electron-withdrawing substituents, no reactivity could be monitored with the para-nitro substrate (1o). Regarding the nucleophilic aromatic ring, electron-rich anisole derivatives gave excellent yields (2k–l) whereas electron-poor benzonitrile-containing substrate 2m required harsher reaction conditions (80°C). Terminal alkynes and silyl-substituted substrates 1p and 1q exhibited no reactivity under these mild conditions.

The catalytic conditions were also not compatible with the presence of an alky substituent on the terminal position of the substrate (see substrate 1r for example). In contrast, a substrate possessing an internal alkyl substituent cleanly cyclized to deliver the corresponding 2H-chromene 2s in good yield.

The chemoselectivity observed for these transformations was excellent and favors exclusively the aromatic carbon nucleophile over O-nucleophiles. For example, the formation of phenanthrene 2f from substrate 1f occurred selectively by a 6-endo cyclization involving the aromatic ring (scheme 3, eq. 1). As the group of Alami$^{[24]}$ previously showed that tolane substrates bearing a 2-methoxy substituent could cleanly cyclize to give benzofuran products in good yields in the presence of a stoichiometric amount of para-toluenesulfonic acid (PTSA) in ethanol at 130°C

Table 1. Optimization of reaction conditions.$^{[a]}

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cat.</th>
<th>Cat. loading</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Conv.$^{(b)}$</th>
<th>Yield$^{(c)}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TIOH</td>
<td>5</td>
<td>CHCl$_3$</td>
<td>2</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>T$_2$NH</td>
<td>5</td>
<td>CHCl$_3$</td>
<td>70</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>3$^{[d]}$</td>
<td>5</td>
<td>CHCl$_3$</td>
<td>70</td>
<td>73</td>
<td>n. i.</td>
</tr>
<tr>
<td>4</td>
<td>HCl</td>
<td>5</td>
<td>CHCl$_3$</td>
<td>70</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>5$^{[e]}$</td>
<td>TIOH</td>
<td>0.1</td>
<td>CHCl$_3$</td>
<td>15</td>
<td>100</td>
<td>89</td>
</tr>
<tr>
<td>6$^{[e]}$</td>
<td>TIOH</td>
<td>0.01</td>
<td>CHCl$_3$</td>
<td>16</td>
<td>19</td>
<td>n. i.</td>
</tr>
<tr>
<td>7</td>
<td>T$_2$NH</td>
<td>0.1</td>
<td>CHCl$_3$</td>
<td>15</td>
<td>27</td>
<td>n. i.</td>
</tr>
<tr>
<td>8</td>
<td>TIOH</td>
<td>5</td>
<td>CHCl$_3$</td>
<td>24</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>9</td>
<td>TIOH</td>
<td>5</td>
<td>toluene</td>
<td>24</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>TIOH</td>
<td>5</td>
<td>C$_2$H$_5$</td>
<td>24</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>TIOH</td>
<td>5</td>
<td>CHCN</td>
<td>24</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>12</td>
<td>TIOH</td>
<td>5</td>
<td>EtO</td>
<td>24</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>AgOTf</td>
<td>tBuCl</td>
<td>CHCl$_3$</td>
<td>4</td>
<td>80</td>
<td>n. i.</td>
</tr>
</tbody>
</table>

$^{[a]}$ Reaction run on 0.1 mmol of 1a in 2 mL of solvent.
$^{[b]}$ Determined by 1H NMR analysis of the crude mixture.
$^{[c]}$ Isolated yields after column chromatography on silica gel.
$^{[d]}$ 3: 4-nitrobenzenesulfonic acid.
$^{[e]}$ Reaction run using 5 mmol of 1a in 20 mL of solvent. n. i.: not isolated.
under microwave irradiation, we treated substrate \(\text{1f} \) under these conditions and observed the formation of a mixture of the phenanthrene \(\text{2f} \) and benzofuran \(\text{5} \) resulting from the C- and O-nucleophile attack on the alkyne in a 77:23 ratio with a moderate conversion (scheme 3, eq. 2). More interestingly, when the free ortho-phenol substrate \(\text{1t} \) was reacted in presence of 5 mol% of TIOH in toluene at 100 °C for 24 h, this derivative was reported to cyclize to deliver a mixture of the phenanthrene \(\text{2u} \) and the dibenzofulvene \(\text{6} \) in 87% yield and 60/40 regioisomeric ratio, resulting from a 6-endo and 5-exo cyclization respectively (scheme 3, eq. 5). Remarkably, in the presence of catalytic TIOH, the product was obtained in 91% yield as an unseparable mixture of \(\text{2u} \) and \(\text{6} \) in a 95/5 ratio.

To further compare the activity of PtCl\(_2\) and TfOH catalysts, the kinetics of the transformation from \(\text{1a} \) to \(\text{2a} \) (0.05 M) was recorded (Figure 1). With TIOH, the initial reaction rate was found to be of 1.23 \(\times \) 10\(^{-3}\) mol L\(^{-1}\) min\(^{-1}\) at room temperature, whereas in the presence of PtCl\(_2\) at 80 °C, the reaction rate was only of 1.2 \(\times \) 10\(^{-4}\) mol L\(^{-1}\) min\(^{-1}\). Thus, with a difference of two orders

Scheme 2. Scope of the Brønsted acid-catalyzed phenanthrene synthesis.\([a]\)

\(\text{[a]}\) Reaction conditions: 0.1 mmol of substrate and 5 mol% of TIOH in CH\(_2\)Cl\(_2\) (0.05 M). Isolated yield after column chromatography on silica gel. \(\text{[b]}\) 20 mol% of TIOH used.\(\text{[c]}\) Reaction run at 80°C in (CH\(_2\)Cl\(_2\)) (0.05 M). r.r. regioisomeric ratio.

Scheme 3. Chemo- and regioselectivity of the Brønsted acid catalysed cyclization.

described metal-catalysed cyclizations.\(\text{[25]}\) Indeed, when treated with 20 mol% PtCl\(_2\) at 80°C in toluene for 19 h, \(\text{1t} \) exclusively furnished the corresponding benzofuran \(\text{5} \) (99% yield, scheme 3, eq. 4). To continue the comparison with the carbophilic Lewis acid cyclization of alkynylbiphenyls, we prepared the substrate \(\text{1u} \) used by Fürstner in his study of the transition metal-catalyzed synthesis of phenanthrenes.\(\text{[4a]}\) In the presence of 5 mol% PtCl\(_2\) in toluene at 100 °C for 24 h, this derivative was reported to cyclize to deliver a mixture of the phenanthrene \(\text{2u} \) and the dibenzofulvene \(\text{6} \) in 87% yield and 60/40 regioisomeric ratio, resulting from a 6-endo and 5-exo cyclization respectively (scheme 3, eq. 5). Remarkably, in the presence of catalytic TIOH, the product was obtained in 91% yield as an unseparable mixture of \(\text{2u} \) and \(\text{6} \) in a 95/5 ratio.
of magnitude without taking into account the temperature effect, the TfOH catalytic system revealed to be much more active than the PtCl₂ one.

Such observations go against the accepted view that carbophilic Lewis acids require softer reactions conditions and exhibit higher selectivities than Brønsted ones. In the case of 1,2-diarylalkynes substrates with carbophilic acids such as Pt, the formation of a π complex A between the metal fragment and the carbon unsaturation is observed (scheme 4). The polarisability of these Lewis acids induces a slippage of the metal fragment occurring reversibly on both ends of the C=C triple bond. The consecutive nucleophilic attack might therefore take place on both sites leading to a mixture of vinyl metal isomers B and C. Finally, protodemetalation completes the catalytic cycle and gives D and E.[6] This situation implies that depending on the stability of the final products, the use of these catalysts may lead to the selective formation of the anti Markovnikov product, as observed with 1t and PtCl₂ (Scheme 3, eq. 4). On the other hand, the substitution pattern of the aryl groups, i.e. the presence of electron-donating groups, polarizes the C–C triple bond and thus induces its selective reaction with a proton delivering the vinyl carbocation F.[26,27] Trapping of this cationic intermediate with a nucleophile would deliver product D, i.e resulting from a 6-end cyclization for 2-alkynylbiaryls substrates. For example, DFT calculations of vinyl cations F and F’ revealed that intermediate F is more stable by 4.86 kcal/mol in the case of 1u (see supporting information for details). These results explain that the 6-end cyclization, corresponding to a Markovnikov addition, is strongly favored whereas the 5-exo cyclization hardly takes place in the Brønsted acid-catalyzed intramolecular arylation of diarylalkynes under these mild reaction conditions.

In conclusion, a mild and selective protocol for the synthesis of phenanthrenes from 2-biarylarylalkynes has been developed based on the use of catalytic amounts of Brønsted acids. This transformation occurs with high activity under very mild reaction conditions. The selectivity of the cyclization event is governed by the substitution pattern of the aromatic rings linked to the alkyne. These results point towards the necessity to revisit the involvement of Brønsted acid catalysis in metal-catalyzed cycloisomerization transformations involving alkyne activation and pave the way for the development of synthetic methodologies using Brønsted acid catalysis.

Experimental Section

General Procedure for the Brønsted Acid-catalyzed 2-alkynylbiaryls Cycloisomerization

To a solution of 2-(arylethynyl)biphenyl 1 (0.1 mmol, 1 equiv.) in dichloromethane (1.5 mL) was added 0.5 mL of a solution of trifluoromethanesulfonic acid in CH₂Cl₂ (C = 10⁻² mol L⁻¹). The resulting mixture was stirred at room temperature. After completion of the reaction as checked by TLC, the mixture was quenched with an aqueous saturated solution of NaHCO₃ and extracted three times with DCM. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under vacuum to give product 2.

CCDC-1828671 contains the supplementary crystallographic data for compound 2h. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique (CNRS) and the Ministère de l’Enseignement Supérieur et de la Recherche. J. G. acknowledges the Ministère
References

[21] During the preparation of this manuscript, a procedure involving the use of 50 mol% TfOH in anisole at 100°C was reported for the cycloisomerization of 2-alkynylbiaryls, see: J. Zhang, S. Li, Y. Qiao, C. Peng, X.-N. Wang, J. Chang, Chem. Commun. 2018, 54, 12455.
[23] To obtain reproducible results, trifluoromethanesulfonic acid is used as a freshly prepared dichloromethane solution (10⁻² M) sonicated before use.