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Building Semantic Trees from XML Documents* 
 

Joe Tekli, Nathalie Charbel, and Richard Chbeir 
 

 

Abstract. The distributed nature of the Web, as a decentralized system exchanging information between heterogeneous sources, has underlined the 

need to manage interoperability, i.e., the ability to automatically interpret information in Web documents exchanged between different sources, 

necessary for efficient information management and search applications. In this context, XML was introduced as a data representation standard that 

simplifies the tasks of interoperation and integration among heterogeneous data sources, allowing to represent data in (semi-) structured documents 

consisting of hierarchically nested elements and atomic attributes. However, while XML was shown most effective in exchanging data, i.e., in 

syntactic interoperability, it has been proven limited when it comes to handling semantics, i.e., semantic interoperability, since it only specifies the 

syntactic and structural properties of the data without any further semantic meaning. As a result, XML semantic-aware processing has become a 

motivating challenge in Web data management, requiring dedicated semantic analysis and disambiguation methods to assign well-defined meaning 

to XML elements and attributes. In this context, most existing approaches: i) ignore the problem of identifying ambiguous XML elements/nodes, ii) 

only partially consider their structural relationships/context, iii) use syntactic information in processing XML data regardless of the semantics 

involved, and iv) are static in adopting fixed disambiguation constraints thus limiting user involvement. In this paper, we provide a new XML 

Semantic Disambiguation Framework titled XSDF designed to address each of the above limitations, taking as input: an XML document, and then 

producing as output a semantically augmented XML tree made of unambiguous semantic concepts extracted from a reference machine-readable 

semantic network. XSDF consists of four main modules for: i) linguistic pre-processing of simple/compound XML node labels and values, ii) 

selecting ambiguous XML nodes as targets for disambiguation, iii) representing target nodes as special sphere neighborhood vectors including all 

XML structural relationships within a (user-chosen) range, and iv) running context vectors through a hybrid disambiguation process, combining 

two approaches: concept-based and context-based disambiguation, allowing the user to tune disambiguation parameters following her needs. 

Conducted experiments demonstrate the effectiveness and efficiency of our approach in comparison with alternative methods. We also discuss some 

practical applications of our method, ranging over semantic-aware query rewriting, semantic document clustering and classification, Mobile and 

Web services search and discovery, as well as blog analysis and event detection in social networks and tweets. 
 

Keywords: XML, Semi-structured data, Word sense disambiguation, Semantic-aware processing, Semantic ambiguity, Context representation, 

Semantic similarity, Knowledge bases. 
 

 

1.  Introduction 

Over the past decade, publishing and processing data in XML has 

become increasingly attractive for organizations that want to 

easily inter-operate and provide their information in a well-

defined, semi-structured, extensible, and machine-readable format 

to improve the quality of their Web-based information retrieval 

and data management applications [54]. Most approaches in this 

context use syntactic information in processing XML data, while 

ignoring the semantics involved [93]. In fact, even when the huge 

amount of raw information available to organizations exists in 

natural language form and needs to be automatically processed, it 

can be first distilled into a more structured form in which individ-

ual entities (pieces of data) are accessible. Here, information 

extraction and wrapping technologies can be used: extracting and 

structuring selected data from documents to make them easier to 

handle in enterprise applications, where the preferred output is 

largely XML (e.g., handling XML-based summaries of news 

headlines, legal decisions, research articles, medical reports, 

editorials, book reviews, etc.) [92]. However, attaining a higher 

degree of automated data processing capability and human-

machine cooperation requires yet another breakthrough: extracting  

and processing the semantic features of XML data, whose impact 

has been highlighted in various XML-based applications, ranging 

over: semantic-aware query rewriting and expansion [21, 68] 

(expanding keyword queries by including semantically related 

terms from XML documents to obtain relevant results), XML 

document classification and clustering [94, 101] (grouping togeth-

er documents based on their semantic similarities, rather than 

performing syntactic-only processing), XML schema matching 

and integration [24, 103] (considering the semantic meanings and 

relationships between schema elements and data-types), and more 

recently Web and mobile services’ discovery, recommendation, 

and composition [46, 56, 115] (searching and mapping together 

semantically similar WSDL/SOAP descriptions when processing 

Web services, and semantic-aware mapping of XHTML/free-text 

descriptions when dealing with RESTful and/or mobile services), 

as well as XML-based semantic blog analysis and event detection 

in social networks and tweets [3, 9, 81]. Here, a major challenge 

remains unresolved: XML semantic disambiguation, i.e., how to 

resolve the semantic ambiguities and identify the meanings of 

terms in XML documents [43], which is central to improve the 
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performance of XML-based applications. The problem is made 

harder with the volume and diversity of XML data on the Web. 

Usually, heterogeneous XML data sources exhibit different 

ways to annotate similar (or identical) data, where the same real 

world entity could be described in XML using different structures 

and/or tagging, depending on the data source at hand (as shown in 

Fig. 1, where two different XML documents describe the same 

Hitchcock movie). The core problem here is lexical ambiguity: a 

term (e.g., an XML element/attribute tag name or data value) may 

have multiple meanings (polysemy), it may be implied by other 

related terms (metonymy), and/or several terms can have the same 

meaning (synonymy) [43]. For instance (according to a general 

purpose knowledge base such as WordNet [28]), the term “Kelly” 

in XML document 1 of Fig. 1 may refer to Emmet Kelly: the 

circus clown, Grace Kelly: Princess of Monaco, or Gene Kelly: 

the dancer. However, looking at its context in the document, a 

human user can tell that “Kelly” here refers to Grace Kelly. Yet 

while seemingly obvious for humans, such semantic ambiguities 

remain extremely complex to resolve with automated processes. 
 
 

<?xml version= “1.0”?> 
<films> 
    <picture title= “Rear Window”> 
        <director> Hitchcock </director> 
        <year> 1954 </year> 
        <genre> mystery </genre> 
        <cast> 
              <star> Stewart </star> 
              <star> Kelly </star> 
        </cast> 
        <plot>A wheelchair bound   
                   photographer spies on his  
                   neighbors …</plot> 
        … 
    </picture> 
</films> 

 

a. Doc 1 

  

<?xml version= “1.0”?> 
<Movies> 
    <Movie year= “1954”> 
        <Name> Rear Window </Name> 
        <Directed_By>Alfred Hitchcock</Directed_By> 
        <Actors> 
             <Actor>                             
                 <FirstName>Grace</FirstName> 
                 <LastName>Kelly</LastName> 
             </Actor> 
             <Actor> 
                 <FirstName>James</FirstName> 
                 <LastName>Stewart</LastName> 
             </Actor> 
        </Actors> 
        …   
    </Movie>                          

</Movies>               b. Doc 2 
 

Fig. 1.  Sample documents with different structures and tagging, yet 

describing the same information. 
 

In this context, word sense disambiguation (WSD), i.e., the com-

putational identification of the meaning of words in context [67], 

could be central to automatically resolve the semantic ambiguities 

and identify the meanings of XML element/attribute tag names 

and data values, in order to effectively process XML documents. 

While WSD has been widely studied for flat textual data [40, 67], 

yet, the disambiguation of structured XML data remains largely 

untouched. The few existing approaches to XML semantic-aware 

analysis (Section 2) have been extended from traditional flat text 

WSD, and thus show several limitations, motivating this work: 
 

- Motivation 1: They completely ignore the problem of seman-

tic ambiguity, which in turn leads to questions of disambigua-

tion exhaustivity versus selectivity. To our knowledge, none of 

the existing XML-based approaches addresses the problem of 

selecting target nodes to be processed for disambiguation, 

which should inherently be the most ambiguous nodes in the 

XML document (similarly to selecting the most ambiguous 

words as targets in flat text WSD [34, 75]). Rather, they per-

form semantic disambiguation on all nodes of the XML doc-

ument which is exhaustively time consuming and sometimes 

needless (e.g., no need to disambiguate unambiguous nodes). 

Here, the main difficulty resides in identifying/selecting am-

biguous nodes (words) which need to be processed for disam-

biguation, since there is no formal method for evaluating 

XML node (word) ambiguity. 
 

- Motivation 2: They only partially consider the structural 

relationships/context of XML nodes (e.g., solely focusing on 

parent-node relationships [98], or ancestor-descendent rela-

tionships [95]). For instance, in Fig. 1, processing XML node 

“cast” for disambiguation: considering (exclusively) its par-

ent node label (i.e., “picture”), its root node path labels (i.e., 

“films” and “picture”), or its node sub-tree labels (i.e., 

“star”), remains insufficient for effective disambiguation. 
 

- Motivation 3: They make use of syntactic processing tech-

niques such as the bag-of-words paradigm [94, 98] (commonly 

used with flat text) in representing XML data as a plain set of 

words/nodes, thus neglecting XML structural and/or semantic 

features as well as compound node labels.  
 

- Motivation 4: They are mostly static in adopting a fixed 

context size (e.g., parent node [98], or root path [95]) or using 

preselected semantic similarity measures (e.g., edge-based 

measure [57], or gloss-based measure [95]), such that the us-

er’s ability in tuning disambiguation parameters to allow sys-

tem adaptability (following her needs) is minimal. 

The main goal of our study is to provide an effective method to 

XML semantic analysis and disambiguation, overcoming the 

limitations mentioned above. We aim to transform traditional 

syntactic XML trees into semantic XML trees (or graphs, when 

hyperlinks come to play), i.e., XML trees made of concept nodes 

with explicit semantic meanings. Each concept will represent a 

unique lexical sense, assigned to one or more XML ele-

ment/attribute labels and/or data values in the XML document, 

following the latter’s structural context. To do so, we introduce a 

novel XML Semantic Disambiguation Framework titled XSDF, a 

fully automated solution to semantically augment XML docu-

ments using a machine-readable semantic network (e.g., WordNet 

[28], Roget’s thesaurus [117], Yago [37], an adaptation of  FOAF 

[3]1, etc.), identifying the semantic definitions and relationships 

among concepts in the underlying XML structure. Different from 

existing approaches, XSDF consists of four main modules for: i) 

linguistic pre-processing of XML node labels and values to handle 

compound words (neglected in most existing solutions), ii) select-

ing ambiguous XML nodes as primary targets for disambiguation 

using a dedicated ambiguity degree measure (unaddressed in 

existing solutions), iii) representing target nodes as special sphere 

neighborhood vectors considering a comprehensive XML struc-

ture context including all XML structural relationships within a 

(user-chosen) range (in contrast with partial context representa-

tions using the bag-of-words paradigm), and iv) running sphere 

neighborhood vectors through a hybrid disambiguation process, 

combining two approaches: concept-based and context-based 

disambiguation, allowing the user to tune disambiguation parame-

ters following her needs (in contrast with static methods). We 

have implemented XSDF to test and evaluate our approach. Ex-

perimental results reflect our approach’s effectiveness in compari-

son with existing solutions. 

The overall architecture of XSDF has been introduced in 

[18]. This paper adds: i) an extended presentation of XSDF’s 

mathematical model for ambiguity degree and disambiguation 

 

1  A semantic network structure can be automatically generated based on 
the FOAF social network, where person profiles represent concepts, 
and links between profiles represent concept relationships. Such a se-
mantic network can be used for person recognition and/or identification 
(as a special case of named entity recognition or disambiguation [67]).  
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computations, with corresponding proofs, ii) an adapted gloss-

based semantic similarity measure, expanded and normalized to 

be used in concept-based disambiguation, iii) dedicated algo-

rithms to perform concept-based and context-based semantic 

disambiguation, along with detailed complexity analysis, iv) a 

detailed presentation of experimental results, v) an extended 

discussion of the state of the art solutions, as well as vi) a discus-

sion of the main applications scenarios which can benefit, in one 

way or another, from XML semantic analysis and disambiguation. 

The remainder of this paper is organized as follows. Section 

2 reviews the background and related works. Section 3 develops 

our XML disambiguation framework. Section 4 presents experi-

mental results. Section 5 discusses potential applications, before 

concluding the paper in Section 6 with current directions. 

2.  Background and Related Works 

First, Section 2.1 briefly describes traditional word sense 

disambiguation developed for flat text. Then, Section 2.2 covers 

XML (semi-structured) semantic disambiguation methods.  
 

2.1. Word Sense Disambiguation 

WSD underlines the process of computationally identifying the 

senses (meanings) of words in context, to discover the author’s 

intended meaning [40]. The general WSD task consists of the 

following main elements: i) selecting words for disambiguation, 

ii) identifying and representing word contexts, iii) using reference 

knowledge sources, iv) associating senses with words, and v) 

evaluating semantic similarity between senses. [35] 
 

2.1.1. Selecting Words for Disambiguation 
 

There are two possible methods to select target words for disam-

biguation: i) all-words, or ii) lexical-sample. In all-words WSD, 

e.g., [17, 75], the system is expected to disambiguate all words in 

a (flat) textual document Although considered as a complete and 

exhaustive disambiguation approach, yet it remains extremely 

time-consuming and labor intensive. In addition, the high (time 

and processing) costs might not match performance expectations 

after all [67]. In lexical-sample WSD, e.g., [34, 75], specific target 

words are selected for disambiguation (usually one word per 

sentence). These words are often the most ambiguous, and are 

usually chosen using supervised learning methods trained to 

recognize salient words in sentences [67]. Experimental results 

reported in [67] show high disambiguation accuracy using the 

lexical-sample approach, in comparison with the all-words ap-

proach. However, a major difficulty in adopting the lexical-sample 

approach is in selecting ambiguous (target) words, due to the lack 

of formal methods to quantify semantic ambiguity, given that 

current supervised learning approaches are time-consuming in-

cluding a training phase requiring training data which are not 

always available.  
 

2.1.2. Identifying and Representing Context 

Once words have been selected for disambiguation, their contexts 

have to be identified, since sense disambiguation relies on the 

notion of context, such as words that appear together in the same 

context usually have related meanings [49]. The context of a word 

in traditional flat textual data usually consists of the set of terms in 

the word’s vicinity, i.e., terms occurring to the left and right of the 

considered word, within a certain predefined window size [49]. 

Other features can also be used to describe context, such as infor-

mation resulting from linguistic pre-processing including part-of-

speech tags (e.g., verb, subject, etc.), grammatical relations, etc. 

[67]. Once the context has been identified, it has to be effectively 

represented to perform disambiguation computations. Here, the 

traditional bag-of-words paradigm is broadly adopted with flat 

textual data [40, 67], where the context is processed as a set of 

terms surrounding the word to disambiguate. A vector representa-

tion considering the number of occurrences of words in context 

can also be used [67]. More structured context representations 

have been investigated in [2, 110], using co-occurrence graphs. 

Yet, they require substantial additional processing than the bag-of-

words model. 
 

2.1.3. Using Reference Knowledge Sources  
 

In addition to the contexts of target words, external knowledge is 

essential to perform WSD, providing reference data which are 

needed to associate senses with words. In this context, WSD 

methods can be distinguished as corpus-based or knowledge-

based, depending on the kind of external knowledge sources they 

rely on. The corpus-based approach, e.g., [5, 6, 21], is data-

driven, as it involves information about words previously disam-

biguated, and requires supervised learning from sense-tagged 

corpora (e.g., SemCor [65], where each word/expression is asso-

ciated an explicit semantic meaning) in order to enable predictions 

for new words. Knowledge-based methods, e.g., [64, 67, 94], are 

knowledge-driven, as they handle a structured sense inventory 

and/or a repository of information about words that can be auto-

matically exploited to distinguish their meanings in the text. Ma-

chine-readable knowledge bases (dictionaries, thesauri, and/or 

lexical ontologies, such as WordNet [28], Roget’s thesaurus [117], 

ODP [54], etc.) provide ready-made sources of information about 

word senses to be exploited in knowledge-based WSD. While 

corpus-based methods have been popular in recent years, e.g., [5, 

6, 21], they are generally data hungry and require extensive train-

ing, huge textual corpora, and/or a considerable amount of manual 

effort to produce a relevant sense-annotated corpus, which are not 

always available and/or feasible in practice. Therefore, 

knowledge-based methods have been receiving more attention 

lately, e.g., [64, 67, 94], and include most solutions targeting 

XML data. 
 

2.1.4. Associating Senses with Words 
 

The final step in WSD is to associate senses with words, taking 

into account the target words’ contexts as well as reference exter-

nal knowledge about word senses. This is usually viewed as a 

word-sense classification task. In this regard, WSD approaches 

can be roughly categorized as supervised or unsupervised. On one 

hand, supervised methods, e.g., [61, 67, 107], involve the use of 

machine-learning techniques, using samples (a human expert 

manually annotates examples of a word with the intended sense in 

context) provided as training data for a learning algorithm that 

induces rules to be used for assigning meanings to other occur-

rences of the word. External knowledge (mainly corpus-based) is 

used and combined with the human expert’s own knowledge of 

word senses when manually tagging the training examples. While 

effective, yet supervised methods include a learning phase which 

is highly time-consuming, and requires a reliable training set with 

a wide coverage which is not always available.  
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On the other hand, unsupervised methods, e.g., [57, 71, 93], 

are usually fully automated and do not require any human inter-

vention or training phase. Most recent (and XML-related) ap-

proaches, e.g., [58, 71, 93],  make use of a machine-readable 

knowledge base (e.g., such as WordNet [28]) represented and 

processed as a semantic network made of a set of concepts repre-

senting word senses, and a set of links connecting the concepts, 

representing semantic relations (synonymy, hyponymy, etc., [28, 

79], cf. Fig. 2). Given a target word to be disambiguated, WSD 

consists in identifying the semantic concept (word sense), in the 

reference semantic network that best matches the semantic con-

cepts (word senses) of terms appearing in the context of the target 

word. Semantic concept matching is usually performed using a 

measure of semantic similarity between concepts in the reference 

semantic network, also known as knowledge-based semantic 

similarity [14, 70]. 
 

2.1.5. Semantic similarity measures in a semantic network 
 

Several methods have been proposed to determine semantic simi-

larity between concepts (and consequently related terms) in a 

knowledge base (semantic network). These can be organized in 

three main categories [14]: edge-based, node-based, and gloss-

based [14]. Edge-based methods [47, 114] estimate similarity as 

the shortest path (in edges, weights, or number of nodes) between 

the concepts being compared. A central edge-based measure 

(adopted in our study) is proposed by Wu and Palmer in [114]: 
 

 

 0
Edge 1 2

1 2 0

2N
Sim (c , c , SN) =    0,1

N + N + 2N


 (1) 

 

where c1 and c2 designate two semantic concepts (word senses), 

SN designates the reference semantic network, N1 and N2 are 

respectively the lengths of the paths separating concepts c1 and c2 

from their lowest common ancestor concept c0 in SN, and N0 is the 

length of the path separating concept c0 from the root of SN. 

Node-based approaches [50, 77] estimate similarity as the 

maximum amount of information content that concepts share in 

common, based on the statistical distribution of concept (term) 

occurrences in a text corpus (e.g., the Brown corpus [29]). A 

central node-based measure (adopted in our study) is proposed by 

Lin in [50]: 
 

 0
Node 1 2

1 2

i
i

2 log p(c )
Sim (c , c , SN)  =  0,1     

log p(c ) + log p(c )

(c )
                 having   p(c ) = 

N



Freq

 
(2) 

 

where c0, c1, and c2 are the same as in formula (1), p(ci) denotes 

the occurrence probability of concept ci designating the normal-

ized frequency of occurrence of ci in a reference corpus such as 

the Brown text corpus [29] (adopted in our study), and N desig-

nates the size (total number of words) in the reference corpus.  
Gloss-based methods [7, 8] evaluate word overlap between 

the glosses of concepts being compared, a gloss underlining the 

textual definition describing a concept (e.g., the gloss of the 1st 

sense of word Actor in WordNet is “A theatrical performer”, cf. 

Fig. 1). A central gloss-based measure (extended in our study, cf. 

Section 3.5.1) is proposed by Banerjee and Pedersen in [8]: 
 

 

 

 

Gloss 1 2 1 1

2 2

Sim (c , c , SN)  = gloss(c ) gloss( (c ))  

                                   gloss(c ) gloss( (c ))

 



rel

rel

 (3) 

 

where gloss(ci) is the bag of words in the textual definition of 

concept (word sense) ci, and rel(ci) is the set of concepts related to 

ci through a semantic relation in SN.  

Discussion: It has been shown that gloss‐based measures 

evaluate, not only semantic similarity, but also semantic related-

ness [71], which is a more general notion: including similarity as 

well as any kind of functional relationship between terms (e.g., 

“penguin” and “Antarctica” are not similar, but they are semanti-

cally related due to their natural habitat connection), namely 

antonymy (e.g., “hot” and “cold” are dissimilar: having opposite 

meanings, yet they are semantically related), which makes 

gloss‐based measures specifically effective in WSD [67]: match-

ing not only similar concepts, but also semantic related ones2. [14, 

84, 118]  
 

Note that unsupervised/knowledge-based WSD has been 

largely investigated recently (including most methods targeting 

XML data), in comparison with supervised and corpus-based 

methods, which usually require extensive training and large test 

corpora [67], and thus do not seem practical for the Web. The 

reader can refer to [40, 67] for reviews on traditional WSD.  
 

 
 

Fig. 2.  Extract of the WordNet semantic network. Numbers next to 
concepts represent concept frequencies (based on the Brown corpus [29]). 

Sentences next to concepts represent concept glosses. 

 

2.2. XML Semantic Disambiguation 

Few approaches have been developed for semantic disambigua-

tion of XML and semi-structured data. The main challenges reside 

in the notion of XML (structural) contextualization and how it is 

processed, as described below. 
 

2.2.1. XML Context Identification 

While the context of a word in traditional flat textual data consists 

of the set of terms in the word’s vicinity [49], yet there is no 

unified definition of the context of a node in an XML document 

tree. Various approaches have been investigated: i) parent node, 

ii) root path, iii) sub-tree, and iv) versatile structural context. 
 

2.2.1.1. Parent Node Context 
 

The authors in [97, 98] consider the context of an XML data 

element to be efficiently determined by its parent element, and 

thus process a parent node and its children data elements as one 

unified (canonical) entity. The approach is based on the observa-

tion that an XML data node (i.e., element/attribute value) consti-

tutes by itself a semantically meaningless entity. They introduce 

the notion of canonical tree as a structure grouping together a leaf 

(data) node with its parent node, which is deemed as the simplest 

 

2  The reader can refer to [14, 84, 118] for comprehensive reviews and 
evaluations of semantic similarity measures. 
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semantically meaningful structural entity. The authors utilize 

dedicated context-driven search heuristics (e.g., structure pruning, 

identifying immediate relatives, etc.) to determine the relation-

ships between the different canonical trees. These are exploited to 

assign semantic node labels using a manually built ontology [96], 

generalizing/specializing node concepts following ontology labels 

and the nodes’ structural positions in the XML tree hierarchy. 
 

2.2.1.2. Root Path Context 
 

In [94, 95], the authors extend the notion of XML node context to 

include the whole XML root path, i.e., the path consisting of the 

sequence of nodes connecting a given node with the root of the 

XML document (or document collection). They perform per-path 

sense disambiguation, comparing every node label in each path 

with all possible senses of node labels occurring in the same path. 

Each XML path is transformed into a weighted graph, with nodes 

underlining the senses of each path element, and edges connecting 

node senses following path direction and node sense semantic 

similarities (Section 2.1.5). The authors utilize an existing gloss-

based WordNet similarity measure [8] and introduce an edge-

based measure (similar to [114]) in comparing label semantic 

senses to compute graph edge weights. Then, selecting the appro-

priate sense for a given node label consists in identifying the set of 

connected node senses, in the corresponding weighted graph, such 

as the sum of the weights over their edges is maximum. 
 

2.2.1.3. Sub-tree Context 
 

Different from the notions of parent context and path context, the 

authors in [106] consider the set of XML nodes contained in the 

sub-tree rooted at a given element node, i.e., the set of labels 

corresponding to the node at hand and all its subordinates, to 

describe the node’s XML context. The authors apply a similar 

paradigm to identify to contexts of all possible node label senses 

in WordNet. As a result, both the target XML node (to be disam-

biguated), and each of its possible node label senses in the 

WordNet taxonomy are represented as sets of lexical words/ ex-

pressions. Consequently, XML node label sense disambiguation is 

performed by comparing the XML node context set to each of the 

candidate sense context sets, using a classic similarity measure 

between bags-of-words (the authors utilize Cosine, taking into 

account TF-IDF word frequencies in each of the set representa-

tions). The target XML node is finally mapped to the semantic 

sense such that their context sets have the highest similarity.  
 

2.2.1.4. Versatile structural context 
 

In [57, 58], the authors combine the notions of parent context and 

descendent (sub-tree) context in disambiguating generic structured 

data (e.g., XML, web directories, and ontologies). The authors 

consider that a node’s context definition depends on the nature of 

the data and the application domain at hand. They propose various 

edge-weighting measures (namely a Gaussian decay function, cf. 

formula (4)) to identify crossable edges, such as nodes reachable 

from a given node through any crossable edge (following a user-

specified direction, e.g., ancestor, descendent, or both) belong to 

the target node’s context: 
2

8

c

2
(n ,n) = 2  +1 -    

2 2

d

e
weight




 

 (4) 

 

where nc is a context node, n is the target node, and d is the dis-

tance (in number of edges) separating nc form n in the XML tree. 

An extension of the traditional bag-of-words model is introduced 

to consider edge weights in representing the XML context. Hence, 

structure disambiguation is undertaken by comparing the target 

node label with each candidate sense (semantic concept) corre-

sponding to the labels in the target node’s context, taking into 

account corresponding XML edge weights. The authors assign 

confidence scores to each semantic sense following its order of 

appearance in the corresponding WordNet term definition. They 

consequently utilize an edge-based semantic similarity measure 

[45], exploiting the hypernymy/hyponymy relations (excluding 

remaining relations such as meronymy and holonymy, etc.), to 

identify the semantic sense best matching the target node label.  
 

2.2.2. XML Context Representation and Processing 

Another concern in XML-based WSD is how to effectively pro-

cess the context of an XML node (once it has been identified) 

considering the structural positions of XML data. Most existing 

WSD methods - developed for flat textual data (Section 2.1) 

and/or XML-based data [94, 95, 97, 98] - adopt the bag-of-words 

model where the context is processed as a set of words surround-

ing the term/label (node) to be disambiguated. Hence, all context 

nodes are treated the same, despite their structural positions in the 

XML tree. One approach in [57, 58], identified as relational 

information model, extends the bag-or-words paradigm toward a 

vector‐based representation with confidence scores combining: i) 

distance weights separating the context and target nodes, and ii) 

semantic weights highlighting the importance of each sense can-

didate. The authors utilize a specially tailored distance Gaussian 

decay function (cf. formula (4)) estimating edge weights such that 

the closer a node (following a user‐specified direction), the more 

it influences the target node’s disambiguation [57, 58]. The dis-

tance decay function is not only utilized in identifying the context 

of a target node, but also produces weight scores which are as-

signed to each context node in the context vector representation, 

highlighting the context node’s impact on the target node’s dis-

ambiguation process [57]. 
 

2.2.3. Associating Senses with XML Nodes 

Once the contexts of XML nodes have been determined, they can 

be handled in different ways. Two approaches, both unsupervised 

and knowledge-based, have been adopted in this context, which 

we identify as: i) concept-based and ii) context-based. On one 

hand, the concept-based approach adopted in [94, 95] consists in 

evaluating the semantic similarity between target node senses 

(concepts) and those of its context nodes, using measures of se-

mantic similarity between concepts in a semantic network. The 

target node label is matched with the candidate sense correspond-

ing to the candidate combination having the maximum score. On 

the other hand, the context-based approach introduced in [106] 

consists in building a context vector for the target node in the 

XML document tree, and context vectors for each target node 

sense (concept) in the semantic network (SN). Then, the XML 

context set is compared with each of the SN context sets, using a 

typical set comparison measure (e.g., Jaccard similarity). After, 

the target node label is matched with the candidate sense having 

the SN context set with maximum score w.r.t. the XML target 

node context set. A hybrid method in [57, 58] combines variants 

of the two preceding approaches to disambiguate generic struc-
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tured data (including XML). Yet, the authors do not compare their 

solution with existing XML disambiguation methods. 
Wrapping up: we identify four major limitations motivating 

our work (which were highlighted in Section 1): most existing 

methods i) completely ignore the problem of semantic ambiguity,  

ii) only partially consider the structural relationships/context of 

XML nodes (e.g., parent-node [98] or ancestor-descendent rela-

tions [95]), ii) neglect XML structural/semantic features by using 

syntactic processing techniques such as the bag-of-words para-

digm [94, 98],  and iv) are static in choosing a fixed context (e.g., 

parent node [98], or root path [95]) or preselected semantic simi-

larity measures, thus minimizing user involvement. 

3. XML Disambiguation Framework 

To address all motivations above and provide a more complete 

and dynamic XML disambiguation approach, we introduce XSDF 

(XML Semantic Disambiguation Framework) as an unsupervised 

and knowledge-based solution to resolve semantic ambiguities in 

XML documents. XSDF’s overall architecture is depicted in Fig. 

3. It is made of four modules: i) linguistic pre-processing, ii) 

nodes selection for disambiguation, iii) context definition and 

representation, and iv) XML semantic disambiguation. The sys-

tem receives as input: i) an XML document tree, ii) a semantic 

network (noted SN), and iii) user parameters (to tune the disam-

biguation process following her needs), and produces as output a 

semantic XML tree.  

We develop XSDF’s modules in the following, starting with 

the XML and semantic data models adopted in our study. 
 

3.1. XML and Semantic Data Models 

XML documents represent hierarchically structured information 

and can be modeled as rooted ordered labeled trees (Fig. 4.a and 

b), based on the Document Object Model (DOM) [111]. 
 

 
 

 

Fig. 3. Overall XSDF architecture. 
 

Definition 1 – Rooted Ordered Labeled Tree: It is a root-

ed tree in which the nodes are labeled and ordered. We denote by 

T[i] the ith node of T in preorder traversal, T[i]. its label, T[i].d its 

depth (in number of edges), and T[i].f its out-degree (i.e., the 

node’s fan-out). R(T)= [0] designates the root node of tree T 3 ● 
 

Definition 2 – XML Document Tree: It is a rooted ordered 

labeled tree where nodes represent XML elements/attributes, 

labeled using element/attribute tag names. Element nodes are 

ordered following their order of appearance in the XML docu-
 

 
3
 Tree and rooted ordered labeled tree are used interchangeably hereafter. 

ment. Attribute nodes appear as children of their containing ele-

ment nodes, sorted4 by attribute name, and appearing before all 

sub-elements [69, 119]. Element/attribute text values are stemmed 

and decomposed into tokens (using our linguistic pre-processing 

component), mapping each token to a leaf node labeled with the 

respective token, appearing as a child of its container ele-

ment/attribute node, and ordered following their appearance order 

in the element/attribute text value (Fig. 4.a) ● 
 

Note that element/attribute values can be disregarded (struc-

ture-only) or considered (structure-and-content) in the XML 

document tree following the application scenario at hand. Here, 

we believe integrating XML structure and content is beneficiary 

in resolving ambiguities in both element/attribute tag names 

(structure) and data values (content). For instance, in Fig. 1.a, 

considering data values “Kelly” and “Stewart” would be benefi-

cial to disambiguate tag label “cast”. The same applies the other 

way: “cast” can help disambiguate “Kelly” and “Stewart”. 

Also, we formally define a semantic network, as the semantic 

(knowledge base) data model adopted in our study5. 

Definition 3 – Semantic network: It is made of concepts 

representing groups of words/expressions designating word sens-

es, and links connecting the concepts designating semantic rela-

tionships. It can be represented as SN=(C, L, G, E, R, f, g, h):  

 C: set of nodes representing concepts in SN (e.g., synsets as 

in WordNet [28]), 

 L: set of words (expressions) describing concept labels and 

synonyms, 

 G: set of glosses describing concept definitions, 

 E: set of edges connecting concept nodes, E  C  C, 

 R: set of semantic relationship names describing edge labels, 

i.e., R = {Is-A, Has-A, Part-Of, Has-Part, etc.}. Note that 

synonymous words/expressions are integrated in the concepts 

themselves (as concept labels), and thus the relationship 

(edge label) synonym does not exist in R. 

 f: function designating the labels, sets of synonyms, and 

glosses associated to concept nodes, f: C  (L, Ln, G) where 

n designates the number of synonyms per concept,  

 g: function designating the labels of edges,  g: E R, 

 h: function associating to concepts their occurrence frequen-

cies (cf. Fig. 2) statistically quantified from a given text cor-

pus (e.g., the Brown corpus [29])6. 
 

Note that cC denotes a concept with c.its label, c.syn its set of 

synonymous labels, c.gloss its gloss, and c.freq its frequency. 

Similarly, e  E ( SN) designates an edge linking a pair of con-

cepts, with e.relits edge label (semantic relationship name)  ●[1] 
 

After disambiguating target XML node labels in the input 

XML document tree, the latter are replaced with the identifiers of 

corresponding semantic concepts from the reference semantic 

network, thus producing an output XML tree augmented with 

semantic meaning. Formally: 
 

Definition 4 – Semantic XML Tree: It is an augmented 

XML document tree in which the labels of nodes which have been 

 

4
 While the order of attributes (unlike elements) is irrelevant in XML [1], yet 
we adopt an ordered tree model to simplify processing [69, 119]. 

5
  Knowledge base & semantic network are used interchangeably hereafter. 

6
 Concept frequencies allow to estimate the information content that concepts 

share in common, used in node-based semantic similarity (Section 2.1.5). 

Context Definition &  

Representation 

Nodes Selection for 

Disambiguation ThreshAmb 

Amb_Deg  

measure 
Context Vector 

Representation 

XML Semantic 

Disambiguation 

Concept-based 

Disambiguation 

Context-based 

Disambiguation 

Semantic 

XML Tree 

Linguistic pre-

processing 

Tokenization 

Stop Words 

Stemming 

Amb_Deg ≥  

 ThreshAmb 

Filter 

XML Tree Parsing 

Weighted SN 

Build Sphere 

Neighborhood 

Weights 

User parameters 

Syntactic  

XML Tree 

XML Doc 

jenard
Rectangle



Tekli et al.: Building Semantic Trees from XML Documents 7 

 

targeted for disambiguation are replaced by semantic concepts 

(identifiers) extracted from a reference semantic network, whereas 

non-target XML nodes remain untouched, such that the original 

XML tree structure remains intact (Fig 4.b) ● 
 

3.2. Linguistic Pre-Processing 

Linguistic pre-processing consists of three main phases: i) tokeni-

zation, ii) stop word removal, and iii) stemming, applied on each 

of the input XML document’s element/attribute tag names and text 

values, to produce corresponding XML tree node labels. Here, we 

consider three possible inputs: 

 Element/attribute tag names consisting of individual words, 

 Element/attribute tag names consisting of compound words, 

usually made of two individual terms (t1 and t2)
7 separated by 

special delimiters (namely the underscore character, e.g., “Di-

rected_By”), or the use of upper/lower case to distinguish the 

individual terms (e.g., “FirstName”), 

 Element/attribute text values consisting of sequences of words 

separated by the space character. 
 

 
 

 

 

 

 

 
 

Fig. 4.  Sample input (syntactic) XML and output (semantic) XML trees. 

 

Considering the first case, no significant pre-processing is re-

quired, except for stemming (when the word is not found in the 

reference semantic network). In the second case (i.e., compound 

words, usually disregarded in existing methods), if t1 and t2 match 

a single concept in the semantic network (i.e., a synset in 

WordNet, e.g., first name), they are considered as a single token. 

Otherwise, they are considered as two separate terms, and are 
 

7
 Having more than two terms per XML tag name is unlikely in practice [106].  

This is also true with WordNet concept names, usually made of 1-to-2 terms. 

processed for stop word removal and stemming. Yet, they are kept 

within a single XML node (x) as its label (x.) in order to be treat-

ed together afterward, i.e., one sense will be finally associated to 

x., which is formed by the best combination of t1 and t2’s senses 

(in contrast with studies in [57, 58, 106]  which process token 

senses separately as distinct labels). As for the third case, we 

apply traditional tokenization, i.e., the text value sentence is bro-

ken up into a set of word tokens ti, processed for stop word re-

moval and stemming, and then represented each as an individual 

node (xi) labeled with the corresponding token (xi. = ti), and 

appearing as a child of the containing element/attribute node. 
 

3.3. Node Selection for Disambiguation 

Given an input XML tree, the first step is to select target nodes to 

disambiguate, which (we naturally assume) are the most ambigu-

ous nodes in the document tree. Thus, we aim to provide a math-

ematical definition to quantify an XML node ambiguity degree 

which can be used to select target nodes for disambiguation (an-

swering Motivation 1). To do so, we start by clarifying our intui-

tions about XML node ambiguity: 
 

 Assumption 0: An XML node whose label has only one 

possible sense is considered to be unambiguous, i.e., its 

semantic ambiguity is minimal. 
 

 Assumption 1: The semantic ambiguity of an XML node is 

related to the number of senses of the node’s label: i) the more 

senses it has, the more ambiguous the node is, ii) the fewer 

senses it has, the less ambiguous the node is. 
 

 Assumption 2: The semantic ambiguity of an XML node is 

related to its distance to the root node of the document tree: i) 

the closer it is to the root, the more ambiguous it is, ii) the 

farther it is from the root, the less ambiguous it is. 
 

Assumption 2 follows the nature of XML and semi-structured 

data, where nodes closer to the root of the document tend to be 

more descriptive of the whole document, i.e., having a broader 

meaning, than information further down the XML hierarchy [11, 

119]. In other words, as one descends in the XML tree hierarchy, 

information becomes increasingly specific, consisting of finer 

details [102], and thus tends to be less ambiguous. 
 

 Assumption 3: The semantic ambiguity of an XML node is 

related to its number of children nodes having distinct labels: 

i) the lesser the number of distinct children labels, the more 

ambiguous the node is, ii) the more the number of distinct 

children labels, the less ambiguous the node is. 
 

Assumption 3 is highlighted in the sample XML trees in Fig. 5. 

One can clearly identify the meaning of root node label “Picture” 

(i.e., “motion picture”) in Fig. 5.a., by simply looking at the 

node’s distinct children labels. Yet the meaning of “Picture” 

remains ambiguous in the XML tree of Fig. 5.b (having several 

children nodes but with identical labels). Hence, we believe that 

distinct children node labels can provide more hints about the 

meaning of a given XML node, making it less ambiguous. 

 

 
 

 

a. Distinct children node labels. b. Identical children node labels. 
 

Picture 

Title Title Title Title 

Picture 

Plot Title Director Cast 

d. Output inverted concept indexes, 
generated after disambiguation along 

with the output semantic tree. 

Concept-Doc Index Concept-WN Index 

C1    :    0 

C2    :    1 

C14    :    15 

… 

Concept :  NodeID(s) Concept :  WN_ID(s) 

C1    :    WN_1001 

C2    :    WN_1043 

C14    :    WN_6010 

… 

c. Input semantic network  
(WordNet), with symbolic 

concepts & identifiers. 

WN_4332 

WN_1001 WN_6010 

… 

C1 

C2 

C3 

C4 C6 

C5 C9 C14 

C10 C11 

0 

1 

2 

3 

4 

5 

10 15 

11 13 

C7 

C8 

8 

9 

C12 C13 12 14 

6 

7 

Year 

1954 

b. Output semantic XML tree, where nodes 6 and 7 were not targeted           
for disambiguation. 

… Mystery 

Films 

 

  

Stewart Kelly 

Plot Title Director 

Hitchcock Rear  
Window 

0 

1 

2 4 

3 

6 10 15 

5 7 11 13 

Year 

1954 Star Star 

8 

9 

12 14 

a. Input syntactic XML document tree (representing Doc 1 in Fig. 1). 

 

Picture 

Genre Cast 

jenard
Rectangle



8 ELSEVIER Journal of Web Semantics 

 

Fig. 5. Sample XML document trees. 

While our goal is to quantify XML semantic ambiguity, yet this 

can be done in many alternative ways that would be consistent 

with the above assumptions. Hence, we first provide some basic 

definitions that introduce a set of ambiguity degree factors map-

ping to the above assumptions, which we will then utilize to build 

our integrated ambiguity degree measure.  
 

Definition 5 – XML Node Polysemy factor: The polyse-

my ambiguity degree factor of an XML node x in tree T, noted 

AmbPolysemy, increases when the number of senses of x. is high 

in the reference semantic network SN, or else it decreases: 
 

 
(x. ) - 1

Amb (x. , SN)  =  0,1    
Max( (SN)) - 1

Polysemy

senses

senses


 (5) 

 

where Max(senses(SN)) is the maximum number of senses of a 

word/expression in SN (e.g., in WordNet 3.0 [28], 

Max(senses(SN)) = 33, for the word “head”) ● 
 

Lemma 1:  The XML node polysemy factor AmbPolysemy in 

Definition 5 varies in accordance with Assumptions 0 and 1 ● 
 
 

Proof of Lemma 1: Given formula (5), AmbPolysemy varies as fol-

lows:   

 The minimum value AmbPolysemy = 0 is obtained when x.= 1, 

i.e., has only one sense (e.g., “first name” in WordNet), 

i.e., x is without ambiguity: it always refers to the same 

meaning. 

 The maximum value AmbPolysemy = 1 is obtained when x.= 

Max(senses(SN)). 

 When senses(x.) increases/decreases, AmbPolysemy follows 

accordingly such that AmbPolysemy  [0, 1]. 
 

 

Definition 6 – XML Node Depth factor: The depth am-

biguity degree factor of an XML node x in tree T, noted 

AmbDepth, increases when the distance in number of edges be-

tween x and R(T) is low, or else it decreases such that: 
 

 

 
x.d

Amb (x, T)  = 1 -  0,1    
Max( (T))

Depth
depth


 

(6) 

 

where Max(depth(T)) is the maximum depth in T ● 
 

Lemma 2:  The XML node depth factor AmbDepth in 

Definition 6 varies in accordance with Assumption 2 ● 
 
 

Proof of Lemma 2: Given formula (6), AmbDepth varies as follows:  
 

 The maximum value AmbDepth=1 is obtained when x.d = 0, 

i.e., when x = R(T). 

 The minimum value AmbDepth = 0 is obtained when x.d = 

Max(depth(T)), i.e., when x is one of the farthest nodes from 

R(T): one of the deepest (most specific) leaf nodes in T’s 

hierarchy. 

 When x.d increases/decreases, AmbDepth follows inversely such 

that AmbDepth  [0, 1]. 
 

 

Definition 7 – XML Node Density factor: The density 

ambiguity degree factor of an XML node x in tree T, noted 

AmbDensity, increases when the number of children nodes of x 

having distinct labels, designated as .x f , is low, or else it de-

creases such that:  
 

 
x.f

Amb (x, T)  = 1 -  0,1    
Max( - (T))

Density
fan out


 

(7) 

 

where ( - (T))Max fan out  is the maximum number of children 

nodes with distinct labels in T. We identify this factor as the node 

density factor to distinguish it from traditional node fan-out: 

number of children nodes (regardless of label, Definition 1) ● 
 

Lemma 3:  The XML node density factor AmbDensity in 

Definition 7 varies in accordance with Assumption 2 ● 
 
 

 

Proof of Lemma 3: Given formula (7), AmbDensity varies as fol-

lows: 
  

 The maximum value AmbDensity= 1 is obtained when .  x f = 0, 

i.e., when x is a leaf node and does not have any children 

nodes (to provide hints concerning x’s meaning). 

 The maximum value AmbDensity= 0 is obtained when .  x f = 

Max(fan-out(T)), i.e., when x has the largest number of 

children nodes with distinct labels in T. In other words, it has 

the highest possible number of hints about its meaning in T.   

 When .  x f increases/decreases, AmbDensity follows inversely 

such that AmbDensity  [0, 1]. 
 

 

From the above ambiguity factor definitions, we can provide 

an integrated definition for XML ambiguity degree specifically 

tailored to satisfy all the stated assumptions: 
 

Definition 8  – XML Node Ambiguity Degree: Given an 

XML tree T, a node x  T, and a reference semantic network SN, 

we define the ambiguity degree of x, Amb_Deg(x, T, SN), as the 

ratio between AmbPolysemy(x., SN) on one hand, and the sum of             

1-AmbDepth(x, T) and 1-AmbDensity(x, T) on the other hand: 
 

 Polysemy

Depth Density

                              Amb_Deg(x, T, SN)  = 

w  Amb (x. , SN)
 0,1

w (1 Amb (x, T)) w (1 Amb (x, T)) 1

Polysemy

Depth Density




     

 (8) 

 

where wPolysemy, wDepth, wDensity  [0, 1] are independent weight 

parameters allowing the user to fine-tune the contributions of 

polysemy, depth, and density factors respectively ● 
 

 

In fact, we chose to define Amb_Deg as a ratio (rather than a 

typical weighted sum) with AmbPolysemy as the only numerator 

factor: in order to guarantee that Amb_Deg is minimal (= 0) when 

the AmbPolysemy is minimal (=0), regardless of other factors which 

were allocated to the denominator. The latter AmbDepth and 

AmbDensity factors were combined (within the denominator) using 

weighted sum aggregation, with their values reversed (1-AmbDepth 

and 1-AmbDensity) to counter their usage as denominator factors: 

varying proportionally with Amb-Deg. As a result: 
 

Lemma 4:  The ambiguity degree measure Amb_Deg in 

Definition 8 varies in accordance with Assumptions 0-3 ● 

 
 

Proof of Lemma 4: Given formula 8, Amb_Deg varies as follows: 
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 The minimum value Amb_Deg = 0 is obtained when the label 

of node x has only one possible sense, i.e., when 

AmbPolysem(x., SN) = 0, regardless of its depth and density 

factors, and regardless of parameter weights (Assumption 0 

and Lemma 1).  

 The maximum value Amb_Deg = 1 is obtained when: i) x. has 

the maximum number of senses in SN (e.g., 33 senses in 

WordNet [28]), ii) x is the root node of T, x.d = 0, and iii) x 

has the minimum number of children nodes with distinct 

labels in T,

 

.  x f = 0, regardless of wDepth and wDensity 

parameter values (Assumptions 1-3, and Lemmas 1-3). 

 The value of Amb_Deg increases with: i) the increase in x.’s 

polysemy in SN, ii) the decrease in x’s depth, and iii) the 

decrease in x’s density in the XML document tree. Inversely, 

the value of Amb_Deg decreases with: i) the decrease in x.’s 

polysemy, ii) the increase in x’s depth, and iii) the increase in 

x’s density (Assumptions 1-3, and Lemmas 1-3). 
 

 

Special case: When the label of node x consists of a com-

pound word made of tokens t1 and t2, we compute Amb_Deg(x) as 

the average of the ambiguity degrees of t1 and t2. 

Amb_Deg is computed for all nodes in the input XML tree. 

Then, only the most ambiguous nodes are selected as targets for 

disambiguation following an ambiguity threshold ThreshAmb au-

tomatically estimated or set by the user, i.e., nodes having 

Amb_Deg(x, T, SN)  ThreshAmb, whereas remaining nodes are left 

untouched. Note that the user can disregard the ambiguity degree 

measure: i) by setting wPolysemy = 0 so that all nodes end up having 

Amb_Deg = 0 regardless of polysemy, depth, and density factors, 

or ii) by setting ThreshAmb = 0 so that all nodes are selected for 

disambiguation regardless of their ambiguity degrees.  

Note that the fine-tuning of parameters is an optimization 

problem such that parameters should be chosen to maximize 

disambiguation quality (through some cost function such as f-

value, cf. Section 4). This can be solved using a number of known 

techniques that apply linear programming and/or machine learn-

ing in order to identify the best weights for a given problem class, 

e.g., [38, 60, 66]. Providing such a capability, in addition to man-

ual tuning, would enable the user to start from a sensible choice of 

values (e.g., identical weight parameters to consider all ambiguity 

features equally, i.e., wPolysemy= wDepth= wFan-out =1, with a minimal 

threshold ThreshAmb = 0 to consider all results initially) and then 

optimize and adapt the disambiguation process following the 

scenario and optimization (cost) function at hand. We do not 

further address the fine-tuning of parameters here since it is out of 

the scope of this paper (to be addressed in a future study). 
 

3.4. Context Definition and Representation 
 

3.4.1. Sphere Neighborhood 

For each target node selected from the previous phase, node con-

texts have to be defined and processed for disambiguation. While 

current approaches only partly consider the semi-structured nature 

of XML in defining disambiguation contexts (Motivation 2), we 

introduce the sphere neighborhood context model, inspired from 

the sphere-search paradigm in XML IR [33]8, taking into account 
 

8
  While comparable with the concept of XML sphere exploited in [33] the latter 

consists of an XML retrieval paradigm for computing TF-IDF scores to rank 
XML query answers, which is orthogonally different, in its use and objec-
tives, from our disambiguation proposal. 

the whole structural surrounding of an XML target node (includ-

ing its ancestors, descendants, and siblings) in defining its context. 

We define the notion of context ring as the set of nodes situated at 

a specific distance from the target node. An XML sphere encom-

passes all rings included at distances less or equal to the size 

(radius) of the sphere. 
 

Definition 8 – Context Ring: Given an XML tree T and a 

target node x  T, we define an XML context ring with center x 

and radius d as the set of nodes located at distance d from x with 

respect to the XML structure containment relationship, i.e., Rd (x) 

= {xi  T | Dist(x, xi) = d}. Rd (x) is more generally noted Rd,rel (x) 

when a different relationship rel (other than XML structure con-

tainment) is considered in building the ring (e.g., using hyper-

links, or semantic relationships when available) ● 
 

  
 

Fig. 6. Sample XML context (ring and) sphere neighborhoods. 
 

The distance between two XML nodes in an XML tree, Dist(xi, xj), 

is evaluated as the number of edges separating the nodes. For 

instance, in tree T of Fig. 6.a, the distance between nodes T[2] and 

T[6] of labels “cast” and “Kelly” respectively is equal to 2. 

Hence, the XML ring R1(T[2]) centered around node T[2] (“cast”) 

at distance 1 consists of nodes: T[1] (“Picture”), T[3] (“star”) 

and T[5] (“star”).  
 

Definition 9 – Context Sphere: Given an XML tree T, a 

target node x  T, and a set of XML context rings ( )jdR x   T, 

we define an XML context sphere with center x and radius d as 

the set of nodes in the rings centered around x at distances less or 

equal to d, i.e., Sd(x) = {xi  T  |  xi  ( )jdR x  dj ≤ d} ● 

 

In  Fig. 6.b, the XML sphere S2(T[2]) centered around node T[2] 

of label “cast” with radius 2 consists of: ring R1(T[2]) of radius 1 

comprising nodes T[1] (“picture”), T[3] (“star”) and T[5] 

(“star”), and ring R2(T[2]) of radius 2 comprising nodes T[0] 

(“Films”), T[4] (“Stewart”), T[6] (“Kelly”), and T[7] (“Plot”). 

The size (radius) of the XML sphere context is tuned following 

user preferences and/or the nature of the XML data at hand (e.g., 

XML trees might contain specialized and domain-specific data, 

and thus would only require small contexts to achieve good dis-

ambiguation, whereas more generic XML data might require 

larger contexts to better describe the intended meaning of node 

labels and values, cf. experiments in Section 4).  

While the notion of context sphere with XML seems limited 

to that of a disk in 2D space (cf. Fig. 6), nonetheless, our sphere 

neighborhood model is general and can be straightforwardly 

extended to consider different kinds of rings having different tree 

… 

Films 

Picture 

Cast 

Stewart Kelly 

Plot 

Star Star 

 

 

7 

0 

1 

2 

3 

4 

5 

6 

 

Films 

Picture 

Cast 

Stewart Kelly 

Plot 

Star Star 

XML Tree T 

a. XML ring R1(T[2]) centered               
around node T[2] of label “cast”. 

0 

1 

2 

3 

4 

5 

6 

7 

jenard
Rectangle



10 ELSEVIER Journal of Web Semantics 

 

node distance functions (including edge weights, density, or direc-

tion, etc. [31, 41]), and different kinds of node relationships (in-

cluding hyperlinks, or semantic relationships between nodes when 

available). For instance, it can be applied to describe the contexts 

of concepts in a semantic network SN (which we adopt in our 

context-based disambiguation algorithm, cf. Section 3.5.2), where 

Rd,rel (c) designates the context ring centered around concept c and 

containing all concepts at distance d from c w.r.t. semantic rela-

tionship rel. The context sphere Sd(c) would thus contain all rings 

at distance d from c defined w.r.t. the different kinds of semantic 

relationships considered in defining its context rings (cf. Fig. 7). 

 
 

 

Fig. 7. Sample context (ring and) sphere neighborhoods of concept 

Movie based on the SN extract in Fig. 2. 
 

Note that in this study, we restrict ourselves to the most intuitive 

notion of distance in building our ring and sphere contexts, where 

distance is evaluated as the number of XML structural contain-

ment edges (semantic relationship edges when applied on a SN), 

and report the investigation of more sophisticated XML (semantic 

network) distance functions to a dedicated study. 
 

3.4.2. Context Vector Representation 

Having identified the context of a given XML target node, we 

need to evaluate the impact of each of the corresponding context 

nodes in performing semantic disambiguation (in contrast with 

existing methods using the bag-of-words paradigm where context 

is processed as a set of words/nodes disregarding XML structure: 

Motivation 3). Here, we introduce a relational information solu-

tion based on the general vector space model in information re-

trieval [62] (in comparison with the specific decay function used 

in [57, 58]), designed to consider the structural proximi-

ty/relationships among XML nodes in computing disambiguation 

scores following our sphere neighborhood model. Our mathemati-

cal formulation follows two basic assumptions: 
 

 Assumption 4: XML context nodes closer to the target node 

should better influence the latter’s disambiguation, whereas 

those farther away from the target node should have a smaller 

impact on the disambiguation process.  
 

This is based on the structured nature of XML, such as nodes 

closer together in the XML hierarchy are typically more related 

than more separated ones. 
 

 Assumption 5: Nodes with identical labels, occurring multiple 

times in the context of a target node, should better influence the 

latter’s disambiguation in contrast with nodes with identical 

labels occurring a lesser number of times. 
 

This is based on the notion of context in WSD, where words 

occurring multiple times in the context of a target word have a 

higher impact on the target’s meaning9. Therefore, we represent 

the context of a target XML node x as a weighed vector, whose 

dimensions correspond to all distinct node labels in its sphere 

neighborhood context, weighted following their structural dis-

tances from the target node. 

Definition 10 – XML Context Vector: Given a target node 

x  XML tree T, and its sphere neighborhood Sd (x)  T, the 

corresponding context vector ( )d xV

 

is defined in a space whose 

dimensions represent, each, a single node label r  Sd (x), such as 

1 < r < n where n is the number of distinct node labels in Sd (x). 

The coordinate of a context vector ( )d xV  on dimension r, 

 ( )
( )

d
rV x

w , stands for the weight of label r in sphere Sd (x) ● 

 

Definition 11 – XML Node Label Weight: The weight 

 ( )
( )

d
rV x

w  of node label r in context vector ( )d xV  

corresponding to the sphere neighborhood Sd (x) of target node x 

and radius d, consists of the structural frequency of nodes xi  

Sd(x) having label xi. = r. It is composed of an occurrence 

frequency factor  , ( )r dFreq S x  (based on Assumption 5) 

defined using a structural proximity factor  , ( )i dStruct x S x  

(based on Assumption 4). Formally, given |Sd(x)| the cardinality 

(in number of nodes) of Sd(x),  , ( )r dFreq S x  underlines the 

total number of occurrences of nodes xi  Sd (x)  having label xi. 

= r, weighted w.r.t. structural proximity: 

   
d

d

d i d

 ( ) /

 .  = 

xi
ri

Sx
x  

11

d 1 2

S (x)
Freq ,S (x) Struct x ,S (x)    ,  r







 
  

 


 
(9) 

 

 , ( )i dStruct x S x

 

underlines the structural proximity between 

each context node xi  Sd (x) having xi. = r, and the target 

(sphere center) node x, formally:  
 

  i
i d

1 ,1
d 1

Dist(x, x )
Struct x ,S (x)   1   

d 1 
   
  

 (10) 

 

The denominator in  , ( )i dStruct x S x

 

is incremented by 1 (i.e., 

d+1) to allow context nodes occurring in the farthest ring of the 

sphere context Sd(x), i.e., the ring Rd(x) of radius d, to have a non-

null weight in ( )d xV , and thus a non-null impact on the 

disambiguation of target node x.  

Consequently, the combined weight factor is defined as the 

normalized occurrence frequency factor: 

 

 ( )
( )

d
rV x

w    
 

d d

Freq d

Freq ,S (x) 2 Freq ,S (x)
  0,1

Max S (x) 1

r r
  



 
(11) 

 

 

9
 This is also similar to the notion of term frequency (or TF) in information 

retrieval, where the importance of a given term t
 

in describing a document D 
increases with the frequent occurrence of t

 

in D [43, 62]. 
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where MaxFreq = d 1

2

S (x)   following formula (9) ● 

 

For instance, given the XML tree in Fig. 6, Fig. 8 shows con-

text vectors of sphere neighborhoods S1(T[2]) and S2(T[2]) cen-

tered around node T[2] of label “Cast”. Considering ]( [2 )1 TV : 

 
 (“ ”)

2 (1)
“ ” = 0.4

(4) 1
( )

1V Cast
Castw





given that: i) “Cast” is the 

label of S1(T[2])’s target (center) node T[2], i.e., 

 1[2], ( [2])Struct T S T =1, ii) T[2] is the only node occurrence of 

label “cast” in S1(T[2]), i.e.,  1“ ”, ( [2]) 1CastFreq S T  , and iii) 

|S1(T[2])| = 4. 

 
 

 (“ ”)

2 0.5+0.5
“ ”  = 0.4

(4) 1
( )

1V Cast
Starw




  given that: i) S1(T[2]) 

contains two nodes T[3] and T[5] of label “Star” at distance = 

1 from the target node T[2], i.e.,  1[3], ( [2])Struct T S T  = 1- 1

2

= 0.5, ii) T[3] and T[5] are the only node occurrences of label 

“Star” in S1(T[2]), i.e.,  1“ ”, ( [2])StarFreq S T = 0.5 + 0.5 = 1, 

and iii) |S1(T[2])| = 4. 
 

Similarly for remaining context vector weight computations. 

 

 Cast Picture Star     

]( [2 )1 TV  0.4 0.2 0.4     

       

 Cast Picture Star Films Stewart Kelly Plot 

]( [2 )2 TV  0.2223 0.1482 0.2964 0.0741 0.0741 0.0741 0.0741 

 

Fig. 8.  Sample sphere context vectors based on the sphere neighborhoods 
in Fig. 6. 

 

Here, one can realize that label weights in Fig. 8 increase as 

nodes occur closer to the target node (Assumption 4), and as the 

number of node label occurrences increases in the sphere context 

(Assumption 5, e.g., in 
1 ]( [2 )TV , 

 1 (“ ”)
“ ”( )

V Cast
Starw                    

2 
 1 (“ ”)

“ ”( )
V Cast

Picturew

 

since node label “Star” occurs twice in 

S1(T[2]) while “Picture” occurs once; similarly in 
2 ]( [2 )TV ). 

Formally: 

 

Lemma 5: The context vector weight measure 
 ( )

( )
d

rV x
w  in 

Definition 11 varies in accordance with Assumptions 5 and 6 ●  

 
 

Proof of Lemma 5: Given formula (11), 
 ( )

( )
d

rV x
w  varies as: 

 
 ( )

( )
d

rV x
w  increases with  , ( )r dFreq S x , which increases 

with  , ( )i dStruct x S x : 

 

o The value of  , ( )i dStruct x S x  is inversely proportional to 

the distance between the target node x and context node 

xi (following Assumption 1).  
 

 The minimum value   1

d 1
, ( )i dStruct x S x


  is 

reached when xi  Rd(x) where Rd(x) is the outer-

most ring in sphere Sd(x).  

 The maximum value  , ( )i dStruct x S x =1 is reached 

when processing the target node itself, i.e., xi = x. 
 

o The value of  , ( )r dFreq S x  is proportional to the 

number of occurrences of nodes having the same label 

xi. = r (following Assumption 2).  

 The minimum value   1

d 1
, ( )r dFreq S x


  is 

reached when there is only one context node having 

label r and occurring on the outer-most ring Rd(x) of 

the sphere neighborhood, more formally:  

      xi  Sd(x)   /  (xi. = r)  (xi  Rd(x))  ( xj  

Sd(x) / xj.  r) 

 The maximum value of  , ( )r dFreq S x  

dS (x) 1

2


  is reached when all context nodes have 

the same label r and appear on the inner-most ring 

R1(x) of the sphere neighborhood, more formally:  

     xi  Sd(x) / (xi. = r)  (xi  R1(x)). Here,  

  d

d

S (x) 11, ( ) 1 ( S (x) 1)
2 2r dFreq S x


      

 

Consequently: 
 

 The minimum value 
 ( )

( )
d

rV x
w = 0 is obtained when no 

nodes of label r occur in the sphere context of target node x. 

 The maximum value 
 ( )

( )
d

rV x
w = 1 is obtained when 

maximum frequency is obtained, since the weight score is 

normalized using maximum frequency, i.e., dS (x) 1

2



 
 

 
In short, context nodes are weighted based on their labels’ 

occurrences as well as the sizes (radiuses) of the sphere contexts 

to which they correspond, varying their weights and thus their 

impact on the target node’s disambiguation accordingly. 

 

3.5. XML Semantic Disambiguation 

Once the contexts of XML nodes have been determined, we pro-

cess each target node and its context nodes for semantic disam-

biguation. Here, we propose to combine two strategies: the con-

cept-based approach and the context-based approach. The former 

is based on semantic concept comparison between target node 

senses (concepts) and those of its sphere neighborhood context 

nodes, whereas the latter is based on context vector comparison 

between the target node’s sphere context vector in the XML tree 

and context vectors corresponding to each of its senses in the 

reference semantic network. The user will be able to combine and 

fine-tune both approaches (Motivation 4). 

 

3.5.1. Concept-based Semantic Disambiguation 

It consists in comparing the target node with its context nodes, 

using a combination of semantic similarity measures (edge-based, 

node-based, and gloss-based, cf. Section 2.1) in order to compare 

corresponding semantic concepts in the reference semantic net-

work. Then, the target node sense with the maximum similarity 

(relatedness) score, w.r.t. context node senses, is chosen as the 

proper target node sense. To do so, we propose an extension of 

context-based WSD techniques (cf. Section 2.2.3) where we: 
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 Build upon the sphere neighborhood context model, to consid-

er XML structural proximity in evaluating the semantic mean-

ings of context nodes (in comparison with the traditional bag-

of-words context model), 
 

 Allow an extensible combination of several semantic similari-

ty measures, in order to capture semantic relatedness from dif-

ferent perspectives (in comparison with most existing methods 

which exploit pre-selected measures). 
 

Definition 12 – Concept-based Semantic Score: Given a 

target node x  XML tree T and its sphere neighborhood Sd (x)  

T, and given sp as one possible sense for x. in a semantic network 

SN, we define Concept_Score(sp, Sd(x), SN) to quantify the 

semantic impact of sp as the potential candidate for the intended 

sense (meaning) of x. within context Sd(x) in T w.r.t. SN, 

computed as the average of the weighted maximum similarities 

between sp and context node senses:  
 

 

Concept_Score(sp, Sd(x), SN) = 

 
 

 i d
ij

i d

i
p j iV (x)  .

d  S ( )

s x

x x

Max Sim s s x .

0,1
S x

, ) ( )

 
| ( ) |

SN w







 

( ,

 
(12) 

 

where i
js  designates the jth sense of context node xi.  Sd (x), and

i
p j

 SN, )Sim s s( , designates the semantic similarity measure 

between senses sp and i
js
 
w.r.t. SN ●    

 

Definition 13 – Semantic Similarity Measure: It quantifies 

the semantic similarity (relatedness10) between two concepts (i.e., 

word senses) c1 and c2 in a reference semantic network SN, 

computed as the weighted sum of several semantic similarity 

measures11. Formally: 
 

Sim(c1, c2, SN) =  wEdgeSimEdge (c1, c2, SN) +   

          wNode  SimNode(c1, c2, SN)) +  

                         wGloss  SimGloss(c1, c2, SN))     [0, 1] 
(13) 

 

where:  

 wEdge+ wNode + wGloss =1 and (wEdge, wNode, wGloss) ≥ 0 

 SimEdge is a typical edge-based measure from [114], cf. 

formula (1) 

 SimNode is a typical node-based measure from [50], cf. 

formula (2) 

 SimGloss is a typical gloss-based measure from [8], cf. for-

mula (3), expanded and normalized following Definition 

14 ●  
 

Definition 14 – Expanded/Normalized Gloss Similarity 

Measure: Given concepts c1 and c2 in a semantic network SN, we 

define an expanded version of the basic gloss-based measure from 

 

10
  Semantic relatedness is more general than similarity: dissimilar concets may 

be semantically related by lexical relationships such as meronymy (car–

wheel), antonymy (dark–light), or any kind of functional relationship (e.g., 

pencil–paper, rain–flood). Most semantic similarity measures typically cap-
ture relatedness rather than just similarity, which is required in WSD [14].  

11
 Here, we use three typical semantic similarity measures, yet any other se-

mantic similarity measure can be used, or combined with the latter. 

[8] (cf. formula (3)) to include (in addition to the concept’s 

original gloss gloss(ci) and the glosses if its surrounding concepts 

in SN connected using different semantic relations gloss(rel(ci)) 

the concept’s set of synonymous words/expressions syns(ci) 

within its extended gloss, thus enriching the latter with more 

semantically related terms. Formally: 
   

 

   

1 2 1 1

1 1 1

2 2 1 0,  1  

Sim (c , c , SN)  = ExtGloss(c )  ExtGloss(c ) 

                                = gloss(c ) gloss( (c )  (c )  

                                   gloss(c ) gloss( (c )  (c )  



  

  

Gloss

rel syns

rel syns

 
(14) 

 

where the set overlapping (intersection scoring) mechanism, noted 

 (which was originally designed to assign a score of n2 to an n-

word overlap sequence, thus producing non-normalized scores 

following [8]12) is normalized as follows: 
   

1 2

2

2

1 1

       ExtGloss(c )  ExtGloss(c )

n

  [0,1]
(| ExtGloss(c )|, |ExtGloss(c )|)

 




m

Max

 
(15) 

 

having m the number of sequences of n consecutive overlapping 

words between the two extended glosses of c1 and c2, where m 

and n  [1, Max((|ExtGloss(c1)|,|ExtGloss(c2)|)] ● 
 

Lemma 6. The gloss similarity measure in Definition 14 produces 

normalized similarity scores  [0, 1] ● 

 
 

Proof of Lemma 6: Given formulas (14) and (15), SimGloss varies 

as follows: 
 

 The minimum value SimGloss = 0 is obtained when the two 

extended glosses of concepts c1 and c2 being compared are 

completely different, i.e., the number of n-word overlap 

sequences between the latter is = 0.  

 The maximum value SimGloss = 1 is obtained when c1 and c2 

have the exact same extended glosses, i.e., having one single 

n-word overlap sequence (m=1) where n = |ExtGloss(c1)| = 

|ExtGloss(c2)|. 

 The value of SimGloss increases with the increase of the number 

(m) and size (n) of n-word overlap sequences, and decreases 

otherwise.  
 
 

 

Algorithm XSDConcept for concept-based XML Semantic Disam-

biguation, following Definition 12, is provided in Fig. 9. It ac-

cepts as input a target XML node x and a user specified sphere 

neighborhood radius d, along with the source XML tree T and a 

reference semantic network SN. After generating x’ sphere neigh-

borhood Sd(x) and context vector ( )d xV  (line 1), each of the target 

label senses sp in SN is compared with the senses i
js  of each of the 

context node labels xi. (lines 3-9) weighted using corresponding 

sphere neighborhood vector weights 
 ( )

x( . )
d

iV x
w  (line 10). The 

target node sense with the maximum combined similarity score is 

 

12 The authors in [8] consider that a phrasal n-word overlap (i.e., overlap of a 

sequence of n consecutive words) is a much rarer occurrence than a single 
word overlap, and thus assign an n-word overlap the score of n

2
, which is 

greater than the sum of the scores assigned to those n individual word over-

laps which is equal to n (=1
2
 + 1

2
 + … n times). 
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then chosen as the output concept c which best describes the sense 

(meaning) of the target node’s label x. w.r.t. SN (lines 12-13). 

 
 

Algorithm XSDConcept 
 

Input: x, d         // Target XML node x and sphere neighborhood radius d 
           T             // Source XML tree 
            SN           // Reference semantic network 

Output: c          // Semantic concept representing the sense (meaning) of x.  
 

Begin                                                                                                                      1                                

Generate Sd(x)  T and ( )dV x   // Context vector of x in T                                     2                                                                                             

For each sp  SN  x. //  For each sense of the target node label              3 

{                                                                                                                          4 

For each xi  Sd(x)             //  Processing senses of context nodes                     5 

{                                                                                                                   6 

For each  i
j

s  SN  xi.{  i
j)Sim_Score(s =  Sim(sp, i

j
s )  }                7      

Max_Score(xi.) =  
i

ij

i
j

  .
)

s x
Max Sim_Score(s                                               8 

}                                                                                                                               9 

Concept_Score (sp, )  =  
 d

i

i iV (x)

dx   Sd(x)

x . x .

x

 ( ) ( )
 

| ( ) |

w






Max_Score

S

            10
 

}                                                                                                                          11 

c = sk  /  Concept_Score(sk) =   
 r

p  s x.
( )


Max Concept_Score s                              12 

Return c                                 //  Sense (concept) with maximum score                   13 
 

End                                                                                                                14 
 

Fig. 9. Concept-based XML Semantic Disambiguation algorithm. 

 

Special case: If the target node label x. is a compound word 

consisting of two tokens t1 and t2 for which no single match was 

found in the reference semantic network SN (Section 3.2), an 

average score for each possible combination of senses (sp, sq) 

corresponding to each of the individual token senses (sp for token 

t1, and sq for t2) is computed to identify the sense combination 

which is most suitable for the compound node label:  
 

Concept_Score((sp, sq), Sd(x), SN) =         

 
 

 i d
ij

i d

i
p p j iV (x)  .

d  S ( )x x

Max Sim s s s x .

0,1
S x

, SN, ) ( )

 
| ( ) |

w







 s x

(( ),

 

 

(16) 

where 

 
i i

p j q ji
p p j

Sim s s Sim s s
Sim s s s 0,1

, SN , SN
, SN

2

, ) , )
, )  


 

( (
(( ),  

 

 

Note that a compound context node label xi.which tokens 

1
it  and 

2
it  do not match any single concept in SN, is processed 

similarly to a compound target node label. 
 

3.5.2. Context-based Semantic Disambiguation 

It consists in comparing the target node sphere neighborhood in 

the XML tree with each of its possible sense (concept) sphere 

neighborhoods in the reference semantic network. To do so, we 

adopt the same notions of sphere neighborhood and context vector 

(Definitions 8-11) defined for XML nodes in an XML tree, to 

build the sphere neighborhood and context vector of a semantic 

concept in the semantic network. The only difference here is that 

sphere rings in the semantic network are built using the different 

kinds of semantic relationships connecting semantic concepts 

(e.g., hypernyms, hyponyms, meronyms, etc., cf. Definition 3 and 

Fig. 7), in contrast with sphere rings in an XML tree which are 

built using XML structural containment relationships (Definition 

2). Here, given a reference semantic network SN, a semantic 

concept c  SN, and a radius d’, we designate by Rd’,rel(c), Sd’(c), 

and ( )d' cV  the ring, sphere, and context vector of radius d’ corre-

sponding to concept c in SN respectively considering the different 

kinds of semantic relationships rel connecting c within SN. Note 

that linguistic pre-processing (cf. Section 3.2) can be applied to 

concept labels (when needed13) before building context vectors 

and computing vector weights. Formally:  
 
 

Definition 15 – Context-based Semantic Score: Given a 

target node x  XML tree T, its sphere neighborhood Sd (x)  T 

and context vector  ( )d xV , and given sp as one possible sense for 

x. in a reference semantic network SN, with its sphere 

neighborhood Sd’ (sp)  SN and context vector ( )pd' sV , we define 

Context_Score(sp, Sd(x), d’, SN) to quantify the semantic impact of 

sp as the potential candidate designating the intended sense 

(meaning) of x. within context Sd(x) in T w.r.t. SN, computed 

using a vector similarity measure between ( )d xV  and ( )pd' sV : 
 

Context_Score(sp, Sd(x), d’, SN) = cos( ( )d xV , ( )pd' sV ) [0, 1]  (17) 

where cos designates the cosine vector similarity measure14 ●    
 

Algorithm XSDContext for context-based XML Semantic Dis-

ambiguation, following Definition 15, is provided in Fig. 10.  

 
Algorithm XSDContext 
 

Input: x,  d, d’      // Target XML node x, sphere neighborhood radiuses d and d’ 

           T                  // Source XML tree 
            SN              // Reference semantic network 
 

Output: c        // Semantic concept representing the sense (meaning) of x.  

 
Begin                                                                                                                          1 
 

Generate Sd(x)  T and  ( )d xV     // Context vector of x in T                                     2                                                                                               

 

For each sp  SN  x.  // For each sense of the target node label              3 

{                                                                                                                             4 

Generate Sd’(sp)  SN and )d' p(sV              // Context vector of sp in SN           5 

 

Context_Score(sp)  =  
p

p

d d'

d d'

s

s

(x) ( )

(x) ( ) 

V . V

|| V ||× ||  V ||

  // Context similarity                   6
 

}                                                                                                                            7 

c = sk /  Context_Score(sk) =   
 r

p  s x.
( )


Max Context_Score s                            8 

Return c                                       // Sense (concept)  with maximum score               9 
 

End                                                                                                                       10 
 

Fig. 10. Context-based XML Semantic Disambiguation algorithm. 

 

XSDContext accepts as input a target XML node x and user specified 

sphere neighborhood radiuses d and d’, along with the source 

XML tree and a reference semantic network SN. After generating 

x’ sphere neighborhood Sd(x) and context vector ( )d xV  in T (line 

1), the algorithm generates the sphere neighborhood Sd’(sp) and 
 

13
 This depends on the semantic network (not required with WordNet). 

14
 We adopt cosine since it is widely used in IR [62]. Yet, other vector similari-

ty measures can be used, e.g., Jaccard, Pearson corr. coeff., etc.  
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context vector ( )pd' sV  for each of the target label senses sp in SN 

(lines 3-5).  It then compares the target node context vector ( )d xV  

with each of the label sense context vectors ( )pd' sV  using (co-

sine) vector comparison (line 6). Consequently, the target node 

sense with the maximum vector similarity score is chosen as the 

output concept c which best describes the sense (meaning) of the 

target node’s label x. w.r.t. SN (lines 8-9). 

Note that XML and semantic network sphere neighborhood 

sizes d and d’ are not strictly tied (and can be chosen differently 

by the user) since the semantic network’s structure can be quite 

different from the XML document structure (producing small-

er/larger contexts accordingly). 
 
 

 

Special case: If the target node label x. is a compound word 

consisting of tokens t1 and t2 for which no single match was found 

in the reference semantic network SN, an integrated score for each 

possible combination of senses (sp, sq) corresponding to the indi-

vidual token senses (sp for token t1, and sq for token t2) is comput-

ed. Here, the sphere neighborhoods and context vectors of indi-

vidual senses sp and sq are combined together to represent the 

context sphere of the combination of senses (sp, sq) in SN:  
 
 

 Concept_Score((sp, sq),Sd(x), SN)= cos( ( )d xV , ( ),p qd' s sV )  0,1  (18) 

 

where ( ),p qd' s sV  is a compound context vector generated based 

on compound sphere neighborhood Sd’(sp, sq) = Sd’(sp)  Sd’(sq). 

 

3.5.3. Combined Semantic Disambiguation 

While concept-based and context-based disambiguation can be 

applied separately as described in the above sections, yet we allow 

the user to combine and fine-tune both approaches (answering 

Motivation 4), producing a combined score as the weighted sum 

of concept-based and context-based scores: 
 

Combined_Score(sp, Sd(x), SN)  = 

wConcept  Concept_Score(sp, Sd(x), SN) + 

               wContext  Context_Score(sp, Sd(x), SN)        [0, 1] 

(19) 

 

where wConcept+ wContext =1 and (wConcept, wContext) ≥ 0 
 

Algorithm XSDCombined is an integration of algorithms 

XSDConcept and XSDContext and is thus omitted here for clarity. 
 

3.6. Complexity Analysis 

The overall time complexity of our XML disambiguation ap-

proach following XSDF simplifies to:

         | ( . ) | ( ) ( . )  + ( ) ( )d i d d pO T X senses x S x senses x S x S s    

where |T| designates the cardinality (in number of nodes) of the 

XML tree, |X| the total number of target XML nodes selected for 

disambiguation, x a target node, |senses(x.)| the total number of 

possible senses (concepts) of the target node’s label x. in the 

reference semantic network SN, (e.g., WordNet), |Sd(x)| the cardi-

nality of the sphere neighborhood context of x in the XML tree, 

xi Sd(x) a context node, |Senses(xi.)| the total number of possible 

senses of context node label xi., sp  senses(x.) a possible sense 

for target node label x., and |Sd(sp)| the cardinality of the sphere 

neighborhood of target label sense sp in SN. Complexity is evalu-

ated as the sum of the complexities of the four main phases of 

XSDF, and mainly amounts to the complexities of our concept-

base and context-based disambiguation algorithms: 
 

 The complexity of the three initial phases of XSDF: i) 

linguistic pre-processing (tokenization, stop word removal 

and stemming), ii) node selection for disambiguation 

(ambiguity degree computation), and iii) context definition 

and representation (sphere neighborhood and context vector 

generation) respectively amounts to: O(|T|  n  ||) + O(|T|) + 

O(|T|), which simplifies to O(|T|). 
 

 The complexity of our XML semantic disambiguation phase 

simplifies to: 

      

        | ( . ) | ( ) ( . )  + ( ) ( )d i d d pO X senses x S x senses x S x S s   
 

 The complexity of algorithm XSDConcept  (cf. Fig. 9) amounts 

to O(|senses(x.)|n  |Sd(x)|  |senses(xi.)|
n  (|SN|  

depth(SN)) + O(|gloss|2)), where: i) n designates the total 

number of tokens within the target (and context) node label 

(usually n=1, i.e., the label consists of a single word, and 

sometimes n=2 when the label consists of a compound 

word made of two terms15 without a single match in the 

SN), ii) O(|SN|  depth(SN)) underlines the complexity of 

the edge-based and node-based semantic similarity 

measures adopted in our study; and iii) O(|gloss|2)) is the 

time complexity of our gloss-based measure where gloss 

designates our extended gloss (including synonyms). Yet, 

given that SN designates a fixed reference throughout the 

disambiguation process (i.e., |SN|, depth(SN), and |gloss| 

remain unchanged), and given that the number of tokens per 

XML node label is usually n=1, XSDConcept’s complexity 

simplifies to O(|senses(x.)|  |Sd(x)|  |senses(xi.)|). 
 

 The complexity of algorithm XSDContext (Fig. 10) amounts to 

O(|senses(x.)|n  (|Sd(x)| + n |Sd(sp)|) where: i) O(|Sd(x)|  

|Sd(sp)|) designates the complexity of computing the cosine 

measure between context vectors ( )d xV  and ( )pd sV , and ii) n 

|Sd(sp)| designates the size of vector ( )pd sV  extended to 

cover the sphere neighborhoods of n context node label 

tokens when context node labels consists of compound 

words. Yet, given that the number of tokens per XML node 

label is usually n=1, XSDContext’s complexity simplifies to 

O(|senses(x.)|  (|Sd(x)| + |Sd(sp)|). 
 

 The complexity of algorithm XSDCombined consists of the 

sum of the complexities of XSDConcept and XSDContext and 

thus simplifies to: O(|senses(x.)|  |Sd(x)|  |senses(xi.)|) + 

O(|senses(x.)|  (|Sd(x)| + |Sd(sp)|) =

        | ( . ) | ( ) ( . ) + ( ) ( )d i d d pO senses x S x senses x S x S s  

    

 
 

 When applied to all target nodes |X|, the complexity of our 

XML semantic disambiguation phase becomes:

    
  

| ( . ) |   ( ) ( . )  + ( ) ( )d i d d p

x X

O senses x S x senses x S x S s


  

          | ( . ) | ( ) ( . ) + ( ) ( )d i d d pO X senses x S x senses x S x S s      

 

 

15
 Recall that having more than two terms per XML tag name is unlikely [106]. 
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Space complexity is similar to time complexity and simpli-

fies (in worst case) to the same time complexity factor. 

 

3.7. Parallel versus Incremental Disambiguation 

On one hand, XSDF’s architecture can be straightforwardly im-

plemented on a parallel (multi-core and/or multi-thread) pro-

cessing platform, since XML nodes targeted for disambiguation 

can be processed independent, and thus simultaneously (in paral-

lel). With parallel disambiguation, complexity simplifies to 

    | ( . ) |   ( ) ( . )  + ( ) ( )d i d d pO senses x S x senses x S x S s    time. 

On the other hand, XSDF can also be straightforwardly ex-

tended toward incremental disambiguation, where: i) nodes tar-

geted for disambiguation are processed one at a time, ii) ordered 

following their ambiguity degree, starting from the least (or most) 

ambiguous nodes, such that iii) the senses of initially disambigu-

ated nodes are utilized in processing subsequent nodes. While 

time complexity remains unaffected here (i.e., time is linear w.r.t. 

the number of target nodes, cf. Section 3.6), yet, incremental 

disambiguation might affect disambiguation quality: previously 

disambiguated nodes (senses) might affect the result quality 

(senses selected) for later disambiguated ones.  

In this study, we adopt the most basic XSDF design: i) non-

parallel with ii) no incremental processing, and defer the evalua-

tion of parallel and incremental disambiguation architectures to a 

dedicated upcoming study.  

4. Experimental Evaluation 

We have developed a prototype titled XSDF16 to test and compare 

our approach with its most recent alternatives. We have evaluated 

three criteria: i) semantic ambiguity, ii) disambiguation quality, 

and iii) time performance. 
 

4.1. Experimental Test Data 

We used a collection of 80 test documents gathered from several 

data sources having different properties (cf. Table 4), which we 

describe and organize based on two features: i) node ambiguity, 

and ii) node structure (cf. Table 1). The former feature highlights 

the average amount of ambiguity of XML nodes in the XML tree, 

estimated using our ambiguity degree measure, Amb_Deg  [0, 

1]. The latter feature describes the average amount of structural 

richness of XML nodes, in terms of node depth, fan-out, and 

density in the XML tree, estimated as the sum of normalized node 

depth (1-AmbDepth), fan-out, and density (1-AmbDensity) factors, 

averaged over all nodes in the XML tree, formally: 
 
 

 Depth DensityFan-out
w x.d w x.fw x.f

Struct_Deg(x, T) = + 0,1
Max( (T)) Max( - (T)) Max( - (T))depth fan out fan out

 
 

 (20) 

 

where wDepth+ wFan-out + wDensity =1 and (wDepth, wFan-out, wDensity) ≥ 0.  
 

High node depth, fan-out, and/or density here indicate a highly 

structured XML tree, whereas low node depth, fan-out, and/or 

density indicate a poorly structured tree (relatively flat document).  

In our experiments, we set equal weights wDepth = wFan-out = 

wDensity = 1/3 when measuring Struct_Deg (Table 1). As mentioned 

previously, we do not address the issue of assigning weights, 

which could be performed using optimization techniques (e.g., 

linear programming and/or machine learning [38, 60, 66]) to help 

fine-tune input parameters and obtain optimal results (Section 

 

16
  Available online at http://sigappfr.acm.org/Projects/XSDF/ 

3.3). Such a study would require a thorough analysis of the rela-

tive effect of each parameter on disambiguation quality, which we 

report to a dedicated study. 
Table 1. XML test documents organized based on average node           

ambiguity and structure 
17. 

 Structure + Structure – 

Ambiguity + 
Group 1 

Amb_Deg = 0.1127 & 

Struct_Deg = 0.6803 

Group 2 
Amb_Deg = 0.1378 & 

Struct_Deg = 0.6621 

Ambiguity – 
Group 3 

Amb_Deg = 0.0625 & 

Struct_Deg = 0.612 

Group 4 
Amb_Deg = 0.0447 & 

Struct_Deg = 0.5515 

 

4.2. XML Ambiguity Degree Correlation 

We compared XML node ambiguity ratings produced by human 

users with those produced by our system (i.e., via our ambiguity 

degree measure, Amb_Deg, cf. Section 3.3), using Pearson’s 

correlation coefficient, pcc = XY/(XY) where: x and y desig-

nate user and system generated ambiguity degree ratings respec-

tively, X and Y denote the standard deviations of x and y respec-

tively, and XY denotes the covariance between the x and y varia-

bles. The values of pcc  [-1, 1] such that: -1 designates that one 

of the variables is a decreasing function of the other variable (i.e., 

values deemed ambiguous by human users are deemed unambigu-

ous by the system, and viceversa), 1 designates that one of the 

variables is an increasing function of the other variable (i.e., val-

ues are deemed ambiguous/unambiguous by human users and the 

system alike), and 0 means that the variables are not correlated. 

Five test subjects (two master students and three doctoral students, 

who were not part of the system development team) were in-

volved in the experiment. For each (of the 80) test document(s) in 

our datasets, manual ambiguity ratings (in the form of integers  

[0, 4], i.e.,  [min, max] ambiguity) where acquired from each 

tester for 12-to-13 randomly pre-selected nodes18, i.e., a total of 

1000 nodes (during an average 10 hours rating time per tester). 

We first quantified cross-(human) tester agreement, by computing 

pair-wise correlation scores among testers for each of the rated 

datasets (cf. Table 2, Fig. 11, Fig. 12, and Fig. 13). One can realize 

that average cross-tester correlation levels are relatively low when 

rating datasets with high ambiguity (cf. Groups 1 and 2 in Table 2) 

and increase when rating datasets with low ambiguity (cf. Groups 

3 and 4 in Table 2). On one hand, we realized that testers tend to 

agree less when rating ambiguous documents: certain testers 

provide high ambiguity scores for some XML node labels (con-

sidering them to be highly ambiguous) whereas other testers 
 

17 We organized documents based on ambiguity first, and structure second. 

This explains why Group 2 has approximately the same Struct_Deg as 

Group 3 (whose value is slightly smaller than that of Group 2): since Group 

2 has a higher Amb_Deg than Group 3. We adopted this organization since 

ambiguity is the foremost feature targeted in this study, which also allowed 

us to improve and facilitate the discussion of experimental results later. 
18

 The human testers were provided: i) the source XML documents where the 

nodes targeted for ambiguity rating were highlighted, and ii) a document 
with instructions on how to rate, including a table containing all target nodes 

to which they should assign their ratings. Testers were instructed to check 

each node’s context in the XML document while providing ratings, without 

however informing them of the nature/size/span of the context. This was 

done on purpose since we wanted our human testers to rely each on her/his 

own basic understanding/intuition about the “context” of a node (rather than 

follow any predefined mathematical concept) in providing her/his ratings. 
Sample test documents and ratings are provided online. 
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provide low ambiguity scores when rating the same node labels 

(considering them to be less ambiguous), hence yielding low 

tester correlation (cf. scores of Groups 1 and 2 in Table 2). One 

can also realize this discrepancy in human ratings among node 

labels of the same dataset/document: nodes of higher average 

ambiguity show higher discrepancy in individual tester ratings 

(e.g., labels “line” in Fig. 11.a and “header” in Fig. 12.a where 

tester ratings are significantly different) in comparison with labels 

of lower average ambiguity (e.g., labels “scene description” Fig. 

11.a and “item type” in Fig. 12.a where tester ratings are almost 

identical). This was expected since it seemed normal that different 

human testers perceive the meanings of ambiguous 

nodes/documents differently. On the other hand, testers tend to 

agree more when rating documents which are less ambiguous: 

most testers provide similar scores for the same XML node labels 

(usually agreeing when labels are of low ambiguity, and some-

times agreeing when labels are of high ambiguity, cf. Fig. 13.a), 

hence yielding high tester correlation (cf. scores of Groups 3 and 

4 in Table 2). On the whole, considering all inter-tester correla-

tions over all datasets highlights an overall average correlation 

score of 0.411, which seemed a “reasonably” high inter-tester 

correlation given the diversity of the documents being rated 

(hence considering the obtained average tester ratings as a “rea-

sonably” acceptable reference for empirical evaluation). Subse-

quently, we produced average human tester ratings per target 

XML node label in each dataset, which then were correlated with 

system ratings, computed with variations of Amb_Deg’s parame-

ters to stress the impact of its factors (AmbPolysemy, AmbDepth, and 

AmbDensity): i) Test #1 considers all three factors equally (wPolysemy 

= wDepth = wDensity = 1), ii) Test #2 focuses on the polysemy factor 

(wPolysemy =1 while wDepth = wDensity = 0), iii) Test #3 focuses on the 

depth factor (wDepth =1 while wPolysemy = 0.2 and wDensity = 0), iv) 

Test #4 focuses on the density factor (wDensity =1, wPolysemy = 0.2 

and wDepth = 0).  
 

Table 2. Correlation between human tester ratings. 

  Testers 
Avg. 

  1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5 

Group 1 Dataset 1 -0.254 0.681 0.239 0.051 -0.283 -0.184 0.185 -0.104 0.498 -0.394 0.043 

Group 2 Dataset 2 -0.028 0.580 -0.024 0.405 -0.160 0.333 0.051 -0.215 0.498 0.157 0.16 

Group 3 

Dataset 3 0.061 0.522 0.284 0.284 0.194 -0.287 -0.287 0.486 0.486 1 0.274 

Dataset 4 0.128 0.127 0.269 0.269 0.223 0.471 0.471 0.467 0.467 0.986 0.388 

Dataset 5 0.527 0.818 0.818 0.818 0.365 0.365 0.365 1 1 1 0.707 

Group 4 

Dataset 6 0.552 1 1 0.114 0.553 0.553 0.373 1 0.114 0.114 0.537 

Dataset 7 0.944 1 1 1 0.944 0.944 0.944 1 1 1 0.977 

Dataset 8 -0.219 0.277 0.178 -0.026 0.436 0.311 0.536 0.742 0.225 0.423 0.288 

Dataset 9 0.2282 -0.08 -0.083 -0.08 0.219 0.228 0.219 0.961 0.923 0.961 0.35 

Dataset 10 0.401 1 1 -0.123 0.401 0.401 -0.024 1 -0.123 -0.123 0.381 

 
Table 3. Correlation between human ratings and system generated ambi-

guity degrees. 

 
Test #1 

All factors 

Test #2 

Polysemy 

Test #3 

Depth 

Test #4 

Density 

Group 1 Dataset 1 0.394 0.411 0.335 0.439 

Group 2 Dataset 2 0.017 0.181 0.243 0.139 

Group 3 

Dataset 3 -0.087 -0.139 -0.071 -0.138 

Dataset 4 0.408 0.438 0.390 0.398 

Dataset 5 -0.184 -0.185 -0.131 -0.235 

Group 4 Dataset 6 -0.284 -0.291 -0.243 -0.316 

Dataset 7 -0.177 -0.190 -0.254 -0.143 

Dataset 8 -0.119 -0.025 0.033 -0.156 

Dataset 9 -0.452 -0.301 -0.251 -0.456 

Dataset 10 -0.258 0.180 0.412 0.276 

Results are compiled in Table 3. Detailed manual and system 

ambiguity ratings concerning the three extreme correlations scores 

(maximum, closest to null, and minimum scores, highlighted in 

bold in Table 3) are shown in Figures 11-13. 
 

 

 
 

XML node labels are ordered on the x-axis in descending order 
 of average ambiguity rating (from the most to the least ambiguous) 

 

 

 
 

 

Fig. 11. Manual and system generated average ambiguity degrees high-

lighting maximum correlation with documents of Dataset 1 of 

Group 1. The x axis represents sample node labels (tag 
names/values) statistically selected to describe Dataset 119. 

 

Results in Table 3 and Figures 11-13 show that the highest 

correlation scores are obtained when evaluating nodes of Dataset 

1 in Group 1 (high ambiguity and rich structure), with a maxi-

mum corr = 0.439 with Test #4 (using the density factor of 

Amb_Deg). The lowest scores with all four tests are obtained with 

Dataset 9 in Group 4 (low ambiguity and poor structure), with a 

minimum corr = -0.456 with Test #4. Close to null scores are 
 

19
  Node labels shown in the graphs of Figures 11, 12, and 13 are snapshots of 

those in the corresponding datasets, statistically sampled to represent corre-
lation score variation between extremes (maximum, closest to null, and min-
imum scores) describing the node label distribution in each dataset. 
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obtained with Dataset 2 of Group 2 (high ambiguity and poor 

structure), Dataset 3 of Group 3 (low ambiguity and rich struc-

ture), and Dataset 8 of Group 4 (low ambiguity and poor struc-

ture), such that the closest to null score corr = 0.017 is obtained 

with Dataset 2 of Group 2 in Test #1 (combining all factors of 

Amb_Deg). The above results highlight several observations. 
 

1) When highly ambiguous and highly structured XML 

nodes are involved (e.g., Group 1), XML ambiguity seems to be 

perceived and evaluated similarly by human users and our system, 

obtaining maximum positive correlation between human and 

Amb_Deg scores (cf. visualized sample in , cf. Fig. 11.b). 
 

 
 

 

 

 
 

XML node labels are ordered on the x-a

XML node labels are ordered on the x-axis in descending order 
of average ambiguity rating (from the most to the least ambiguous) 

 

 

 
 

Fig. 12. Manual and system generated average ambiguity degrees high-

lighting closest to zero (null) correlation with Dataset 2 of Group 2.  
 

2) When less ambiguous and/or poorly structured XML 

nodes are involved, ambiguity seems to be evaluated differently 

by users and our system, attaining: negative or close to null corre-

lation when low ambiguity and/or poorly structured XML nodes 

are evaluated: i) negative correlation (opposite ambiguity scores) 

when low ambiguity and poorly structured XML nodes are evalu-

ated (e.g., Group 4, cf. visualized sample in Fig. 13.b), ii) close to 

null correlation (broadly related or unrelated ambiguity scores) 

with either low ambiguity and/or poorly structured nodes (e.g., 

Groups 2, 3, and 4), and iii) varying correlation (ranging from 

positive to negative scores) when less ambiguous nodes are evalu-

ated (e.g., Dataset 4 in Group 3 yields a positive correlation score, 

whereas Datasets 3 and 5 yield close to null and negative scores). 

These contradictory and/or unrelated correlation scores are 

mainly due to the intuitive understanding of semantic meaning by 

humans, in contrast with the intricate processing done by our 

automated system. For instance, regarding documents of Dataset 9 

of Group 4 (conforming to the personnel.dtd grammar of the 

Niagara XML document collection, cf. Fig. 14), the meaning of 

child node label “state” under node label “address” was obvious 

for our human testers (providing an ambiguity score of 0/4). Yet, 

the interpretation of the meaning of “state” is not so obvious for a 

machine, especially using a rich lexical dictionary such as 

WordNet where word “state” has 8 different meanings. Here, a 

label considered relatively unambiguous from the user’s point of 

view was assigned a higher ambiguity score by the system based 

on the expressiveness of the lexical reference. 
 

 

 
XML node labels are ordered on the x-axis in descending order 

of average ambiguity rating (from the most to the least ambiguous) 
 
 

 
 
 
 

 
 
 

 

Fig. 13. Manual and system generated average ambiguity degrees high-
lighting minimum correlation with Dataset 9 of Group 4 (Fig. 14). 
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Table 4. Characteristics of test documents.  
 

Groups Datasets 
Source 

dataset 
Grammar N# of docs 

Avg. N#    

of nodes   

per doc 

Node label polysemy 

(N# of senses) 
Node Depth Node Fan-out Node Density 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

Group 1 1 Shakespeare collection
20

 shakespeare.dtd 10 192.054 7.052 30 3.687 6 0.604 20 0.38 6 

Group 2 2 Amazon product files
21

 amazon_product.dtd 10 113.333 8.407 72 4.309 7 0.539 13 0.38 6 

Group 3 

3 SIGMOD Record
22

 ProceedingsPage.dtd 6 39.375 4.615 16 2.743 6 0.692 9 0.692 9 

4 IMDB database
23

 movies.dtd 6 15.475 4 10 2.666 5 1.066 5 1 5 

5 Niagara collection
24

 bib.dtd 8 26.5 4.384 13 2.961 5 0.884 5 0.884 5 

Group 4 

6 W3Schools
25

 cd_catalog.dtd 4 16.5 3.937 10 2.312 3 0.812 6 0.812 6 

7 W3Schools food_menu.dtd 4 16 2.375 7 2.437 3 0.562 4 0.562 4 

8 W3Schools plant_catalog.dtd 4 11.675 3.454 15 2 3 1.181 6 1.181 6 

9 Niagara collection personnel.dtd 4 19 3.947 9 2.368 5 1.157 4 1.157 4 

10 Niagara collection club.dtd 4 15.5 4.533 10 2.266 4 1.4 5 1.4 5 

 
 

3) Concerning Amb_Deg’s parameter weight variations (for 

wPolysemy, wDepth, and wDensity) with tests 2-4, all three parameters 

seem to have comparable impacts on ambiguity evaluation. This 

can be clearly seen in Table 3 where similar correlation scores are 

obtained for each dataset when running Tests #2-4. 20 21 22 23 24 25 
 

 

<?xml version="1.0"?> 

<company> 

      <cname id="id3_4">Informix</cname> 

      <address> 

             <street>123 6th Ave W</street> 

             <city>Portland</city> 

             <state>OR</state> 

             <zip>54678</zip> 

       </address> 

       <personnel> 

            <person> 

                 <name> 

                      <given>Fran</given> 

                      <family>Car</family> 

                 </name> 

                <url>http://null</url> 

          </person> 

      </personnel> 

</company> 
 

 

<?xml encoding="ISO-8859-1"?> 
<!ELEMENT company (address, cname,  
                                         personnel)> 
<!ATTLIST comapny id ID #REQUIRED> 
<!ELEMENT address (street, city, state, zip)> 
<!ELEMENT personnel (person)+> 
<!ELEMENT person (name, email?, url?)> 
<!ELEMENT family (#PCDATA)> 
<!ELEMENT given (#PCDATA)> 
<!ELEMENT name (family?|given?)> 
<!ELEMENT cname (#PCDATA)> 
<!ELEMENT email (#PCDATA)> 
<!ELEMENT street (#PCDATA)> 
<!ELEMENT city (#PCDATA)> 
<!ELEMENT state (#PCDATA)> 
<!ELEMENT zip (#PCDATA)> 
<!ELEMENT url (#PCDATA)> 
 

 

Fig. 14. Sample XML document from Dataset 9 of Group 4, with corre-

sponding grammar. 
 

Note that certain parameters naturally have more impact in 

certain cases, based on the nature of the XML data involved. For 

instance, XML files with uneven distributions of depth, such as 

those in Dataset 2 of Group 2 (Amazon products file), containing 

nodes of depth 0 or 1 and others of depth 9, produce the highest 

correlation score with Test #3 (0.243) which evaluates the depth 

factor of Amb_Deg. 

Likewise, XML files with uneven distributions of density, 

such as those in Dataset 1 of Group 1 (Shakespeare plays), in 

which there are nodes with 0 or 1 distinct children and others with 

6 distinct children, produce the highest correlation score with Test 

#4 (0.439) which evaluates the density factor of Amb_Deg. Note 

that when XML documents do not contain serious disparities in 

XML structure (i.e., depth and density factors are almost homoge-

neous across all nodes), the polysemy factor would naturally have 

the highest impact in evaluating ambiguity, such as with Dataset 4 

of Group 3 (IMDB movies file) where maximum correlation is 

reached with Test #2 evaluating the polysemy factor of Amb_Deg.  

Note that evaluating XML node ambiguity is not addressed in 

existing methods (they do not select target nodes, but rather dis-

 

20
 Available at http://metalab.unc.edu/bosak/xml/eg/shaks200.zip 

21
 Available at simply-amazon.com/content/XML.html 

22
 Available at  http://www.acm.org/sigmod/xml 

23
 Data extracted from http://www.imdb.com/ using a wrapper generator. 

24
 Available at http://www.cs.wisc.edu/niagara/ 

25
 Available from http://www.w3schools.com 

ambiguate all of them, which can be complex and needless). 

4.3. XML Semantic Disambiguation Quality 

In addition to evaluating our XML ambiguity degree measure, we 

ran a series of experiments to evaluate the effectiveness of our 

XML disambiguation approach. We used the same test datasets 

described previously. Target XML nodes were first subject to 

manual disambiguation (12-to-13 nodes were randomly pre-

selected per document yielding a total of 1000 target nodes, allow-

ing the same human testers to manually annotate each node by 

choosing appropriate senses from WordNet, which required on 

average 22 hours per tester) followed by automatic disambigua-

tion. We then compared user and system generated senses to 

compute precision, recall and f-value scores. 
 

4.3.1. Testing with Different Configurations 

We first tested the effectiveness of our approach considering its 

different features and possible configurations, considering: i) the 

properties of XML data (w.r.t. ambiguity and structure), ii) context 

size (sphere neighborhood radius), and iii) the disambiguation 

process used (concept-based, context-based, and the combined 

approaches). Note that when applying the concept-based 

(XSDConcept) and the combined (XSDCombined) disambiguation algo-

rithms, semantic similarity measures were considered with identi-

cal parameter weights (wEdge = wNode = wGloss = 1/3 = 0.3334). 

Note that in this study, we do not address the issue of assigning 

semantic similarity weights, which could help the user fine-tune 

the latter algorithms to obtain optimal results. Such a study would 

require a dedicated analysis of the relative effect of each individu-

al measure on concept-based disambiguation, which is out of the 

scope of this paper. In the following, we show average f-value 

results in Fig. 15 (precision and recall levels follow similar pat-

terns and are omitted for clarity). Several interesting observations 

can be made here. 
 

1) Considering XML data properties, our approach produced 

consistent f-value levels  [0.55, 0.69] over all the tested configu-

rations. The highest levels were reached with XML nodes of 

Dataset 1 of Group1 having high ambiguity and rich structure, 

which resonates with the node ambiguity results discussed in the 

previous section: highly ambiguous and structurally rich XML 

nodes seem to be most effectively processed by our approach, in 

comparison with less ambiguous/structurally poor nodes. 
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a. F-value results with Group 1. 

 

b. F-value results with Group 2. 

  
 

c. F-value results with Group 3. 

 

d. F-value results with Group 4. 
 

 
 

Fig. 15. Average f-value scores considering different features and configu-

rations of our approach26.  
 

2) Considering context size, optimal f-value levels are ob-

tained with the smallest sphere neighborhood radius d=1 with 

Group 1 (high ambiguity and rich structure XML nodes), whereas 

optimal levels are obtained with larger contexts having d=3                   

with Groups 2, 3, and 4 (low ambiguity and/or poor structure). 

This is expected since increasing context size with highly ambig-

uous/structure rich XML would increase the chances of including 

noise (e.g., unrelated/heterogeneous XML nodes) in the disam-

biguation context and thus disrupt the process. Yet, increasing 

context size with less ambiguous/poorly structured XML could 

actually help in creating a large-enough and/or rich-enough con-

text to perform effective disambiguation. 
 

In both cases, the above results emphasize the need for a 

flexible approach (such as ours), allowing the user to fine-tune 

context size based on the nature and properties of the data in order 

to optimize disambiguation results. 
 

3) Considering the disambiguation process, one can realize 

that the concept-based approach (XSDConcept) generally produces 

higher f-value levels in comparison with the context-based ap-

proach (XSDContext), the latter appearing to be more sensitive to 

context size (especially with Groups 2, 3, and 4). This is expected 

since algorithm XSDContext primarily depends on the notion of 

context and context nodes, in both the XML document and seman-

tic network, and thus increasing/decreasing context size would 

disturb its effectiveness. The effect of context size here could be 

aggravated when using a rich semantic network (such as 

WordNet) where a small increase in sphere neighborhood radius 

could include a huge number of concepts (synsets) in the semantic 

network context vector, thus adding considerable noise. Yet, algo-

rithm XSDConcept seems less sensitive to varying context sizes since 

 

26 When applying the context-based (XSDContext) and combined (XSDCombined) 
disambiguation algorithms, XML and semantic network sphere neighbor-
hood radiuses d and d’ were tied such that d’ = d, since our objective here 
was to evaluate the effect of increasing/decreasing context size (mainly in 
the XML document), regardless of the nature of the context itself.   

it largely focuses on individual context nodes and their possible 

senses: i) even with a small number of context nodes (small con-

text size), the number of combination of possible senses would be 

enough to provide good quality disambiguation, and ii) increasing 

the number of context nodes (i.e., by increasing context size) 

increases the number of possible sense combinations, which does 

not necessarily (or drastically) reduce quality since the best sense 

combination (i.e., the right sense) can still be identified with 

reduced noise effect.  

Results also show that the combined approach, using 

XSDCombined, seems to provide a good compromise, emphasizing 

(once more) the usefulness of having a tunable approach allowing 

the user to adapt the process following her needs. 
 

4.3.2. Comparative Study 

In order to further evaluate our approach, we have conducted a 

comparative study to assess its effectiveness w.r.t. related XML 

disambiguation methods. A qualitative comparison is shown in 

Table 6. In short, XSDF: i) considers both XML structure (tag 

names) and content (element/attribute values), ii) identifies and 

selects ambiguous XML nodes as targets for disambiguation, iii) 

considers sphere neighborhood as comprehensive XML context 

model including all XML structural relationships within a certain 

radius from the target node, iv) allows the user to choose context 

size (radius) following her needs, v) represents sphere neighbor-

hoods as context vectors following a relational information model 

considering structural proximity between XML nodes, vi) intro-

duces a hybrid approach combining two disambiguation algo-

rithms (XSDConcept and XSDContext), allowing the user to fine-tune 

disambiguation parameters following her needs. On the other 

hand, existing approaches: i) only consider XML structure (disre-

garding element/attribute values) [57, 58, 95, 106], ii) do not 

address the issue of automatically selecting target nodes for dis-

ambiguation [57, 58, 95, 106], iii) consider XML contexts with 

partial coverage of XML data such as with parent node [97, 98], 

sub-tree [106] or root path models [95], iv) are static in that con-

text size is pre-defined [95, 97, 98, 106] and cannot be adapted by 

the user, v) represent contexts as sets of nodes using the bag-of-

words paradigm [95, 106], disregarding structural proximity 

among nodes, vi) use static disambiguation algorithms which 

cannot be easily tuned by the user [57, 58, 95, 106].  

We have also experimentally compared our method's effec-

tiveness with two of its most recent alternatives, i.e., RPD (Root 

Path Disambiguation) [95], and VSD (Versatile Structure Disam-

biguation) [57]27. We ran a battery of experiments on the same 

experimental data groups (described in Section 4.1), considering 

the same target XML nodes (considered in Section 4.3.1). Here, 

we provide a compiled presentation considering optimal input 

parameters for our approach (i.e., context size d=1 when pro-

cessing Groups 1 and 4 using the concept-based disambiguation 

process, d=1 when processing Group 2 using the combined ap-

proach, and d=3 when processing Group 3 using the combined 

 

27
 RPD and VSP were developed within standalone disambiguation approaches 

(including the whole pipeline from linguistic pre-processing to sense map-
ping) which we could compare with our approach. In contrast, we could not 
compare our method with the parent node context [97] and sub-tree context 
[106] approaches since they were not developed as standalone disambiguation 
processes, but were integrated within specific applications (i.e., XML seman-
tic search and document classification respectively). 
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approach)28, as well as optimal input parameters for each of the 

alternative disambiguation approaches, as indicated in their corre-

sponding studies. Results in Fig. 16 show that our method yields 

precision, recall, and f-value levels higher than those achieved by 

its predecessors, with almost all test cases except for two: VSD 

produces better results with Group 3 (Fig. 16.c), and RPD produc-

es better results with Group 4 (Fig. 16.d). 

Here, one can realize that XML nodes in Groups 3 and 4 are 

less ambiguous and poorly structured in comparison with the first 

two test groups (cf. Table 1). As a result, choosing a reduced 

context made of root path nodes (with VSD) or select/reachable 

context nodes (with RPD) has proven to be less noisy (including 

less context nodes) in these cases, in comparison with the more 

comprehensive context models used with our approach. 
 

 

 

 

 

 
 

a. Results with Group 1.  
 

b. Results with docs of Group 2. 

 

 
 

 

 

 

 

 
 

c. Results with Group 3.  
 

d. Results with Group 4. 

 
 

Fig. 16. Average precision, recall and f-value scores comparing our 

approach with RPD [95] and VSD [57]. 
 

One can also realize that our method produces highest precision, 

recall, and f-value levels with Group 1 (high ambiguity and rich 

structure XML nodes), with average 44% improvement over RDP 

and VSD (Fig. 16.a), in comparison with average 15% with Group 

2, and almost 0% improvements with Groups 3 and 429. This 

concurs with our results of the previous section: our method is 

more effective when dealing with highly ambiguous nodes within 

a rich XML structure, in comparison with less ambiguous/poorly 

structured XML. Overall precision, recall, and f-value results in 

Table 5 averaged over all four groups of XML test data, confirm 

our method’s improvement in comparison with RPD and VSD. 
 

Table 5. Precision, recall, and f-value results averaged over all groups of 

XML documents (Fig. 16), comparing our approach with its alternatives. 

 
Precision Recall F-value 

XSDF 0.5447 0.5226 0.5312 

RPD [95] 0.3946 0.4737 0.4828 

VSD [57] 0.4728 0.4598 0.4659 

 

28
  Manually identified from repeated tests with different parameter values. 

29
  We compute the average improvement (or deterioration) of XSDF over both 

RPD and VSD, for each of the test groups. 

4.4. Performance Evaluation 
 

In addition to testing the effectiveness of our approach in identify-

ing correct mappings, we evaluated its efficiency in terms of 

execution time. 

 
 

 

 
 

 

 

 
 

 

Fig. 17. Timing results regarding our concept-based approach (when 
executing algorithm XSDConcept, cf. Fig. 9). 

 

 

 
 

 
 

 
 
 

 

Fig. 18.  Timing results regarding our context-based approach (when 
executing algorithm XSDContext, cf. Fig. 10). 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

Precision Recall F-value 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

Precision Recall F-value 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

Precision Recall F-value 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

Precision Recall F-value 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 100 200 300 400 

Ti
m

e
 (

in
 s

ec
o

n
d

s)
 

|Sd(x)| 

2 

3 

4 

5 

6 

|Senses (x)| & 
 |Senses (xi)| 

0 

20 

40 

60 

80 

100 

120 

0 100 200 300 400 

Ti
m

e
 (

in
 s

ec
o

n
d

s 


 1
00

) 

|X| 

1,1,10 

2,2,20 

3,3,30 

4,4,40 

5,5,50 

6,6,60 

7,7,70 

8,8,80 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0 100 200 300 400 

Ti
m

e
 (

in
 s

ec
o

n
d

s)
 

|Sd(x)|,|Sd(sj)| 

2 

3 

4 

5 

6 

|Senses (x)| 

0 

20 

40 

60 

80 

100 

120 

140 

0 100 200 300 400 

Ti
m

e
 (

in
 s

ec
o

n
d

s)
 

|X| 

1, 10, 10 

2, 20, 20 

3, 30, 30 

4, 40 ,40 

5, 50, 50 

6, 60, 60 

7, 70, 70 

8, 80, 80 

XSDF (our approach) RPD VSD 

(or  

|Senses (x)|, |Senses (x
i
)|, |S

d
(x)| 

 

|Senses(x), |Sd(x)|, |Sd(sj)| 

 

jenard
Rectangle



Tekli et al.: Building Semantic Trees from XML Documents 21 

 

Table 6. Comparing our method with existing approaches. 

Approaches 

Considers 

linguistic           

pre-processing 

Considers tag 

tokenization (com-

pound terms) 

Addresses 

XML  node 

ambiguity 

Integrates an 

inclusive XML 

structure context 

Flexible w.r.t. 

context size 

Adopts relational 

information approach 

Combines the results     

of various semantic 

similarity measures 

Straightforward 

mathematical 

functions 

Disambiguates 

XML structure 

and content 

RPD [95] √ x x x x x x x x 

VSD [57] √ √ x √ √ √ x x x 

XSDF (our approach) √ √ √ √ √ √ √ √ √ 
 

 
Results highlight the linear complexities of both our concept-

based approach (using algorithm XSDConcept)  i.e., O(|senses(x.)|  

|Sd(x)|  |senses(xi.)|) (Fig. 17) and our context-based approach 

(using algorithm XSDContext), i.e., O(|senses(x.)|  (|Sd(x)| + 

|Sd(sp)|) (Fig. 18). Time is also linear w.r.t. the number of target 

nodes being disambiguated, designated as |X|. 

 
    

   
 

 

Fig. 19. Comparing time results with existing Root Path Disambiguation  
approach [95]. 

 

We have also compared the time complexity of our approach, 

using different configurations, with one of its most recent prede-

cessors. Results in Fig. 19 show closely correlated and even re-

duced time results (depending on the configuration used, e.g., 

smaller context radiuses in XML document and/or in the reference 

semantic network). This means that our approach was able to 

produce improved disambiguation quality while preserving (and 

sometimes reducing) execution time levels in comparison with its 

alternatives30. 

A future goal is to extend our algorithms’ designs and imple-

mentations, using XML-based parallel processing techniques, 

namely micro- and macro-level processing architectures (using 

bit-level, data-level, and/or instruction-level parallelism) [105], 

aiming to further increase the processing speed of our disambig-

uation process. A snapshot of the experimental study (along with 

sample test documents and user ratings) is available online31. 

5. Applications 

In this section, we discuss some of the main application scenarios 

which can benefit, in one way or another, from XML semantic 

analysis and disambiguation. Most of these applications are built 

around methods for XML structure and semantic similarity evalua-

tion, e.g., [4, 99, 102], i.e., comparing the structural positions of 

XML element/attribute nodes in the XML document tree while 
 

30  Note that we did not compare execution time with the Versatile Struc-
ture Disambiguation approach [58] since we were unable to acquire the 
system implementation from the authors. We used the authors’ online 
version of the prototype, which is relatively slow due to network ac-
cess, and thus could not use it to evaluate processing time. 

31  http://sigappfr.acm.org/Projects/XSDF/ 

considering the semantic similarities between node labels and/or 

values. In this context, developing semantic-aware applications 

usually requires three main steps: 
 

a. XML semantic disambiguation: an initial pre-processing step 

to identify the intended meanings of node labels and/or values, 
 

b. XML similarity evaluation: comparing semantically augment-

ed XML trees w.r.t. the meanings of node labels/values identi-

fied in the initial step, 
 

c. Semantic-aware processing: an application specific step, 

where semantic-aware processing is undertaken based on 

XML semantic similarity evaluation. 
 

Accordingly, in this section, we present an overview of such 

applications which we gradually look at from different angles, 

starting from i) the layer of abstraction at which XML similarity is 

evaluated, and then describing high-end application domains 

covering: iii) Information Retrieval, iv) Web and Mobile Services, 

and v) the (Social) Semantic Web. 
 

5.1. XML Similarity at Different Abstraction Layers 
 

XML semantic similarity evaluation can take place at three differ-

ent abstraction levels: i) the data layer (i.e., document/document 

comparison), i) the type layer (i.e., document/grammar compari-

son), and ii) in-between the data and type layers [12], each under-

lining its own battery of semantic-aware applications. 
 

5.1.1 Similarity at the XML Data Layer 
 

Performing XML document/document comparison, is relevant in 

a variety of applications (cf. reviews in) [4, 102], such as data 

versioning, monitoring, and temporal querying: a user may want 

to view or access a version of a certain document (e.g., an 

XHTML Web site, a Web Service SOAP description, an RSS feed, 

etc.) which was available during a certain period of time, or may 

want to view the results of a continuous query, or monitor the 

evolution of a certain document in time. Such tasks can be imple-

mented using semantic-aware tree edit distance similarity 

measures which produce, along with the similarity score, an edit 

script consisting of a set of edit operations describing semantic 

changes to the disambiguated data (e.g., insert-

ing/deleting/updating semantically related nodes, to transform one 

XML document tree into another) [102]. Another application is 

document clustering, i.e., grouping XML documents together, 

based on their structural and semantic similarities, which can 

improve data storage indexing [80] and thus positively affect the 

data retrieval process [4]. Also, clustering is central is information 

extraction, wrapping, and summarization, allowing to automati-

cally identify the sets of semantically similar XML elements to be 

extracted from documents to be reformulated (e.g., substituting 

disambiguated node labels with semantically related ones), re-

structured, or summarized, making them easier to process in 

enterprise applications (e.g., adapting/simplifying the content of a 

Web page, blog, RSS feed, or Web Service description for non-

experts) [39, 92].  

 

0 

1000 

2000 

3000 

4000 

0 50 100 150 200 250 300 350 400 450 

Ti
m

e
 (

in
 s

ec
o

n
d

s)
 

Our Approach (Combined Disambiguation) (|Sd(x)|,|Sd(j)|=200) 
Our Approach (Combined Disambiguation) (|Sd(x)|,|Sd(j)|=120) 
Our Approach (Combined Disambiguation) (|Sd(x)|,|Sd(j)|=40) 
Root Path Disambiguation 

jenard
Rectangle



22 ELSEVIER Journal of Web Semantics 

 

5.1.2. Similarity at the XML Type Layer 

Performing XML grammar/grammar comparison, is also useful 

for many tasks (cf. reviews in) [24, 86], namely data integration, 

which consists in: i) comparing (matching) grammars to identify 

semantically related elements [103], and then ii) merging the 

matched elements within a unified grammar or semantic view 

[90]. Here, a disambiguation step is necessary to capture the 

meaning of grammar elements prior to performing grammar 

matching. Data integration allows the user to efficiently access 

and acquire more complete information (e.g., accessing similar 

Websites, blogs, or RSS feeds concurrently) [91]. It is also essen-

tial in performing data warehousing32, where XML information is 

transformed from different data-sources complying with different 

grammars into data conforming with grammars defined in the data 

warehouse [25]. Other applications include message translation in 

Business-to-Business (B2B) integration [15]: reconciling the 

semantics of XML message grammars used by trading partners in 

order to translate in-coming and out-going messages accordingly, 

which is essential in E-commerce and B2B applications [44]; and 

XML data maintenance and schema evolution: detecting the 

structural and semantic differences/updates between different 

versions of a given grammar to revalidate corresponding XML 

documents [48].  
 

5.1.3. Similarity between XML Data and Type Layers 
 

Performing XML document/grammar comparison, can also bene-

fit from XML disambiguation applied on the documents and 

grammars being compared, highlighting various applications (cf. 

review in) [99]. One such application is XML document classifica-

tion, i.e., categorizing XML documents gathered from the Web 

against a set of grammars declared in an XML repository. Here, 

evaluating semantic similarity between incoming disambiguated 

documents on one hand, and reference disambiguated grammars 

on the other hand (e.g., defined in the repository), allows the 

identification of entities that are conceptually close, but not syn-

tactically identical, which is common in handling heterogeneous 

XML sources, particularly on the Web where users have different 

backgrounds and no precise definitions about the matter of dis-

course [11]. Evaluating semantic similarity between documents 

and grammars can also be exploited in XML document retrieval 

via structural queries [89]: a query being represented as an XML 

grammar with additional constraints on content; as well as in the 

selective dissemination of information: user profiles being ex-

pressed as grammars against which the incoming XML document 

stream is matched [88]. 
 

5.2. Information Retrieval 
 

Information Retrieval (IR) is one of the leading application do-

mains requiring sophisticated semantic-aware and similarity-

based processing where systems aim at providing the most rele-

vant (similar) documents w.r.t. a user information need expressed 

as a search query. In this context, a wide range of techniques 

extending traditional IR systems to handle XML IR have been 

designed (cf. reviews in) [76, 102]. In brief, XML IR systems 

accept as input: i) a user query: expressed as an XML document 

[74], an XML fragment [16], an XML structured query (e.g., 

XPath or XQuery [13]), or as a set of keywords [116], and ii) an 

indexed XML document repository [52], and produce as output: a 

ranked list of XML elements (and their sub-trees)33 selected form 

 

32  A warehouse is a decision support database that is extracted from a set 
of data sources (e.g., different databases describing related data). 

33  Selecting a whole XML document as a potential answer comes down to 
selecting its root node (along with the corresponding sub-tree). 

the repository, and ordered following their relevance (similarity) 

w.r.t. the user query [98]. Hence, the quality of an XML IR engine 

depends on two key issues: i) how documents and queries are 

represented (indexed), and ii) how these representations are com-

pared (matched) to produce relevant results. Here, most solutions 

in the literature have explored syntactic XML indexing paradigms 

(based on node positions, paths, or structural summaries) integrat-

ed in dedicated inverted indexing structures, e.g., [52, 112].  

Yet, as XML data on the Web became increasingly available 

and diverse, element/attribute labels and values became noisier, 

such that syntactic indexing techniques could not keep pace [27]. 

As a result, non-expert users have been increasingly faced with 

what is described as the vocabulary problem [30]: query keywords 

chosen by users are often different from those used by the authors 

of the relevant documents, lowering the systems’ precision and 

recall rates. This highlights the need for XML disambiguation, 

where both the XML query and documents can be processed and 

represented using semantic concepts, instead of (or in addition to) 

syntactic keywords and element names/values (e.g., typical XML 

indexing techniques can be used, except that element 

names/values would be replaced with semantic concepts) [51]. 

then, query/document matching can be performed in the semantic 

concept space, instead of performing syntactic keyword/node 

label matching, thus extending XML IR toward semantic XML IR, 

or so-called concept-based XML IR [27]. Preliminary studies on 

semantic XML IR have shown that representing documents and 

queries using semantic concepts usually results in a retrieval 

model that is more effective and less dependent on the specific 

terms/node labels used, significantly increasing search precision 

and recall rates [85]. Note that semantic XML IR, and ontological 

(RDF/OWL34) IR, is presently a hot research topic [76, 85]. 
   

5.3. Web and Mobile Services 
 

Another interesting application area which requires XML seman-

tic disambiguation is the matching, search, and composition of 

Web Services (WS). A WS comes down to a self-contained, 

modular application that can be described, published, and invoked 

over the Internet, and executed on the remote system where it is 

hosted [82]. WS rely on two standard XML schemata: i) WSDL 

(Web Service Description Language) [20] allowing the definition 

of XML grammar structures to support the machine-readable 

description of a service’s interface and the operations it supports, 

and ii) SOAP (Simple Object Access Protocol) [113] for XML-

based communications and message exchange among WS end-

points. RESTful services have been recently promoted as a sim-

pler alternative to SOAP and WSDL-based WS [109]: communi-

cating over HTTP using HTTP request methods (e.g., Get, Post, 

Put, etc., instead of exchanging SOAP messages), and using 

XHTML or free test to describe the services (instead of WSDL) 

[78].  

Hence, when searching for WS (or RESTful services) achiev-

ing specific functions, XML (or XHTML/keyword) based service 

requests can be issued, to which are then matched and ranked 

service WSDL (or XHTML/keyword) descriptions, thus identify-

ing those services answering the desired requests. Here, matching 

and ranking service descriptions requires effective XML semantic 

analysis and disambiguation techniques, due to service author/user 

heterogeneity (same as the vocabulary problem in XML IR, cf. 

Section 5.2). The same applies for services discovery, recommen-

dation, and composition: searching and mapping together seman-

tically similar WSDL/SOAP descriptions when processing WS, 

and performing semantic-aware mapping of XHTML/keyword 
 

34   Refer to Section 5.4. 
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descriptions when dealing with RESTful and/or mobile services 

[56, 115]. XML similarity and differential encoding can also be 

utilized to reduce processing costs and improve the performance 

of SOAP communications [104]: comparing new SOAP messages 

with message patterns or WSDL grammars (at the message send-

er/receiver side), processing and transmitting only those parts of 

the messages which are different (cf. review in) [105].  
   

5.4. Semantic Web and Social Semantic Web 
 

Above all, the Semantic Web vision [10] benefits from most of the 

above-mentioned applications, as it inherently requires XML 

disambiguation to deal with the semantics of Web documents 

(encoded in XML-based format), to improve interoperability 

between systems, ontologies, and users. Typically, XML disam-

biguation can be utilized in ontology learning, to build domain 

taxonomies [108] and enrich/update large-scale semantic net-

works [72], based on user input data streams (e.g., Web pages, 

blogs, image annotations, etc.) encoded in XML. In this context, 

technologies such as RDF (Resource Description Framework) 

[59]), and OWL (Web Ontology Language) [63] can be used to 

construct such ontologies.  

RDF enables the definition of statements specifying relation-

ships between instances of data in the form of < subject, predi-

cate, object > triples, which designate that a resource (i.e., the 

subject) has a property (i.e., the predicate) whose value is a re-

source or a literal (i.e., the object). OWL is built on top of RDF 

and adds additional expressiveness which depends on the type of 

Description Logic (DL) language applied (OWL allows different 

levels of semantic expressiveness, ranging from OWL-Lite, to 

OWL-DL and OWL-Full [32]). As a result, RDF and OWL high-

light the concept of Linked Data: the seamless connection of 

pieces of information and knowledge on the Semantic Web [36], 

where a given resource (i.e., subject) can be associated with new 

properties (i.e., objects) via new relationships (i.e., predicates), 

and where additional statements (i.e., triples) can be easily added 

to describe resources and properties [32]. In this context, XML 

disambiguation is essential: to extract the semantic information 

form XML data so that it can be utilized or integrated with seman-

tic annotations from: i) reference ontologies, ii) previously anno-

tated (disambiguated) XML documents, or iii) user generated 

annotations (e.g., social tagging). Practical examples include 

integrating hotel and airline reservations, order processing, and 

insurance renewal with social networking information [55]. Also, 

augmenting Web data (in XML) with semantic annotations (i.e., 

triples) provides a way of blending traditional information with 

Linked Data and Semantic Web constructs [53].    

An emerging trend in this context is the integration of user 

information (e.g., user annotations, hash-tags, search queries, and 

selected search results), i.e., so-called social semantics [85], to 

semantically augment Web (XML-based) data. This underlines 

the concept of the Social Semantic Web [39, 85], a Web in which 

social interactions lead to the creation of collective and collabora-

tive knowledge representations such as Wikipedia, Yahoo An-

swers, and Flikr, providing semantic information based on human 

contributions and paving the way for various new applications 

ranging over: i) blog classification, e.g., introducing simple and 

effective methods to semantically classify blogs [87], ii) social 

semantic network analysis, e.g., disambiguating entities in social 

networks, and identifying semantic relationships between users 

[9], and iii) socio-semantic information retrieval, e.g., considering 

user information to improve/adapt Web data indexing, query 

formulation, result ranking, and result presentation techniques 

[73] (cf. reviews in [22, 85]). 

6. Conclusion 

This paper introduces a novel XML Semantic Disambiguation 

Framework titled XSDF, to semantically annotate XML docu-

ments with the help of machine-readable lexical knowledge base 

(e.g., WordNet), which is a central pre-requisite to various appli-

cations ranging over semantic-aware query rewriting [21, 68], 

XML document classification and clustering [94, 101], XML 

schema matching [24, 103], Web and mobile services’ discovery, 

recommendation, and composition [46, 56, 115], and blog analy-

sis and event detection in social networks [3, 9]. XSDF covers the 

whole disambiguation pipeline from: i) linguistic pre-processing 

of XML node labels to handle compound words (neglected in 

most existing solutions), to ii) selecting ambiguous nodes for 

disambiguation using a dedicated ambiguity degree measure 

(unaddressed in most solutions), iii) representing target node 

contexts as comprehensive and flexible (user chosen) sphere 

neighborhood vectors (in contrast with partial and fixed context 

representations, e.g., parent node or sub-tree context), and iv) 

running a hybrid disambiguation process, combining two (user 

chosen) methods: concept-based and context-based (in contrast 

with static methods). Experimental results reflect our approach’s 

effectiveness in selecting ambiguous XML nodes and identifying 

node label senses w.r.t. user judgments of semantic ambiguity. 

Comparative theoretical and experimental analyses highlight our 

approach’s effectiveness in comparison with existing methods. 

Time analysis underlines the linear impact of context size and 

polysemy (number of senses) among other factors, on disambig-

uation time. 

As continuing work, we are currently investigating different 

XML tree node distance functions (including edge weights, densi-

ty, direction, and the semantic similarity between parent/child 

nodes, etc. [31, 41]), to define more sophisticated neighborhood 

contexts. Fine-tuning user parameters using dedicated optimiza-

tion techniques [38, 60, 66] is another work in progress. We are 

also investigating the issue of semantic indexing [19], aiming  to 

put forward a dedicated XML indexing approach (based on struc-

tural indexing [26, 83], or extended vector-space representations 

[16, 74]), in order to allow effective and efficient XML semantic 

search and retrieval. We are also investigating the use of addition-

al/alternative lexical knowledge sources such as Google [42], 

Wikipedia [23], and FOAF [3] to acquire a wider word sense 

coverage, and thus explore our approach in practical applications, 

namely wiki document clustering, semantic blog analysis, and 

event detection in heterogeneous and collective social data [100]. 

In the near future, we aim to explore non-traditional processor 

architectures, including XML-based micro- and macro-level 

parallel processing solutions [105], to increase the processing 

speed of our disambiguation process. Comparing parallel and 

incremental disambiguation strategies would naturally follow. 
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