
HAL Id: hal-01912336
https://univ-pau.hal.science/hal-01912336v1

Submitted on 29 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

World Wide Modeling Made Easy - A Simple,
Lightweight Model Server

Olivier Le Goaer, Eric Cariou, Franck Barbier

To cite this version:
Olivier Le Goaer, Eric Cariou, Franck Barbier. World Wide Modeling Made Easy - A Simple,
Lightweight Model Server. MODELSWARD 2017: Proceedings of the 5th International Conference
on Model-Driven Engineering and Software Development, Feb 2017, Porto, Portugal. pp.269-276,
�10.5220/0006110802690276�. �hal-01912336�

https://univ-pau.hal.science/hal-01912336v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

World Wide Modeling Made Easy
A Simple, Lightweight Model Server

Olivier Le Goaer, Eric Cariou and Franck Barbier
Computer Science Laboratory, University of Pau, Pau, France

Keywords: Model-driven Engineering, Client-server, Knowledge Sharing, Reuse, API, JavaScript.

Abstract: Sharing Models across organizations is a good idea but the lack of a tailored and lightweight tool hinders its
adoption. In this paper, we explain how to turn any computer into a Model server, which is a server
specialized in Models’ location and retrieval. Such a server relies exclusively on specific URIs and
commands thereof. The result, called “WWM”, is an out-of-the-box module built upon Node.js. WWM
targets the EMF ecosystem and takes the form of a JavaScript API for both server-side and client-side
programming.

1 INTRODUCTION

“World Wide Modeling” (WWM) is a quite recent
idea that Models have to be distributed and shared in
as vast and immediate a way was the Web (Desfray,
2015). Indeed, the situation where everyone
produces Models individually (in a manual or
automated way, as well) has certainly been a brake
on the adoption of the Model-Driven Engineering
(MDE), yet recognized as providing powerful
techniques. In particular, Models are no longer
throw-away artefacts and reusing them off-the-shelf,
assuming the fact they have been well designed and
tested by experts of a domain (often enough to be
promoted as « reference models »), is a key factor of
success to reach fast development of software
applications in that domain. Besides, what we may
observe is that these sets of reference models are
more and more frequently used in reproducible
experiments, to compare different approaches or
tools. So, only from this condition, that of large-
scale Model sharing (and knowledge thereof), MDE
is able to keep his promises in classroom, research,
and industrial practice.

There exist some modeling portal initiatives and
central repositories ((Ulrich et al., 2007), (France et
al., 2006), (Zaytsev, 2015), (Basciani et al., 2014))
but they clearly failed to fulfil this role. This hard
fact promotes the emergence of another class of
hosting service: a Model server. Such a server let’s
Models to be reused among teams of a given

company and, ultimately, crosses the frontiers of the
enterprise. In both cases, a Model server aims at
freely storing and publishing a predefined set of
models, while working in a completely autonomous
and decentralized way.

When looking at the overall 3-layer modeling
stack promoted by OMG (see Figure 1), it becomes
clear that a huge number of Models can be
potentially shared. In addition, it must be taken into
account the crucial conformance relationship (a.k.a
metaness (Kühne, 2006)) that holds between levels
when sharing models. Indeed, the basic but cogent
principle behind the modeling stack is that a given
layer Mn has been instantiated from the Mn+1 layer
and hence, conforms to the latter. From a reuse
perspective, it means that retrieving a Model without
the possibility of knowing and/or retrieving the
language in which it has been written, is totally
unsound.

Figure 1: Standard modeling stack according to the OMG.

Le Goaer O., Cariou E. and Barbier F.
World Wide Modeling Made Easy - A Simple, Lightweight Model Server.
DOI: 10.5220/0006110802690276
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 269-276
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

269

So, the key idea at this point is that any MOF-
compliant modeling activities are eligible for a
world-wide dissemination. But paradoxically, even
the technical assets of well-known OMG’ standards
like UML, SysML or BPMN are still a headache to
obtain in a convenient and steady way. This is even
truer for domain-specific languages (DSL), which
have a more restricted audience.

Meanwhile, Eclipse Modeling Framework
(EMF) is a very popular modeling workbench that
implements the 3-layer modeling stack, and in which
(Essential) MOF is embodied by the Ecore meta-
language. The prevalent serialization mechanism of
EMF is XMI. As a direct consequence, the solution
proposed in this article is designed for, but is not
limited to, the EMF ecosystem, provided that there
is a XML-based storage under the hood. This means
that remote Models are purposely retrieved so that
they can be integrated into EMF projects or as inputs
of EMF-based tools.

To illustrate the aforesaid hurdles, most of EMF
tools are based on Models locally registered through
platform-independent identifiers (“nsURIs” in the
jargon) that are actually neither linked to anything
tangible nor commonly shared. One of our ambitions
is that these URIs become effective, delivered by
clearly identified Model servers, starting with those
of the OMG itself.

Besides, it is worthwhile recalling that a Model
server is useless without a Model client thereof. That
is why these two programs, which are two sides of
the same corner, have all together been merged into
a single package dubbed “wwm”, and built using
Node.js (https://nodejs.org). In doing so, we want to
encourage developers to build various applications
on top of this JavaScript API.

Notice that in this paper the term “Model”
(notice the uppercase first letter) is used in its
broadest sense, referring indifferently to M3, M2 or
M1, whereas “model” strictly refers to an instance of
a metamodel. Once this assumption made, the
remainder of this paper is the following: Section 2
gives rationales for building a Model server. Section
3 describes the features of such a server while
Section 4 elaborates on some aspects of its
implementation. Section 5 can be viewed as a user
manual. Section 6 provides a rigorous evaluation of
performances of the server when reached by the
default client. Conclusions and some perspectives
are given in Section 7.

2 MOTIVATION

The original motivation of this proposal comes from
another work on executable modeling, experienced
on the Android platform in (Le Goaer et al., 2016),
where a UML statechart could be “run” directly on a
mobile device through PauWare Engine
(www.pauware.com).

2.1 On the Need for a Model Server

Among the benefits claimed in the aforementioned
publication, the issue of mobile applications
updating was tackled thanks to an architecture in
which models are delivered on-demand by a
dedicated server: a so-called “Model server”. This
lets envisioning a panel of interesting capabilities
like on-the-fly replacement of a model deployed on
a device (sketched on Figure 2). This also enables
Models exchange procedures among a set of
connected objects provided that these objects are
acting as Model servers in a peer-to-peer mode.

Figure 2: Model-based updatable Android architecture
coming from (Le Goaer et al., 2016).

As far as we know, there is no really operational
model server available. At best, model repositories
technologies are part of an integrated modeling tool
suite, and hence cannot be exported as a standalone
feature. Moreover, such vendor-dependant solutions
are cumbersome and are rarely free.

2.2 A Domain-Specific Server

The first question that may spring to mind is: Why
not merely hosting the models on a regular server
(e.g. HTTP, FTP, Version Control System …)? One
may observe the same skepticism about domain-
specific languages whilst general-purpose languages
can do everything. Yet, they are legitimate since
they are special for a narrow area of interest. The
same applies for servers.

Firstly, it must be pinpointed that a Web server
(saying, Apache HTTP server) is a heavy, general-

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

270

purpose container that can deliver evenly any kind
of resources like pages, images, videos…. Only the
MIME type differs and brings a few semantics when
comes the time to handle resources. Yet, Models are
specific abstractions on their own. Also, the gateway
program layer provided by any modern Web Server
is useless for inert resources, as are the cases of
Models. Secondly, resources are arbitrarily
organized so that URLs cannot exhibit any recurring
pattern and hence no automated processing in a
given scope or field. Thirdly, a Model is an example
of linked data: to be useful, it has often to come
along with other Models (ascending/descending
conformance or siblings). Again, Models cannot be
view just as raw, meaningless files and this is where
regular servers fall short.

For all these reasons, it appears highly desirable
to build a flyweight server able to run on top of
devices with limited capacities. It has to be MDE-
compliant and to offer just enough features: “the
right tool for the job”, in short.

3 PROPOSED SOLUTION

From a client point of view, any Model becomes
identified by an URI that has roughly the following
pattern:
model://host[:port]/M3/M2/M1#fragment

Any other URI format will be considered ill-
formed by the server.

3.1 Scheme, Host and Port

The scheme part of the URI is model (without the
trailing colon). The host is the IP of the computer
running the model server or a name (resolved as an
IP). Port sets the entry-point on which the server is
listening clients’ requests. Default port for a model
server is 6464.

In the rest of the paper, for the sake of clarity, we
exemplifies with a local Model server. All works
exactly the same for a production-ready server of
course.

3.2 Path and Segments

The path is hierarchical, as the strict reflect of the
conformance relationship between the modeling
levels M3, M2 and M1. Hence, it is decomposed as
three depth levels of segments: the first segment
exclusively refers to a metametamodel, the second
exclusively refers to a metamodel and the last one
exclusively refers to a model.

Example of metametamodel:
model://localhost:6464/ECORE/
Examples of metamodels:
model://localhost:6464/ECORE/UML/
model://localhost:6464/ECORE/ATL/
Examples of models:
model://localhost:6464/ECORE/UML/thermo
stat
model://localhost:6464/ECORE/ATL/class2
table

Playing with this segmented URI, the end-user
can seamlessly navigate through the OMG’s
modeling stack and has the insurance to get a Model
serialized in the XMI format. At each level within
the URI, the real file extension is omitted because it
is inferred from the segment’s name preceding it (all
works case-insensitively). As an example,
/UML/foo means that we want to get the model
file named foo.uml (or foo.xmi if not found)
stored on server-side. Because the M3 level is self-
defined, we get directly Ecore.ecore from the
root segment /ECORE/.

3.3 Fragments

Fragments aim at corresponding to a given piece of
the entire Model, provided that pieces have been
properly identified and labelled beforehand.

As a first striking example, it could be wise to
consider the sequence diagram language definition
as a fragment of the entire – thick – UML
specification superstructure, as follows:

model://localhost:6464/ECORE/UML#Seq
uenceDiagram

As a second example, we may consider the
compound state “Operate” as a fragment of the
complete behavior of a programmable thermostat
defined with the UML statechart formalism
(example given on the Franck Barbier’s website):
model://localhost:6464/ECORE/UML/thermo
stat#Operate

3.4 Commands

Additionally to the aforesaid elements, two query
commands are available: ?info and ?list.

The ?list command allows us to see all the
available Models at a given segment level.
Naturally, this command does not work for the last
segment. Below its usage to know all the models
hosted on the server that are written in UML:
model://localhost:6464/ECORE/UML?list

The ?info command returns information about
a Model in a format that is simple to parse and easy

World Wide Modeling Made Easy - A Simple, Lightweight Model Server

271

to read (See Section 4.3). Namely, who produced it?
When? How? And so on. It works at any segment
level. Here are examples:
model://localhost:6464/ECORE/UML?info
model://localhost:6464/ECORE/UML/
thermostat?info

4 IMPLEMENTATION

Writing a server from scratch is a tedious task.
Instead, we choose Node.js, a JavaScript library that
had become increasingly popular over the last few
years, and fast for server-side programming. In
addition, Node.js provides a powerful package
manager that eases its distribution and installation.
This Section shows important technical choices that
are behind the scene of a Model server.

4.1 Communication Protocol

The Model server was built upon the TCP/IP layer.
It is basically a running service that accepts
connections through a given socket. It supports a
request-response communication protocol style,
which relies on a custom JSON-based encapsulation
of data. The server closes the connection once a
response is sent to the client in order to improve
scalability. Last advantage: a simple DNS lookup
mechanism is already available. Henceforth, the
model protocol holds at the very same level than the
http protocol and challenges the latter.

4.2 Server File System

A specific arrangement of directories and files on
server-side stands behind the proposed URI
mechanism and looks like that:

wwm
 |-- metametamodel
 |-- Ecore.ecore
 |-- Ecore.nfo
 |-- metamodel
 |-- UML.ecore
 |-- UML.nfo
 |-- ATL.ecore
 |-- model
 |-- thermostat.uml
 |-- thermostat.nfo
 |-- myshop.uml
 |-- class2table.atl

The root directory is wwm. It contains three
mandatory directories: metametamodel,
metamodel and model. Subdirectories are not

allowed. The owner of the server ought to place
her/his Model files into the suitable directories.

4.3 .nfo Descriptor

It is an ASCII text file which is optional but it is
required in order for the ?info command to work.
This simple solution is an answer to the lack of
metadata about a Model in general.

An .nfo file is a bulk, free, string format as a
collection of text lines. Lines can contain a section
name (starting with a # character) or a property. All
the properties are in the form of field:value
terminated by \r\n. Here is an example:
General
creation: 2008/10/03
title: definition of a programmable
thermostat with the statechart
formalism

Producer
author: John Doe
tool: Poseidon for UML
contact: john.doe@example.org

Miscellaneous
metrics: 19 states
licence: Creative Commons

4.4 Fragment Markups

Unfortunately, there is no native solution to divide a
Model into sub-model regions. This technical
limitation remains even true at the XMI level. So, as
a last resort, we can succeed to implement this
feature with a low-level trick. Indeed, the idea is to
leverage from standards XML comments markups
<!-- -->. They have the advantage of being non-
intrusive in the original file, but should not interfere
with actual comments. They are much more
annotations, and as such, must meet some
conventions to be processed by our tool.

A Model fragment is then an enclosed chunk of
XMI, and is labelled with a unique identifier. The
simplest way to do that is to use a pair of markups,
as follows:
...

<!-- wwm-begin(foo) -->

<eClassifiersxsi:type="ecore:EClass"
name="PackageableElement"
abstract="true"

eSuperTypes="#//NamedElement
#//ParameterableElement">

<eAnnotations
source="http://www.eclipse.org/emf/2002
/GenModel">

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

272

...

</eAnnotations>

</eClassifiers>

<!-- wwm-end(foo) -->

...

<!-- wwm-begin(bar) -->

...

<!-- wwm-end(bar) -->

...

In the current state, this lowbrow mechanism
works. However, defining fragments that do not
break existing dependencies (i.e. XMI attributes
references) so that they remain consistent, is a non-
trivial task, and even sometimes impossible. We
think that more advanced techniques like Model
slicing (Blouin et al., 2011) or theory of
fragmentation (Amálio et al., 2015) should solve
this issue.

4.5 JSON Listing

The preferred way to provide a listing, as a result of
the ?list command, is a JSON format. Indeed, this
lightweight format can be natively handled with the
JavaScript language and is easy to understand.
Reconsidering a previous example, listing all the
UML models should returns:
{
"path":"model://localhost:6464/ECORE/U
ML/"

 "models":["thermostat", "myshop"]
 "count":2
}

The following structure has been thought to ease
a recursive usage because any concatenation of both
path and models values rebuilds valid URIs. These
can in turn be requested (See 5.2.2 for a sample), in
the spirit of the HATEOAS principles.

5 GETTING STARTED

The wwm package is currently hosted on the official
package registry (www.npmjs.com) and weighs only
11KB once minified. The command line to install
our node.js package is the following:

$> npm install wwm

5.1 Server Setup

The specific directories are created when the module

is first launched. This structure has to be perennial
for the Model server run in a correct way. To that
purpose, an integrity checking subroutine is
performed every time the server boots.

As attested by the code below, launching the
server is a breeze. Optionally, a callback allows
listening which URIs are requested (line 3) by a
client. Argument passed through the callback is a
custom object modeling the URI and providing a set
of useful methods to know its pattern.

1. var wwm = require('wwm');
2. var server = wwm.createServer('loc

alhost', 6464);

3. server.on('request',

function (uri) {
4. if (uri.isFragment()) {
5. console.log('Someone asked for

 a fragment at' + Date.now());

6. }

7. });

5.2 Client Setup

The asynchronous nature of the server built with
Node.js implies that the end-user defines her/his
own callback functions to freely process the various
responses of the Model server. The snippets given in
the following are minimal for the sake of clarity.
However, of course, much more sophisticated code
can be written, the native language being JavaScript.

5.2.1 Callbacks

As explained in the previous section, what is
received from the Model server depends on the URI
pattern used. Consequently, there exist five specific
event-based callbacks:
 on model: triggered once a plain Model is

received. Argument passed through the
callback is a custom object (name & content
fields).

 on fragment: triggered once a model fragment
is received. Argument passed through the
callback is a custom object (name & content
fields).

 on info: triggered once an info descriptor is
received. Argument passed through the
callback is an ASCII text.

 on list: triggered once a listing result is
received. Argument passed through the
callback is a JSON object (see fields in 4.5).

 on error: triggered once something went

World Wide Modeling Made Easy - A Simple, Lightweight Model Server

273

wrong on server-side. Argument passed
through the callback is a simple string
describing the problem.

5.2.2 Samples

We first illustrate an exhaustive assignment of
callbacks in order to handle all cases (ranging from
line 3 to 14). Notice that method chaining is a
convenient way to do that.

1. var wwm = require('wwm');
2. var client = wwm.createClient();
3. client.on('model', function (m) {

 wwm.util.save(m);

4. console.log(m.name + 'downloade

d');

5. }).on('info', function (i) {
6. console.log(i);

7. }).on('error', function (e) {
8. console.error(e);

9. }).on('list', function (l) {
10. console.log (l.count + ' found'

);

11. }).on('fragment', function (f) {

12. wwm.util.save(f);
13. });
14.
15. client.connect('model://localhost:

6464/ECORE/UML'); //ask for a meta

model

16.
17. client.connect('model://localhost:

6464/ECORE/UML/myshop'); //ask for

 a model

Once the chosen callbacks functions are
assigned, the client is ready for requesting the server
with connect(). Here, the “UML” metamodel
then “myshop” business model are requested, that
will both trigger the same callback. Thus, the elected
code (lines 4-5) calls save(), a helper bundled
with wwm that creates a physical file with the proper
XMI content on the client-side, and finally displays
a message to the console.

As a second illustration, we give a programming
idiom that solves nicely a frequent client-side intent,
which consists in sending a list command having the
final purpose to retrieve all the available Models.

1. client.on('model', function(m) {
 wwm.util.save(m);

2. }).on('list', function(l) {
3. for (m in l.models) {
4. //loop of requests

5. this.connect(l.path + m);
6. }

7. });

8.

9. //ask for listing

10. client.connect('model://localhost:

6464/ECORE/UML?list');

The idea is to send a ?list command (line 11)
while having planned within the corresponding
callback (lines 3-7) an iteration about the results so
that Models are requested in the wake with
connect(). When received, one after the other,
the other callback (line 1-2) does the job thanks to,
again, the save() helper.

6 STRESS TEST

Whilst there exists http load testing and
benchmarking utilities (Siege, ab, Gatling ...),
benchmarking a custom model protocol is quite new.
We decided to write our very-own command line
tool that spits its results out in csv format: wwm-
bench. The example below requests a server for a
Model 1000 times with a max of 50 concurrent
clients:
wwm-bench –n 1000 –c 50 <ModelURI>

Again, the Model server is locally installed,
thereby ignoring the unpredictable networking
aspects during the test.

6.1 Preparation

Response times for the info? and list?
commands are not primal concerns. Our measures
have been therefore conducted on both Model and
Model fragment access throughout the default
Model client. For both tests, we experimented with a
fixed pool of 5000 requests, ensuring an acceptable
accuracy for average response time.

To that purpose, we started with a homemade
DSL previously used in (Pierre et al., 2014) and then
we automatically generated a set of dummy models
containing an exponential number of model
elements. In each one, fragment markups have been

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

274

inserted in such a way they represent 1/3 of the
entire content. We used an unrefined generator,
where meta-elements are arbitrarily instantiated until
a given limit is reached. For a more controlled
generation of instances, note that some tools exist,
like (Ferdjoukh et al., 2015).

6.2 Results

We conducted experiments within 8 hours, using 2
vCores CPU 2.4 GHz with 8GB RAM. Figure 3 and
Figure 4 show the results obtained for Model and
Fragment respectively. Notice that we used a
logarithmic scale (log-10) for the horizontal axis.

Figure 3: Model benchmark.

Figure 4: Fragment benchmark.

6.3 Observations

We can see that the average response time for
models is consistently higher than for fragments,
varying from one to triple, as the number of model
elements increases. This result is logical since
Models have a high transfer cost due to the verbosity
of XMI. Fragments require also time-consuming
operations for their real-time extraction, but this is
counterbalanced by a lower transfer cost. Moreover,
the performance loss is limited because we used
string buffer operations rather than using xml
parsing.
As we increase the number of concurrent requests,

the average response time decreases. For instance,
the response time for the smallest model size was on
average 4.50 ms with 10 concurrent requests, and
31.67 ms with 100 concurrent requests. The average
response time has a linear correlation to the number
of concurrent requests, keeping the requests that can
be served per second pretty constant. This good
result is due to the single-threaded concurrency
model of Node.js, relying on event-driven, non-
blocking I/O. That is already the case with Web
servers, where Node.js applications are noticeably
faster than their equivalents (Lei et al., 2014).

We observed failures (timeout errors) for 106
model elements when concurrency exceeded 10 in
the case of a model request, and 40 in the case of a
fragment request. These threshold values represent a
significant stress level for a non-optimized server,
thereby demonstrating it perfectly fits to a normal
use in MDE.

7 CONCLUSIONS

Model-based engineering never became a
mainstream industrial practice partly due to a poor
reuse level. In some respects, the tremendous
success of Web is truly inspiring when looking at
how models are nowadays unsatisfactory shared by
engineers working in the MDE field.

In this paper, we clearly advocated in favor of a
pure Model server so that any computer is amenable
to host models reachable in read-only mode from all
over the world. Every Model is turned into a URI
outright, which exhibits a logical organization
mapped with a physical organization on server-side.
Its specific pattern enables simple but powerful
features and, above all, ensures a global consistency
for reuse. Owing much to the Node.js architecture,
benchmarks showed it is enough scalable to face
realistic usages.

We are expecting that its tiny size and its quick
install procedure should ease its adoption, at least
within the MDE community. From a practical point
of view, while the server part of our solution can run
effortlessly on any computer once the Node.js
interpreter is installed, the default client currently
written in JavaScript is not really intended to mobile
OS, albeit this is technically possible on Android.
So, the straightforward way to carry out the Android
architecture introduced in Figure 2 is to write a
whole new Android Java client. Nevertheless,
Microsoft for example is hoping to power the IoT
revolution and has announced new native support for

World Wide Modeling Made Easy - A Simple, Lightweight Model Server

275

bringing Node.js to its Windows Phone OS. It's a
safe bet that other platforms will do the same in a
near future. Beyond mobile computing concerns, a
Model client directly integrated into EMF as a
plugin is probably a good idea for language
engineers.

To broaden the discussion, assuming that the
idea of putting open source modeling material at the
disposal of the community thanks to Model server is
well established, another challenge arises: a global
index is missing. Indeed, the highly decentralized
and autonomous nature of our solution requires a
discovery mechanism, undoubtedly under the form
of a Model search engine, like the “Moogle” of
(Lucrédio et al., 2010). But crawling, indexing and
complex querying on such Model servers are open
research perspectives.

REFERENCES

Philippe Desfray, 2015. World wide modeling: The agility
of the web applied to model repositories. In Model-
Driven Engineering and Software Development,
volume 506 of Communications in Computer and
Information Science, pages 3-11. Springer
International Publishing.

Frank Ulrich, Strecker Stefan, and Stefan Koch, 2007.
Open Model, ein Vorschlag für ein
Forschungsprogramm der Wirtschaftsinformatik
Wirtschaftinformatik. Paper 69.

Olivier Le Goaer, Franck Barbier and Eric Cariou, 2016.
Android Executable Modeling: Beyond Android
Programming. Modern Software Engineering
Methodologies for Mobile and Cloud Environments.
IGI Global. Pages 269-283.

Robert France, Jim Bieman, and Betty H. C. Cheng, 2006.
Repository for Model Driven Development
(ReMoDD). In Proceedings of the 2006 international
conference on Models in software engineering, pages
311-317. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Vadim Zaytsev. Grammar zoo: A corpus of experimental
grammarware, 2015. Science of Computer
Programming, 98, Part 1. Fifth issue of Experimental
Software and Toolkits (EST): A special issue on
Academics Modelling with Eclipse (ACME2012).

Thomas Kühne. Matters of (meta-) modeling, 2006.
Software & Systems Modeling, 5(4): pages 369-385.

Daniel Lucrédio, Renata P. M. Fortes, and Jon Whittle,
2010. Moogle: a metamodel-based model search
engine. Software & Systems Modeling, 11(2): pages
183-208.

Arnaud Blouin, Benoit Combemale, Benoit Baudry, and
Olivier Beaudoux, 2011. Modeling Model Slicers. In
ACM/IEEE 14th International Conference on Model
Driven Engineering Languages and Systems, volume
6981, pages 62-76, Springer Berlin/Heidelberg.

Adel Ferdjoukh, Anne-Elisabeth Baert, Eric Bourreau,
Annie Chateau, Rémi Coletta, and Clémentine Nebut,
2015. Instantiation of Meta-models Constrained with
OCL: a CSP Approach. In MODELSWARD,
International Conference on Model-Driven
Engineering and Software Development, pages 213-
222.

Nuno Amálio, Juan de Lara, and Esther Guerra, 2015.
Fragmenta: A theory of fragmentation for MDE. In
ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems, pages
106-115. IEEE.

K. Lei, Y. Ma, and Z. Tan, 2014. Performance comparison
and evaluation of web development technologies in
php, python, and node.js. In IEEE 17th International
Conference on Computational Science and
Engineering (CSE), pages 661-668.

Francesco Basciani, Juri Di Rocco, Davide Di Ruscio,
Amleto Di Salle, Ludovico Iovino, Alfonso
Pierantonio, 2014. MDEForge: an Extensible Web-
Based Modeling Platform. CloudMDE@MoDELS,
pages 66-75.

Samson Pierre, Eric Cariou, Olivier Le Goaer, and Franck
Barbier, 2014. A Family-based Framework for i-
DSML Adaptation, in European Conference on
Modelling Foundations and Applications (ECMFA
2014), volume 8569 of LNCS, Springer, pages 164-
179.

Franck Barbier’s thermostat example. http://web.univ-
pau.fr/~barbier/PauWare/Programmable_thermostat/Pr
ogrammable_thermostat.png.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

276

