, Comparative Study In addition, we evaluated the effectiveness of our approach in comparison with two of its most recent alternatives: RPD (Root Path Disambiguation) [50], and VSD (Versatile Structure Disambiguation) [29]. A qualitative comparison is shown in Table 4. We ran a battery of tests considering the different features and configurations or our approach. Here, we provide a compiled presentation considering optimal input parameters for our approach 19

, XSDF covers the whole disambiguation pipeline from: i) linguistic pre-processing of XML node labels to handle compound words (neglected in most existing solutions), to fixed context representations, e.g., parent node or sub-tree context), and iv) running a hybrid disambiguation process, combining two (user chosen) methods: concept-based and context-based (in contrast with static methods). Experimental results w.r.t. user judgments reflect our approach's effectiveness in selecting ambiguous XML nodes and identifying node label senses, in comparison with existing solutions. We are currently investigating different XML tree node distance functions, vol.49

S. Abiteboul, Data on the Web: From Relations to Semistructured Data and XML, p.258, 1999.

B. Aleman-meza, Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection, TWeb, vol.2, issue.1, p.7, 2008.

E. Amitay, Multi-Resolution Disambiguation of Term Occurrences, Proc. of the Inter. CIKM Conf, pp.255-262, 2003.

J. Artiles, Word Sense Disambiguation based on Term to Term Similarity in a Context Space, SensEval-3, pp.58-63, 2004.

S. Banerjee and T. Pedersen, An adapted Lesk algorithm for word sense disambiguation using WordNet, Proc. of CICLing'02, 2002.

S. Banerjee and T. Pedersen, Extended Gloss Overlaps as a Measure of Semantic Relatedness. Inter. IJCAI'03 Conf, pp.805-810, 2003.

B. Berendt, Bridging the Gap: Data Mining and Social Network Analysis for Integrating Semantic Web and Web 2.0. JWS, vol.8, pp.95-96, 2010.

E. Bertino, Measuring the structural similarity among XML documents and DTDs, J. of Intel. Info. Systems, vol.30, issue.1, pp.55-92, 2008.

A. Budanitsky and G. Hirst, Evaluating WordNet-based Measures of Lexical Semantic Relatedness, Compt. Linguistics, vol.32, issue.1, pp.13-47, 2006.

Y. S. Chan, NUS-PT: Exploiting parallel texts for word sense disambiguation in the English all-words tasks, SemEval, pp.253-256, 2007.

P. Cimiano, Towards the Self-Annotating Web, pp.462-471, 2004.

B. Dandala, Sense Clustering using Wikipedia. RANLP, pp.164-171, 2013.

H. Do and E. Rahm, Matching Large Schemas: Approaches and Evaluation. Information Systems, vol.32, pp.857-885, 2007.

C. Fellbaum, Wordnet: An Electronic Lexical Database, p.422, 1998.

W. N. Francis and H. Kucera, Frequency Analysis of English Usage, 1982.

P. Ganesan, Exploiting Hierarchical Domain Structure To Compute Similarity, vol.21, pp.64-93, 2003.

J. Graupmann, The SphereSearch Engine for Unified Ranked Retrieval of Heterogeneous XML and Web Documents, VLDB, pp.529-540, 2005.

Y. Guo, HIT-IR-WSD: A WSD System for English Lexical Sample Task, 2007.

J. Hopfield and D. Tank, Neural Computation of Decisions in Optimization Problems, Biological Cybernetics, vol.52, issue.3, pp.52-141, 1985.

N. Ide and J. Veronis, Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art, Compt. Ling, vol.24, issue.1, pp.1-40, 1998.

J. Jiang and D. Conrath, Semantic Similarity based on Corpus Statistics and Lexical Taxonomy. Inter. COLING Conf, 1997.

I. Klapaftis and S. Manandhar, Evaluating Word Sense Induction and Disamiguation Methods. Language Resources and Eval, 2013.

R. Krovetz and W. B. Croft, Lexical Ambiguity and Information Retrieval, ACM Trans. on Info. Systems, vol.10, issue.2, pp.115-141, 1992.

C. Leacock and M. Chodorow, Combining Local Context and WordNet Similarity for Word Sense Identification, pp.265-283, 1998.

J. Lee, Information Retrieval Based on Conceptual Distance in IS-A Hierarchies, J. of Documentation, vol.49, issue.2, pp.188-207, 1993.

M. Lesk, Automatic Sense Disambiguation using Machine Readable Dictionaries, Inter. SIGDOC'86 Conf, 1986.

D. Lin, An Information-Theoretic Definition of Similarity. ICML, 1998.

A. Maguitman, Algorithmic Detection of Semantic Similarity, Proc. of the Inter. WWW Conf., 2005, pp.107-116

F. Mandreoli, Versatile Structural Disambiguation for Semantic-Aware Applications, Proc. of Inter. CIKM Conf., 2005, pp.209-216

A. Marie and A. Gal, Boosting Schema Matchers, pp.283-300, 2008.

L. Marquez, Supervised corpus-based methods for WSD, Word Sense Disambiguation: Algorithms and, pp.167-216, 2006.

M. Mcgill, Introduction to Modern IR, 1983.

R. Mihalcea, Knowledge-based Methods for WSD. I n W o r d S e n s e Disambiguation: Algorithms and Applications, pp.107-131, 2006.

R. Mihalcea and E. Faruque, Senselearner: Minimally supervised word sense disambiguation for all words in open text, pp.155-158, 2004.

G. Miller, WordNet: An On-Line Lexical Database. I n t e r, Lexicography, issue.3, 1990.

G. A. Miller, A Semantic Concordance, Proc. of ARPA Workshop on Human Language Technology, pp.303-308, 1993.

M. Ming, A Harmony Based Adaptive Ontology Mapping Approach, Proc. of the Inter. SWWS'08 Conf, pp.336-342, 2008.

N. Charbel, Resolving XML Semantic Ambiguity -Technical Report. Available at, 2014.

R. Navigli, Word Sense Disambiguation: a Survey. CSUR, vol.41, pp.1-69, 2009.

R. Navigli and P. Velardi, An Analysis of Ontology-based Query Expansion Strategies, proc. of the Inter. IJCAI'03 Conf, 2003.

A. Nierman and H. V. Jagadish, Evaluating structural similarity in XML documents, Proc. of WebDB, pp.61-66, 2002.

S. Patwardhan, Using Measures of Semantic Relatedness for Word Sense Disambiguation, Proc. of CICLing'03, pp.241-257, 2003.

S. Patwardhan, SenseRelate:TargetWord -A Generalized Framework forWord Sense Disambiguation. AAAI'05, vol.4, pp.1692-1693

S. Pradhan, Semeval-2007 task-17: English lexical sample, SRL and all words, Proc. of SemEval'07, pp.87-92, 2007.

P. Resnik, Disambiguating Noun Groupings with Respect to WordNet Senses, pp.54-68, 1995.

R. Richardson and A. Smeaton, Using WordNet in a Knowledge-based approach to information retrieval, BCS-IRSG Colloquium on IR, 1995.

A. Tagarelli, Word Sense Disambiguation for XML Structure Feature Generation, Proc. of the ESWC, pp.143-157, 2009.

A. Tagarelli and S. Greco, Semantic Clustering of XML Documents, ACM Transactions on Information Systems (TOIS), vol.28, issue.1, p.3, 2010.

A. Tagarelli, Word Sense Disambiguation for XML Structure Feature Generation, Proc. of ESWC, pp.143-157, 2009.

K. Taha and R. Elmasri, CXLEngine: A Comprehensive XML Loosely Structured Search Engine. Proc. of the EDBT DataX'08, pp.37-42, 2008.

K. Taha and R. Elmasri, XCDSearch: An XML Context-Driven Search Engine, IEEE TKDE, vol.22, issue.12, pp.1781-1796, 2010.

J. Tekli, A Novel XML Structure Comparison Framework based on Subtree Commonalities and Label Semantics, vol.11, pp.14-40, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01092512

J. Tekli, An Overview of XML Similarity: Background, Current Trends and Future Directions, vol.3, pp.151-173, 2009.

J. Tekli, Minimizing User Effort in XML Grammar Matching, Elsevier Information Sciences Journal, vol.210, pp.1-40, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01092508

M. Theobald, Exploiting Structure, Annotation, and Ontological Knowledge for Automatic Classification of XML Data, pp.1-6, 2003.

S. Tratz, PNNL: A supervised maximum entropy approach to word sense disambiguation, Proc. of SemEval, pp.264-267, 2007.

, W3C. The Document Object Model, 2005.

Z. Wu and M. Palmer, Verb Semantics and Lexical Selection. 32nd Annual Meeting of the ACL, pp.133-138, 1994.

D. Yaworsky, Word-Sense Disambiguation Using Statistical Models of Roget's Categories Trained on Large Corpora, pp.454-460, 1992.

Z. Zhang, Similarity Metric in XML Documents, 2003.