
HAL Id: hal-01912946
https://univ-pau.hal.science/hal-01912946

Submitted on 2 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed Architecture for Cooperative and
Adaptive Multimedia Applications
Philippe Roose, Marc Dalmau, Franck Luthon

To cite this version:
Philippe Roose, Marc Dalmau, Franck Luthon. A Distributed Architecture for Cooperative and
Adaptive Multimedia Applications. 26th International Computer Software and Applications Confer-
ence (COMPSAC 2002), Prolonging Software Life: Development and Redevelopment, 26-29 August
2002, Oxford, England, Proceedings, 2002, Oxford, United Kingdom. pp.444-449, �10.1109/CMP-
SAC.2002.1045041�. �hal-01912946�

https://univ-pau.hal.science/hal-01912946
https://hal.archives-ouvertes.fr

A Distributed Architecture for Cooperative and Adaptative
Multimedia Applications

Philippe Roose, Marc Dalmau, Franck Luthon
LIUPPA, IUT Bayonne

Château-Neuf, Place Paul Bert
64100 Bayonne, France

{dalmau|roose|luthon@iutbayonne.univ-pau.fr}

Abstract
Previously, we developed a method and a distributed
platform for the re-engineering of applications by adding
cooperation. The goal was to supply a way of
communication based on the exchange of events, messages
and shared data. Now, we propose to adapt this approach
(method and platform) to distributed multimedia
applications. These applications present the characteristic
to be organized around the communication. So, we can
consider them as composed of distributed components
which have to collaborate. Because it is heavily
interactive, such an application needs to adapt itself in
real-time to the user and to the environment in which it
runs. Our approach consists in breaking down the
application into two levels : the first one reflects the users’
point of view in terms of functionalities. The second one,
reflects the way to achieve these functionalities in terms of
quality of service. We propose to organize components
into workgroups and subworkgroups corresponding to this
two levels. The platform manages these groups and makes
them evolve in real time. It also ensures the inter-
operability of components which cooperate in these
groups.

1 Introduction

Our previous works were about a method for re-
engineering of applications to provide cooperation. This
method considers applications from a communication
between modules point of view. It allows a workgroup
organization of these modules and a specification of
information exchanges between modules and workgroups.
It is based on a platform which manages workgroups,
circulation of information and creation of information with
a higher semantic level. Actually distributed multimedia
applications are generally realized with distributed
components which are comparable to modules. With an
organizational point of view, they use the notion of

workgroup of components made up to realize a common
task using communication. So, these workgroups of
components may be considered as « super-components ».

The critical point in such applications is the need of a
high flexibility to provide a certain Quality of Service
(QoS). As they are very interactive, they have to adapt
themselves quickly to the user’s requests. Moreover, as
they are distributed, they have imperatively to manage the
QoS available at each moment on the network.

We recommend to structure such applications with
dynamic subworkgroups of components and dynamic
groups (composed of subworkgroups). A subworkgroup is
a set of components constituted to achieve a common task
respectively to a certain QoS (environment QoS). A group
is a set of subworkgroups constituted to realize a service
respectively to a user (user QoS). Such groups are
managed by rules included into the platform and allow the
dynamic reconfiguration of the application according to
QoS criteria evaluated by these rules. The circulating of
information between and inside dynamic workgroups is
done to respect the set of constraints (users, services,
throughput, time, etc.). To finish, the platform has a global
view of the application (fitting and exchanges). It does not
have an internal view of components (their functioning).

So, the platform can have a role of supervision,
particularly detecting some critical situations and trying to
solve them. Such interventions can be realized by
modifying the constitution of workgroups and
subworkgroups and creating some information in the
communication scheme.

2 Previous works : ELKAR

ELKAR [8] proposed both a method for the re-
engineering of applications and a software solution to
implement it. We were interested in providing cooperation
into existing applications to improve them. Generally,
users of these applications had, with the time, included
external solutions as file transfer, mail or even sometimes
re-input of information.

Our proposition handles the re-definition of the
application using existing modules and provides a practical
implementation. So, this re-engineering method is entirely
based on the structuring of the application with dynamic
workgroups and on the emphasis of elements of
cooperation (information that needs to circulate). It allows
to define rules used by the platform to automatically
manage the newly organized application.

2.1 The method

The method, entirely based on communication, has to
manage elements of cooperation which will be exchanged
between modules and workgroups. The first re-
engineering task consists in doing an inventory of existing
modules and information they will produce or use. In fact,
this is a kind of audit. Next, we need to organize these
modules into workgroups reflecting an organizational view
of the application and managing functional constraints.
Each workgroup can be now considered as an actor of the
application and we need to bring to the fore information it
needs and information it produces. The next step consists
in establishing workgroup management rules. It is
necessary to be sure that incompatible components may
not be included into workgroups and that incompatible
workgroups are not created. So, it is important to respect
conditions before including/removing an element of a
workgroup to avoid inconsistency. At this moment, we
have the totality of elements constituting the application :
actors (modules and workgroups) and elements of
cooperation (events, messages and data). Nevertheless,
some elements of cooperation identified as necessary
might not be directly available (produced by a module).
So, we need to define operators allowing to create them
from existing elements. We use specific rules (detective
rules [11]) which role is to capture some information
available in order to create those missing in the
application. And to finish with this study, we can write the
set of rules which may be used by the platform. There are
rules to do the circulating of information (with an eventual
formatting aspect), rules of supervision to manage dynamic
workgroups and those allowing to constitute elements of
cooperation not immediately available.

2.2 The ELKAR platform

Each site (physical localization) participating to the
application implements a platform allowing to provide
cooperation. This platform is made of :

- A Communication Manager (CM) : it receives all the
information sent to this site and ensures the emission
on the network of elements of cooperation to other

sites. Its knows the constitution of workgroups to send
information to local but also distant members.

- An Element of Cooperation Manager (ECM) : it
receives all the information locally produced and also
those received by the CM. Its role is to identify
information, to label it according to its origin and its
destination (qualification) and to communicate it to
other corresponding managers.

- A Module Manager (MM) : Each module of the
application is associated with a MM. The MM
implements the interface between the module and the
platform. It captures information produced by the
module, it labels, formats and communicates it to the
system. Reciprocally, it receives, formats and transmits
information to the module. The existence of the MM is
justified because modules have not been designed to
work cooperatively with others, but only to exchange
information with their immediate environment.

- A Rule Manager (RM) : Rules are implemented as
independent parallel processes. These rules use and
produce elements of cooperation. The role of the RM is
to activate rule processes and to take rendez-vous with
them when it gets an information for these rules.

This approach of supervision of the cooperation seems to
be adapted to other domains than re-engineering. That is
what we will try to explain in the following parts.

3 Architecture for adaptive multimedia
applications

Distributed Multimedia Applications (DMA) use the
concept of component particularly when tools as Java/RMI
or CORBA are used. We will be interested in these two
technologies according to two aspects : communication
between components and quality of service.

3.1 Cooperation and multimedia

There are four kinds of communications established
between components :
- Events : they allow components to inform their

environment of all significant internal changes. When
received by other components, these events allow to
synchronize their running with those of their partners.

- Messages : they can be seen under two main aspects.
Firstly, we think about messages as electronic mail
allowing to exchange asynchronous information. They
are used as a tool for calling remote procedures
because a remote procedure call (RPC) is just a
message including the name of the procedure and its
parameters. At last, with acknowledgement of
messages, it is possible to provide a mechanism of

« rendez-vous » or to get back the result of a remote
procedure.

- Data : Data constituting the information system of the
application are distributed to avoid important transfer
of information from site to site. Nevertheless, they are
remotely available for components.

- Flows : It is important to keep in mind that multimedia
applications are characterized by their continuous data
flow (video, sound) with the highest rate possible. A
multimedia flow can be characterized [9] by a
succession of procedure invocations decomposed into
events corresponding to the transmission/reception of
the invocation. So, a multimedia flow is seen as a
succession of events.

3.2 Interactivity and Quality of Service

Multimedia applications are naturally very interactive.
They have to adapt themselves, in real-time, to the needs
of users. Each of them wants to get a personalized view of
the application where it can find the information he wants,
and only that one. This information has also to be adapted
to users (different languages, different tools and hardware,
etc.). It is mandatory to provide this QoS without
modifying profoundly the application, and moreover,
without modifying the behavior of running components.
For the moment, it is not possible to have a constant QoS
over Internet, especially as regards throughput and delays.
Applications have to adapt themselves in real-time to these
evolving conditions to offer the best possible QoS at each
moment.

The proposed solution to address the problem of QoS
(user and network aspects) is the use of workgroups and
subworkgroups. Indeed, components of a multimedia
application may be organized in workgroups and
subworkgroups according to the following characteristics :
- Component : object or program that performs

a specific function and is designed in such a way to
easily operate with other components and
applications.

- Subworkgroup : It is made of cooperating components
to achieve a common task. It can be considered as a
« super-component » characterized by its role and by
the QoS it offers. To adapt to external constraints, we
have to incorporate into these subworkgroups the
components corresponding to the situation. This
allows particularly to choose, for a same role, a
weaker but quicker QoS when, for example, the
performance of the network does not permit to have
the best quality.

- Workgroup : they are characterized by the service they
provide to the user. Consequently, a workgroup is
associated to each user. Its goal is to provide the

needed view of the application for the user. The
flexibility of the application results from the
inclusion/exclusion of subworkgroups in the group.

3.3 Supervision

Because components are not able to manage
themselves problems of inter-operability (without a strong
update) and global constraints of the application, we use
rules. They are used by the platform to evaluate and adapt
the running components to the environment. These rules
adapted from the ECA model [11] – Event-Condition-
Action – are fully managed by the platform. There are two
types of rule :

 Interoperability rules which manage the flow between
components that are not necessarily dedicated to work
together.

 Supervision rules whose role is to (re-)organize the
composition of workgroups and subworkgroups.

All the platform managers and rules are implemented
with JAVA as parallel processes and coexist with rules
processes. The existence of such a platform with a
knowledge of the application (structure of workgroups,
information exchanged) allows to completely separate the
functional aspect from the organizational aspect.

4 Presentation of an example : an
« unsupervised » videoconference

To illustrate this, we will see a proposition for a
multimedia application like videoconference with
automatic speaker detection and tracking using signal
processing technology [5].

4.1 Application organization

The workgroup level will ensure the service layer. If a
subworkgroup is included into a group, a new service is
ensured. In our application, we have three kind of
workgroups.
- Speakers : Each speaker has functionalities to capture

and restitute pictures and sound and to realize the
detection and the tracking. This allows to track him as
he speaks and to detect when there is a speaker
change.

- Listeners : The workgroup of components associated
to each listener has to contain subworkgroups
allowing to restitute pictures, sound and documents
produced by the speaker. However, if we consider the
problem of speech, it is evident that each user wants to
hear the speaker with a language that he can
understand. So, its associated workgroup may

contain a subworkgroup of components ensuring the
direct transmission from the microphone of the
speaker or a subworkgroup realizing a simultaneous
translation or subtitles.

- Translators : When the speaker speaks in French, a
translator provides a simultaneous English translation
(the hypothesis is that all members understand
English).

Each participant to the conference will be represented
by an instance of one of these workgroups.

4.2 Workgroup organization

Workgroups are constituted of one or several
subworkgroups. They represent services provided by
the groups. For example, the subworkgroups that we
can include into the group Listeners are :

 Picture subworkgroup,
 Original Sound subworkgroup,
 English translated sound subworkgroup
 Subtitle subworkgroup

We can see that the addition or the substitution [1] of a
subworkgroup by another into the workgroup associated to
a user may adapt the service to the needs of this user. In
particular, we pay attention to always transmit according to
the listener language. This is achieved by integrating either
the "original sound" suworkgroup either the "translated
sound" subworkgroup or by using the "subtitles"
suworkgroup. Such a realization supposes that we have a
way to know requirements of each user (for example here,
languages he can understand). We propose a solution based
on XML. Such information will be available as XML
documents. Each user can fill them. The platform will refer
to these documents to constitute workgroups.

Inside subworkgroups, the QoS will be managed by the
dynamic (inclusion/exclusion/exchange) of components.
Components and number of components constituting a
subworkgroup will vary according to external constraints
and particularly with those of the network. Thus, if during
a laps of time, the available throughput does not allow the
direct transmission of a high quality video of the speaker to
other sites, it will be possible for these sites to replace
components of the picture subworkgroup doing the
transmission of video by components doing the same work
but with a lower resolution, or to add components which
role is to better compress pictures but with a loss of
quality. To implement such a flexibility, we of course need
information on components (what QoS it provides) but we
also need a constant evaluation of conditions of the
running environment. We propose that the platform adapts
the subworkgroup composition according to measures

done on the application performances and according to the
characteristics of components available into XML
documents.

4.3 Communication interactions

The organization of the application is dynamically
modified by the platform [13]. So, even if multimedia
oriented components are naturally designed to
communicate, they cannot organize communications
themselves. For example, a component C1 conversing with
another component C2 may, instantly, and without being
informed see C3 substituted to C2 according to a specific
demand of the user or to suit with the possible QoS. So,
how can the dialog continue without any problem ?

As the platform manage the supervision, components
do not have to manage de dynamic of workgroups and
subworkgroups. With such an organization, the design of
components is fully independent of their use and therefore
improve their reuse. Subworkgroups of components we
have constituted have to appear like super-components.
They have to exchange information between each other in
order to collaborate. These elements of cooperation
constitute information of a different level than those
available on each component of the subworkgroup. They
do not reflect the state of an internal component but the
state of the whole subworkgroup. It is evident that such
information cannot be available from one component of
the subworkgroup but has to be made by composition of
internal information of the subworkgroup. Because our
application is executed on a platform managing the
supervision, it is not desirable to delegate to components
the management of the dynamics of workgroups and
subworkgroups they are included into. Next, we need to
study information directly available when this component
is into a subworkgroup with a known composition. After
that, it is possible to define rules which build the
information needed by each component from available
information. We can illustrate this in the previous
application if we want to replace the sound by sub-titles
(for disabled-listeners for example). When components
doing the broadcasting of pictures collaborate with those
doing the broadcasting of the sound, they have to exchange
synchronization events corresponding to temporal events
(end of frame transmission) [3].

On the other hand, when sound becomes text, we have
to manage the conformity between speech and text. In the
first case, components ensuring the broadcasting of sound
are synchronized to those concerning the broadcasting of
pictures by the use of temporal events. It is not possible to
do the same in the second case, because it is not
conceivable to suppose that the component producing sub-
titles is designed to synchronize itself from pictures

broadcasted. So, we have to give it significant events to
run correctly. We will design a rule which will receive
events from components broadcasting the picture and
events from components broadcasting the sound of the
speaker. These events will permit to synthesize events
corresponding to the wording of each sentence. These
events will provoke procedure calls to the sub-title
component of the subworkgroup to print the corresponding
text. In fact, we can imagine that the rule itself do part of
the signal processing to detect end of sentences with
information provided by both corresponding components.
With this way to tackle the problem, we transfer onto rules
part of the activity of the application. This part is not the
role of components because it is not issued from the goal
to reach but it is issued from how to reach this goal.

5 The platform

Each site needs to have its own instance of the
platform. The platform manages the communication
between sites, the capture of events and messages provided
by each component, and the triggering of rules. Moreover,
it has to dispose of XML descriptions of users and to do
real-time measurement of the QoS.

5.1 Platform architecture

We propose an architecture close to the one we made in
the ELKAR project. Thus, we find the Communication
Manager (CM), the Rule Manager (RM), the Element of
Cooperation Manager (ECM). Nevertheless, we have to
foresee a service to provide XML documents. So we
propose a distributed database containing the needed
information to realize the supervision of the application.
Furthermore, we will find updated information describing
the constitution of workgroups, subworkgroups and the
characteristics of each component. Each space contains an
XML description of the elements it defines :
- The user space contains a description of the set of

members allowed to be included into the application
(login, role, location, language, …) and its
requirements in relation to the application.

- The component space is a description in terms of
roles, functionality and QoS of each component
available for the application (procedures, call and
return parameters, the site where it is executed,
resources needed, …). We will find information on
elements needed/created by this component and
characteristics about its participation to
subworkgroups (conditions to enter/exit,
incompatibilities, etc.).

- The workgroup space allows to know both present
workgroups and subworkgroups, their constitution and

the geographical localization of each of their
members.

- The QoS space (the Adaptor in [4]) contains
information about constraints to respect in order to
have a good execution of the application according to
the QoS to obtain. This information will be expressed
with temporal logic [1].

- The flow space contains a description of data flow into
the application and a description concerning
components which create or use these flows.

Some documents are directly issued from the analysis
(Component and QoS spaces) whereas others are updated
as the application is running (workgroup and flow spaces).
To finish, the user space is a configuration of the
application done for each new use.

This description of each space using XML, allows to
have a generic model but also to validate the coherency
using DTD (Document Type Definition). With DTD, it is
possible to represent documents as graphs [6][7] and do
checks and operations on them. Thereafter, the use of
XML will facilitate the re-use of these documents because
the platform implements procedure calls with SOAP
(Simple Object Access Protocol) based on XML [12].

5.2 Running of the platform

The role of the various managers (CM, ECM, RM) are
conform to those described in ELKAR [8]
(communication, elements of cooperation management,
rules management). The main modifications with the
ELKAR are dynamic reconfiguration of managers using
information described into work spaces previously
described instead of a static running. The main part of
work done by the platform is contained into the rules it
uses. The running of these rules is synchronized by
elements of cooperation circulating and configured with
descriptions available in the different spaces. Some rules
will measure performances to check the respect of
constraints. These rules may, if needed, take the initiative
to modify the composition of workgroups and
subworkgroups in order to adapt them to current conditions
(workgroup space). For example, a rule receiving messages
corresponding to the broadcasting of pictures of the camera
(of the speaker) can measure the time between two
successive frames and check if it is under the time limit
required by the QoS (QoS space). If the throughput
becomes inadequate and according to the difference
measured, the rule can choose to substitute some
components of the subworkgroup broadcasting pictures of
this user to replace them with lower quality components
(component space). Of course, it not possible to remove a
component from a subworkgroup regardless of the

coherency of the set. So it is imperative, before removing a
component, to be sure that no other component is waiting
for a message or an event from it. Rules managing the
supervision of workgroups and subworkgroups have to
wait the opportune moment to operate before removing or
adding a component. The rule itself can also produce the
information waited for a component to avoid its locking.

6 Conclusion

In this paper, we have presented a fully distributed and
web-services based architecture for multimedia
applications. Our works are at the crossroad of several
research domains which are particularly actives : technical
inter-operability to insure web-services (multimedia),
approaches based on components (software and hardware),
QoS and networks. The increasing bandwidth of networks
let us suppose that Internet may become more and more
accessible for such applications. So we decided to focus on
"web-oriented approach". This has two main advantages :
components may inter-operate easily using XML messages
(becoming a universal technology) and the problem of
protocols as IIOP is avoided. More and more, applications
are based on distributed components. Nevertheless, and on
the contrary to several approach, it does not seems realistic
to let components managing both objectives and running
constraints. This should be the opposite of the component
paradigm. So, with the cooperation model we proposed,
components do not have to include the management of
constraints (moreover, it may be impossible because they
cannot have a global knowledge of constraints).
Distributed components based applications are essentially
built on the exchange of elements of cooperation (events,
messages, data). The control of these exchanges managed
by a platform containing all information on the constraints
to respect, allows a precise and dynamic supervision of the
application. Because of these aspects, re-enginnering
methods and those corresponding to cooperative
applications put forward solutions particularly suitable to
this kind of organization. The structuration on workgroups
managing the goal to reach and the QoS gives a global
view of the application which is described by a set of
documents used by the platform to modify this structure.

7 Bibliography

[1] João Costa Seco, Luís Caires – A basic Model of Typed
Components – ECOOP 2000, LNCS 1850 – pp 108-128 -
Sophia Antipolis, Nice - France 2000.
[3] Le Goff, B., Guiard-Marigny, T., Cohen, M., & Benoît,
C. - Real-time analysis-synthesis and intelligibility of
talking faces - Proceedings of the Second ESCA/IEEE

Workshop on Speech Synthesis - New Paltz - New York -
U.S.A. - Sept. 1994
[4] Baochun Li, Klara Nahrstedt, A Control-based
Middleware Framework for Quality of Service
Adaptations, in IEEE Journal of Selected Areas in
Communication, Special Issue on Service Enabling
Platforms, 1999, Vol. 17, No. 9, September 1999, pp.
1632-1650.
[5] M. Liévin, Franck Luthon – A hierarchical
Segmentation Algorithm for Face Analysis – Application to
Lipreading – IEEE Int’l Conference on Multimedia &
Expo – ICME 2000 – Vol. 2, pp. 1085-1088 – Now-York -
August 2000.
[6] I. Marsic – Real-Time Collaboration in Heterogeneous
Computing Environments – Proc. Of the int’l conf. on
Information Technology (ITCC2000) – pp. 222-227 - Las
Vegas - March 2000
[7] L.M. Rodriguez Peralta, T. Villemur, K. Drira - An
XML on-line session model based on graphs for
synchronous cooperative groups - 2001 International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'2001), Las Vegas
(USA), 25-28 Juin 2001, pp.1257-1263
[8] Philippe Roose - ELKAR : A Component Based Re-
engineering Methodology to Provide Cooperation - 25th
Annual International Computer Software and Application
Conference (COMPSAC 2001) - IEEE Computer Society
Press - PR01372, pp. 65-70 - ISBN 0-7695-1372-7 -
Chicago - USA - October 2001
[9] F. Singhoff, I. Demeure – Environnement d’exécution
pour les applications réparties sous contraintes
temporelles : une solution CORBA-RTP – RenPar 10 –
Strasbourg – France – 1998.
[10] J.B. Stefani – Computational Aspects of QoS in an
object-oriented, distributed system architecture – 3rd

Workshop on Responsive Computer Systems – Lincold –
USA – September 1993.
[11] Tawbi Chawki, Jaber Ghaleb, Dalmau Marc - Activity
Specification Using Rendez-Vous - 2nd Int’l Workshop on
Rules in Database Systems – RIDS’95 – Springer –
Lecture Notes in Computer Science – Vol. 985 – pp. 51-
68 – Athens – September 1995.
[12] SOAP Version 1.2 - W3C Working Draft 9 -July
2001 - http://www.w3.org/TR/2001/WD-soap12-
20010709/
[13] Dongyan Xu, Duangdao Wichadakul, Klara
Nahrstedt, Multimedia Service Configuration and
Reservation in Heterogeneous Environments, in
Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS 2000), 1275-
1278, April 10-13, 2000.

	Introduction
	Previous works€: ELKAR
	The method
	The ELKAR platform

	Architecture for adaptive multimedia applications
	Cooperation and multimedia
	Interactivity and Quality of Service
	Supervision

	Presentation of an example€: an «€unsupervised€» videoconference€
	Application organization
	Workgroup organization
	Communication interactions

	The platform
	Platform architecture
	Running of the platform

	Conclusion
	Bibliography

