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XML semantic-aware processing has become a motivating and important challenge in Web data management, data processing, and information retrieval. While XML data is semi-structured, yet it remains prone to lexical ambiguity, and thus requires dedicated semantic analysis and sense disambiguation processes to assign well-defined meaning to XML elements and attributes. This becomes crucial in an array of applications ranging over semantic-aware query rewriting, semantic document clustering and classification, schema matching, as well as blog analysis and event detection in social networks and tweets. Most existing approaches in this context: i) ignore the problem of identifying ambiguous XML nodes, ii) only partially consider their structural relations/context, iii) use syntactic information in processing XML data regardless of the semantics involved, and iv) are static in adopting fixed disambiguation constraints thus limiting user involvement. In this paper, we provide a new XML Semantic Disambiguation Framework titled XSDF designed to address each of the above motivations, taking as input: an XML document and a general purpose semantic network, and then producing as output a semantically augmented XML tree made of unambiguous semantic concepts. Experiments demonstrate the effectiveness of our approach in comparison with alternative methods.

INTRODUCTION

In the past decade, there has been extensive research around XML data processing taking advantage of the semi-structured nature of XML documents to improve the quality of Web-based information retrieval and data management applications [START_REF] Maguitman | Algorithmic Detection of Semantic Similarity[END_REF]. The majority of existing approaches use syntactic information in processing XML data, while ignoring the semantics involved [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF]. Yet, various studies have highlighted the impact of integrating semantic features in XML-based applications, ranging over semantic-aware query rewriting and expansion [START_REF] Cimiano | Towards the Self-Annotating Web[END_REF][START_REF] Navigli | An Analysis of Ontology-based Query Expansion Strategies[END_REF] (expanding keyword queries by including semantically related terms from XML documents to obtain relevant results), XML document classification and clustering [START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF][START_REF] Tekli | A Novel XML Structure Comparison Framework based on Subtree Commonalities and Label Semantics[END_REF] (grouping together documents based on their semantic similarities, rather than performing syntactic-only processing), XML schema matching and integration [START_REF] Do | Matching Large Schemas: Approaches and Evaluation[END_REF][START_REF] Tekli | Minimizing User Effort in XML Grammar Matching[END_REF] (considering the semantic meanings and relations between schema elements and data-types), and more recently XML-based semantic blog analysis and event detection in social networks and tweets [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF][START_REF] Berendt | Bridging the Gap: Data Mining and Social Network Analysis for Integrating Semantic Web and Web 2[END_REF]. Here, a major challenge remains unresolved: XML semantic disambiguation, i.e., how to resolve the semantic ambiguities and identify the meanings of terms in XML documents [START_REF] Krovetz | Lexical Ambiguity and Information Retrieval[END_REF], which is central to improving the performance of XML-based applications. The problem is made harder with the volume and diversity of XML data on the Web.

Usually, heterogeneous XML data sources exhibit different ways to annotate similar (or identical) data, where the same real world entity could be described in XML using different structures and/or tagging, depending on the data source at hand (as shown in Figure 1, where two different XML documents describe the same Hitchcock movie). The core problem here is lexical ambiguity: a term (e.g., an XML element/attribute tag name or data value) may have multiple meanings (homonymy), it may be implied by other related terms (metonymy), and/or several terms can have the same meaning (synonymy) [START_REF] Krovetz | Lexical Ambiguity and Information Retrieval[END_REF]. For instance (according to a general purpose knowledge base such as WordNet [START_REF] Fellbaum | Wordnet: An Electronic Lexical Database[END_REF]) the term "Kelly" in XML document 1 of Figure 1 may refer to Emmet Kelly: the circus clown, Grace Kelly: Princess of Monaco, or Gene Kelly: the dancer. However, looking at its context in the document, a human user can tell that "Kelly" here refers to Grace Kelly. Yet while seemingly obvious for humans, such semantic ambiguities remain extremely complex to resolve with automated processes. In this context, word sense disambiguation ( W S D ) , i . e . , t h e computational identification of the meaning of words in context [START_REF] Navigli | Word Sense Disambiguation: a Survey[END_REF], could be central to automatically resolve the semantic ambiguities and identify the meanings of XML element/attribute tag names and data values, in order to effectively process XML documents. While WSD has been widely studied for flat textual data [START_REF] Ide | Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art[END_REF][START_REF] Navigli | Word Sense Disambiguation: a Survey[END_REF], yet, the disambiguation of structured XML data remains largely untouched. The few existing approaches to XML semantic-aware analysis (cf. Section 2) have been directly extended from traditional flat text WSD, and thus show several limitations, motivating this work:

-Motivation 1: Completely ignoring the problem of semantic ambiguity: most existing approaches perform semantic disambiguation on all XML document nodes (which is time consuming and sometimes needless) rather than only processing those nodes which are most ambiguous, -Motivation 2: O n l y p a r t i a l l y c o n s i d e r i n g t h e s t r u c t u r a l relations/context of XML nodes (e.g., solely focusing on parent-node relations [START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF], or ancestor-descendent relations [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF]). For instance, in Figure 1, processing XML node "cast" f o r d i s a m b i g u a t i o n : c o n s idering (exclusively) its parent node label (i.e., "picture"), its root node path labels (i.e., "films" and "picture"), or its node sub-tree labels (i.e., "star"), remains insufficient for effective disambiguation.

-Motivation 3: M a k i n g u s e o f s y n t a c t i c p r o c e s s i n g techniques such as the bag-of-words p a r a d i g m [ 4 9 , 5 2 ] (commonly used with flat text) in representing XML data as a plain set of words/nodes, thus neglecting XML structural and/or semantic features as well as compound node labels, -Motivation 4: Existing methods are mostly static in adopting a fixed context size (e.g., parent node [START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF], or root path [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF]) or using preselected semantic similarity measures (e.g., edge-based measure [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF], or gloss-based measure [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF]), such that user involvement/system adaptability is minimal.

The main goal of our study is to provide an effective method to XML semantic analysis and disambiguation, overcoming the limitations mentioned above. We aim to transform traditional syntactic XML trees into semantic XML trees (or graphs, when hyperlinks come to play), i.e., XML trees made of concept nodes with explicit semantic meanings. Each concept will represent a unique lexical sense, assigned to one or more XML element/attribute labels and/or data values in the XML document, following the latter's structural context. To do so, we introduce a novel XML Semantic Disambiguation Framework titled XSDF, a fully automated solution to semantically augment XML documents using a machine-readable semantic network (e.g., WordNet [START_REF] Fellbaum | Wordnet: An Electronic Lexical Database[END_REF], Roget's thesaurus [START_REF] Yaworsky | Word-Sense Disambiguation Using Statistical Models of Roget's Categories Trained on Large Corpora[END_REF], FOAF [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF], etc.), identifying the semantic definitions and relationships among concepts in the underlying XML structure. Different from existing approaches, XSDF consists of four main modules for: i) linguistic pre-processing of XML node labels and values to handle compound words (neglected in most existing solutions), ii) selecting ambiguous XML nodes as primary targets for disambiguation using a dedicated ambiguity degree m e a s u r e (unaddressed in existing solutions), iii) representing target nodes as special sphere neighborhood v e c t o r s c o n s i d e r i n g a comprehensive XML structure context including all XML structural relations within a (user-chosen) range (in contrast with partial context representations using the bag-of-words paradigm), and iv) running sphere neighborhood vectors through a hybrid disambiguation process, combining two approaches: conceptbased and context-based disambiguation, allowing the user to tune disambiguation parameters following her needs (in contrast with static methods). We have implemented XSDF to test and evaluate our approach. Experimental results reflect our approach's effectiveness in comparison with existing solutions.

The remainder of this paper is organized as follows. Section 2 reviews the background and related works. Section 3 develops our XML disambiguation framework. Section 4 presents experimental results. Section 5 concludes the paper with future works.

BACKGROUND & RELATED WORKS 2.1 Word Sense Disambiguation

WSD underlines the process of computationally identifying the senses (meanings) of words in context, to discover the author's intended meaning [START_REF] Ide | Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art[END_REF]. The general WSD task consists of the following main elements: i) selecting words for disambiguation, ii) identifying and representing word contexts, iii) using reference knowledge sources, and iv) associating senses with words.

Selecting words for disambiguation: two possible methods exist: i) all-words, or ii) lexical-sample. In all-words WSD, e.g., [START_REF] Chan | NUS-PT: Exploiting parallel texts for word sense disambiguation in the English all-words tasks[END_REF][START_REF] Pradhan | Semeval-2007 task-17: English lexical sample, SRL and all words[END_REF], the system is expected to disambiguate all words in a (flat) textual document. In lexical-sample WSD, e.g., [START_REF] Guo | HIT-IR-WSD: A WSD System for English Lexical Sample Task[END_REF][START_REF] Pradhan | Semeval-2007 task-17: English lexical sample, SRL and all words[END_REF], specific target words are selected for disambiguation, which are usually the most ambiguous words, chosen using supervised learning methods trained to identify salient words in phrases [START_REF] Navigli | Word Sense Disambiguation: a Survey[END_REF].

Identifying and representing context: the context of a word in traditional flat textual data usually consists of the set of terms in the word's vicinity, i.e., terms occurring to the left and right of the considered word, within a certain predefined window size [START_REF] Lesk | Automatic Sense Disambiguation using Machine Readable Dictionaries[END_REF]. Thus, the traditional bag-of-words paradigm to represent context terms is broadly adopted with flat textual data [START_REF] Ide | Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art[END_REF][START_REF] Navigli | Word Sense Disambiguation: a Survey[END_REF].

Using reference knowledge sources: distinguished as corpusbased or knowledge-based. The corpus-based approach, e.g., [START_REF] Amitay | Multi-Resolution Disambiguation of Term Occurrences[END_REF][START_REF] Artiles | Word Sense Disambiguation based on Term to Term Similarity in a Context Space[END_REF][START_REF] Cimiano | Towards the Self-Annotating Web[END_REF], considers previously disambiguated words, and requires supervised learning from sense-tagged corpora (e.g., SemCor [START_REF] Miller | A Semantic Concordance[END_REF]) to enable predictions for new words. Knowledge-based methods, e.g., [START_REF] Mihalcea | Knowledge-based Methods for WSD. I n W o r d S e n s e Disambiguation[END_REF][START_REF] Navigli | Word Sense Disambiguation: a Survey[END_REF][START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF], use machine-readable knowledge bases (i.e., ontologies, thesauri and/or taxonomies, e.g., WordNet [START_REF] Fellbaum | Wordnet: An Electronic Lexical Database[END_REF], Roget's thesaurus [START_REF] Yaworsky | Word-Sense Disambiguation Using Statistical Models of Roget's Categories Trained on Large Corpora[END_REF], ODP [START_REF] Maguitman | Algorithmic Detection of Semantic Similarity[END_REF], etc.) providing readymade sense inventories to be exploited in WSD.

Associating senses with words: categorized as supervised or unsupervised. Supervised methods, e.g., [START_REF] Marquez | Supervised corpus-based methods for WSD[END_REF][START_REF] Navigli | Word Sense Disambiguation: a Survey[END_REF][START_REF] Tratz | PNNL: A supervised maximum entropy approach to word sense disambiguation[END_REF], use machine-learning techniques with corpus-based t r a i n i n g d a t a provided to a learning algorithm that induces rules to be used for assigning meanings to words. Unsupervised methods, e.g., [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF][START_REF] Patwardhan | SenseRelate:TargetWord -A Generalized Framework forWord Sense Disambiguation[END_REF][START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF], are usually knowledge-based where reference knowledge bases (e.g., WordNet) are processed as semantic networks made of concepts representing word s e n s e s , a n d l i n k s c o n n e c t i n g concepts, representing semantic relations (hyponymy, meronymy, etc., [START_REF] Fellbaum | Wordnet: An Electronic Lexical Database[END_REF][START_REF] Richardson | Using WordNet in a Knowledge-based approach to information retrieval[END_REF], cf. Figure 2). Here, WSD consists in identifying the semantic concept (word sense) in the semantic network that best matches the semantic concepts of terms appearing in the context of the target word, using a measure of semantic similarity [START_REF] Budanitsky | Evaluating WordNet-based Measures of Lexical Semantic Relatedness[END_REF][START_REF] Patwardhan | Using Measures of Semantic Relatedness for Word Sense Disambiguation[END_REF].

Semantic similarity measures in a semantic network: can be classified as edge-based, node-based, and gloss-based [START_REF] Budanitsky | Evaluating WordNet-based Measures of Lexical Semantic Relatedness[END_REF]. Edgebased methods [START_REF] Lee | Information Retrieval Based on Conceptual Distance in IS-A Hierarchies[END_REF][START_REF] Wu | Verb Semantics and Lexical Selection[END_REF] estimate similarity as the shortest path (in edges, weights, or number of nodes) between concepts being compared. Node-based approaches [START_REF] Lin | An Information-Theoretic Definition of Similarity[END_REF][START_REF] Resnik | Disambiguating Noun Groupings with Respect to WordNet Senses[END_REF] estimate similarity as the maximum amount of information content concepts share in common, based on the statistical distribution of concept (term) occurrences in a text corpus (e.g., the Brown corpus [START_REF] Francis | Frequency Analysis of English Usage[END_REF]). Glossbased methods [START_REF] Banerjee | An adapted Lesk algorithm for word sense disambiguation using WordNet[END_REF][START_REF] Banerjee | Extended Gloss Overlaps as a Measure of Semantic Relatedness[END_REF] evaluate word overlap between the glosses of concepts being compared, a gloss underlining the textual definition describing a concept (e.g., the gloss of the 1 st sense of word Actor in WordNet is "A theatrical performer", cf. Figure 2). Note that unsupervised/knowledge-based WSD has been largely investigated recently (including most methods targeting XML data), in comparison with supervised and corpus-based methods, which usually require extensive training and large test corpora [START_REF] Navigli | Word Sense Disambiguation: a Survey[END_REF], and thus do not seem practical for the Web. The reader can refer to [START_REF] Ide | Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art[END_REF][START_REF] Navigli | Word Sense Disambiguation: a Survey[END_REF] for reviews on traditional WSD.

XML Semantic Disambiguation

Few approaches have been d e v e l o p e d f o r s e m a n t i c disambiguation of XML and semi-structured data. The main challenges reside in the notion of XML (structural) contextualization and how it is processed, as described below.

XML Context Identification

While the context of a word in traditional flat textual data consists of the set of terms in the word's vicinity [START_REF] Lesk | Automatic Sense Disambiguation using Machine Readable Dictionaries[END_REF], yet there is no unified definition of the context of a node in an XML document tree. Different approaches have been investigated: i) parent node, ii) root path, iii) sub-tree, and iv) versatile structural context.

Parent node context:

The authors in [START_REF] Taha | CXLEngine: A Comprehensive XML Loosely Structured Search Engine[END_REF][START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF] consider the parent node to be the context of an XML data element, and process a parent node and its children as one (canonical) entity, deemed as the simplest semantically meaningful structural entity. The authors utilize context-driven search techniques (structure pruning, identifying relatives, etc.) to determine the relations between canonical trees. These are used to assign semantic node labels using a reference ontology [START_REF]Protégé Ontology Editor[END_REF], generalizing/specializing node concepts following their labels and positions in the XML tree.

Root path context:

In [START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF][START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF], the authors extend the notion of XML node context to include the whole XML root path, i.e., the path consisting of the sequence of nodes connecting a given node with the root of the XML document (or document collection). They perform per-path sense disambiguation, comparing every node label in each path with all possible senses of node labels occurring in the same path (using gloss-based and edge-based semantic similarity measures from [START_REF] Banerjee | Extended Gloss Overlaps as a Measure of Semantic Relatedness[END_REF][START_REF] Wu | Verb Semantics and Lexical Selection[END_REF] applied on WordNet) to select the appropriate sense for the node label being processed.

Sub-tree context:

The authors in [START_REF] Theobald | Exploiting Structure, Annotation, and Ontological Knowledge for Automatic Classification of XML Data[END_REF] consider the set of XML node labels contained in the sub-tree rooted at a given element node to describe the node's XML context. The authors apply a similar paradigm to identify the contexts of all possible node label senses in WordNet. Consequently, they compare the XML label context to all candidate sense contexts in WordNet, identifying the sense (concept) with the highest context similarity.

Versatile structural context: In [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF], the authors combine the notions of parent context and descendent (sub-tree) context in disambiguating generic structured data (e.g., XML, web directories, and ontologies). They propose various edge-weighting measures (namely a Gaussian decay function) to identify crossable edges, such that nodes reachable from a target node through any crossable edge belong to the target node's context. Then, they compare the target node label with each candidate sense (concept) corresponding to the labels in the target node's context (using edge-based semantic similarity [START_REF] Leacock | Combining Local Context and WordNet Similarity for Word Sense Identification[END_REF] applied on WordNet) in order to identify the highest matching concept.

XML Context Representation and Processing

Another concern in XML-based WSD is how to effectively process the context of an XML node (once it has been identified) considering the structural positions of XML data. Most existing WSD methods -developed for flat textual data (Section 2.1) and/or XML-based data [START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF][START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF][START_REF] Taha | CXLEngine: A Comprehensive XML Loosely Structured Search Engine[END_REF][START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF] -adopt the bag-of-words model where context is processed as a set of words surrounding the term/label (node) to be disambiguated. Hence, all context nodes are treated the same, despite their structural positions in the XML tree. One approach in [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF] extends the traditional bag-or-words paradigm with additional information considering distance weights separating the context and target nodes: identified as relational information model [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF]. The authors employ a specially tailored Gaussian decay function estimating edge weights such as the closer a node (following a user-specified direction), the more it influences the target node's disambiguation [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF].

Associating Senses with XML Nodes

Once the contexts of XML nodes have been determined, they can be handled in different ways. Two interesting approaches, both unsupervised and knowledge-based, have been adopted in this context, which we identify as: concept-based and context-based. On one hand, the concept-based approach adopted in [START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF][START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF] consists in evaluating the semantic similarity between target node senses (concepts) and those of its context nodes, using measures of semantic similarity between concepts in a semantic network, selecting the target sense with maximum similarity. On the other hand, the context-based approach introduced in [START_REF] Theobald | Exploiting Structure, Annotation, and Ontological Knowledge for Automatic Classification of XML Data[END_REF] consists in building context vectors for each target node sense (concept) in the semantic network, and building a context vector for the target node in the XML document tree, and then comparing context vectors to select the target sense with maximum vector similarity.

A hybrid approach in [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF] combines variants of the two preceding approaches to disambiguate generic structured data (including XML). Yet while producing quality results, the authors do not compare their solution with XML disambiguation methods.

Wrapping up: we identify four major limitations motivating our work (which have been highlighted in Section 1): most existing methods i) completely ignore the problem of semantic ambiguity, ii) only partially consider the structural relations/context of XML nodes (e.g., parent-node [START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF] or ancestor-descendent relations [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF]), ii) neglect XML structural/semantic features by using syntactic processing techniques such as the bag-of-words paradigm [START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF][START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF], and iv) are static in choosing a fixed context (e.g., parent node [START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF], or root path [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF]) or preselected semantic similarity measures, thus minimizing user involvement. 

XML DISAMBIGUATION FRAMEWORK

In order to address all motivations above and provide a more complete and dynamic XML disambiguation approach, we introduce XSDF a s a n u n s u p e r v i s e d a n d k n o w l e d g e -b a s e d solution to resolve semantic ambiguities in XML documents. XSDF's overall architecture is depicted in Figure 3. It is made of four modules: i) linguistic pre-processing, ii) nodes selection for disambiguation, iii) context definition and representation, and iv) XML semantic disambiguation. The system receives as input: i) an XML document tree, ii) a semantic network (noted SN), and iii) user parameters (to tune the disambiguation process following her needs), and produces as output a semantic XML tree. We develop XSDF's main modules in the following, starting with the XML and semantic data models adopted in our study.

XML and Semantic Data Models

XML documents represent hierarchically structured information and can be modeled as rooted ordered labeled trees ( An XML document can be represented as a rooted ordered labeled tree w h e r e n o d e s r e p r e s e n t X M L elements/attributes, labeled using element/attribute tag names. Element nodes are ordered following their order of appearance in the XML document. Attribute nodes appear as children of their containing element nodes, sorted2 by attribute name, and appearing before all sub-elements [START_REF] Nierman | Evaluating structural similarity in XML documents[END_REF][START_REF] Zhang | Similarity Metric in XML Documents[END_REF]. Element/attribute text values are stemmed and decomposed into tokens (using our linguistic pre-processing component), mapping each token to a leaf node labeled with the respective token, appearing as a child of its container element/attribute node, and ordered following their order of appearance in the element/attribute text value (Figure 4.a).

Note that element/attribute values can be disregarded (structureonly) or considered (structure-and-content) in the XML document tree following the application scenario at hand. Here, we believe integrating XML structure and content is beneficiary in resolving ambiguities in both element/attribute tag names (structure) and data values (content). For instance, in the document of Figure 1.a, considering data values "Kelly" a n d "Stewart" w o u l d b e beneficial to disambiguate tag label "cast". The same applies the other way: "cast" can help disambiguate "Kelly" and "Stewart". Also, we provide the formal definition of a semantic network, as the semantic (knowledge base) data model adopted in our study 3 . Note that c SN designates a semantic concept with c. its label, c.syn its set of synonymous words, and c.gloss its gloss. We also designate by SN a weighted semantic network: augmented with concept frequencies (cf. Figure 2) statistically quantified from a given text corpus (e.g., the Brown corpus [START_REF] Francis | Frequency Analysis of English Usage[END_REF]) • [START_REF] Abiteboul | Data on the Web: From Relations to Semistructured Data and XML[END_REF] In our current study and tests, we adopt WordNet [START_REF] Fellbaum | Wordnet: An Electronic Lexical Database[END_REF] as a reference semantic network, being a commonly used lexical reference for the English language. Yet, any other knowledge base can be used based on the application scenario, e.g., ODP [START_REF] Maguitman | Algorithmic Detection of Semantic Similarity[END_REF] for describing semantic relations between Web pages, or FOAF [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF] to identify relations between persons in social networks.

Note that after disambiguation, target nodes in the XML document tree would consist of semantic concept identifiers extracted from the reference semantic network, where non-target XML nodes remain untouched (cf. 

Linguistic Pre-Processing

Linguistic pre-processing consists of three main phases: i) tokenization, ii) stop word removal, and iii) stemming, applied on each of the input XML document's element/attribute tag names and text values, to produce corresponding XML tree node labels. Here, we consider three possible inputs:

Element/attribute tag names consisting of individual words, Element/attribute tag names consisting of compound words, usually made of two individual terms (t1 and t2) 4 separated by special delimiters (namely the underscore character, e.g., "Directed_By"), or the use of upper/lower case to distinguish the individual terms (e.g., "FirstName"), Element/attribute text values consisting of sequences of words separated by the space character.

3 Knowledge base & semantic network are used interchangeably hereafter. 4 More than two terms per XML tag name is unlikely in practice [START_REF] Wu | Verb Semantics and Lexical Selection[END_REF].

Context Definition & Representation Nodes Selection for Disambiguation

ThreshAmb Amb_Deg measure Context Vector Representation Considering the first case, no significant pre-processing is required, except for stemming (when the word is not found in the reference semantic network). Considering the second case (i.e., compound words, usually disregarded in existing methods), if t1 and t2 match a single concept in the semantic network (i.e., a synset in WordNet, e.g. first name), they are considered as a single token. Otherwise, they are considered as two separate terms, and are processed for stop word removal and stemming. Yet, they are kept within a single XML node label ( ) in order to be treated together afterward, i.e., one sense will be finally associated to , which is formed by the best combination of t1 and t2's senses (in contrast with studies in [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF][START_REF] Theobald | Exploiting Structure, Annotation, and Ontological Knowledge for Automatic Classification of XML Data[END_REF] which process token senses separately as distinct labels). As for the third case, we apply traditional tokenization (i.e., the text value sentence is broken up into a set of word tokens ti), processed for stop word removal and stemming, and then represented each as an individual node (xi) labeled with the corresponding token (xi. = ti), and appearing as children of the containing element/attribute node.

XML Semantic Disambiguation

Concept-based Disambiguation

Context-based Disambiguation

Semantic XML Tree

Linguistic preprocessing

Node Selection for Disambiguation

Given an input XML tree, the first step is to select target nodes to disambiguate, which (we naturally assume) are the most ambiguous nodes in the document tree. Thus we aim to provide a mathematical definition to quantify an XML node ambiguity degree which can be used to select target nodes for disambiguation (answering Motivation 1). To do so, we start by clarifying our assumptions about XML node ambiguity:

Assumption 1: The semantic ambiguity of an XML node is related to the number of senses of the node's label: i) the more senses it has, the more ambiguous the node is, ii) the less senses it has, the less ambiguous the node is.

Assumption 2:

The semantic ambiguity of an XML node is related to its distance from the root node of the document tree: i) the closer it is to the root, the more ambiguous it is, ii) the farther it is from the root, the less ambiguous it is.

Assumption 2 follows the nature of XML and semi-structured data, where nodes closer to the root of the document tend to be more descriptive of the whole document, i.e., having a broader meaning, than information further down the XML hierarchy [START_REF] Bertino | Measuring the structural similarity among XML documents and DTDs[END_REF][START_REF] Zhang | Similarity Metric in XML Documents[END_REF]. In other words, as one descends in the XML tree hierarchy, information becomes increasingly specific, consisting of finer details [START_REF] Tekli | An Overview of XML Similarity: Background, Current Trends and Future Directions[END_REF], and thus tends to be less ambiguous.

Assumption 3:

The semantic ambiguity of an XML node is related to its number of children nodes having distinct labels: i) the lesser the number of distinct children labels, the more ambiguous the node is, ii) the more the number of distinct children labels, the less ambiguous the node is.

Assumption 3 is highlighted in the sample XML trees in Figure 5.

One can clearly identify the meaning of root node label "Picture" (i.e., "motion picture") in Figure 5.a., by simply looking at the node's distinct children labels. Yet the meaning of "Picture" remains ambiguous in the XML tree of Figure 5.b (having several children nodes but with identical labels). Hence, we believe that distinct children node labels can provide more hints about the meaning of a given XML node, making it less ambiguous.

Assumption 4: An XML node which label has only one possible sense is considered to be unambiguous (i.e., semantic ambiguity is minimal), regardless of its distance from the tree root and its number of distinct children labels. While our goal is to quantify XML semantic ambiguity, yet this can be done in many alternative ways that would be consistent with the above assumptions. Hence, we first provide a set of propositions that map to the above assumptions, which we will utilize to derive our ambiguity degree measure.

Proposition 1:

The ambiguity degree of an XML node x in tree T increases when the number of senses of x. is high in the reference semantic network SN, or else it decreases such that:

(x. ) -1 Amb (x. , SN) = 0,1 Max( (SN)) -1 Polysemy senses senses ( 1 
)
where Max(senses(SN)) is the maximum number of senses of a word/expression in SN (e.g., in WordNet 2.1 [START_REF] Fellbaum | Wordnet: An Electronic Lexical Database[END_REF], Maxpolysemy = 33, for the word "head")

Proposition 2: The ambiguity degree of an XML node x in tree T increases when the distance in number of edges between x and R(T) is low, or else it decreases such that: a. Input syntactic XML tree(representing Doc 1 in Figure 1).

x.d Amb (x, T) = 1 -0,1 Max( (T))

Depth depth

(2)

where Max(depth(T)) is the maximum depth in T Proposition 3: The ambiguity degree of an XML node x in tree T increases when the number of children nodes of x having distinct labels, designated as .

x f , is low, or else it decreases: From the above propositions, we can derive a general definition for XML ambiguity degree: Definition 3 -XML Node Ambiguity Degree: Given an XML tree T, a node x T, and a reference semantic network SN, we define the ambiguity degree of x, Amb_Deg(x), as the ratio between AmbPolysemy(x. , SN) on one hand, and the sum of 1-AmbDepth(x, T) and 1-AmbDensity(x, T) on the other hand: Proofs of Propositions 1-3 and Lemma 1 have been omitted for space limitations, and can be found in [START_REF] Charbel | Resolving XML Semantic Ambiguity -Technical Report[END_REF]. Special case: When the label of node x consists of a compound word made of tokens t1 and t2, we compute Amb_Deg(x) as the average of the ambiguity degrees of t1 and t2.

Amb_Deg is computed for all nodes in the input XML tree. Then, only the most ambiguous nodes are selected as targets for disambiguation following an ambiguity threshold ThreshAmb automatically estimated or set by the user, i.e., nodes having Amb_Deg(x, T, SN) ThreshAmb, whereas remaining nodes are left untouched. Note that the user can disregard the ambiguity degree measure: i) by setting wPolysemy = 0 so that all nodes end up having Amb_Deg = 0 regardless of constituent polysemy, depth, and density factors, or ii) by setting ThreshAmb = 0 so that all nodes are selected for disambiguation regardless of their ambiguity degrees.

Note that the fine-tuning of parameters is an optimization problem such that parameters should be chosen to maximize disambiguation quality (through some cost function such as fmeasure, cf. Section 4). This can be solved using a number of known techniques that apply linear programming and/or machine learning in order to identify the best weights for a given problem class, e.g., [START_REF] Hopfield | Neural Computation of Decisions in Optimization Problems[END_REF][START_REF] Gal | Boosting Schema Matchers[END_REF][START_REF] Ming | A Harmony Based Adaptive Ontology Mapping Approach[END_REF]. Providing such a capability, in addition to manual tuning, would enable the user to start from a sensible choice of values (e.g., identical weight parameters to consider all ambiguity features equally, i.e., wPolysemy= wDepth= wFan-out =1, with a minimal threshold ThreshAmb = 0 to consider all results initially) and then optimize and adapt the disambiguation process following the scenario and optimization (cost) function at hand. We do not further address the fine-tuning of parameters here since it is out of the scope of this paper (to be addressed in an upcoming study).

Context Definition and Representation

XML Sphere Neighborhood

For each target node selected from the previous phase, node contexts have to be defined and processed for disambiguation. While current approaches only partly consider the semi-structured nature of XML in defining disambiguation contexts (Motivation 2), we introduce the XML sphere neighborhood context model, inspired from the sphere-search paradigm in XML IR [START_REF] Graupmann | The SphereSearch Engine for Unified Ranked Retrieval of Heterogeneous XML and Web Documents[END_REF] 5 , taking into account the whole structural surrounding of an XML target node (including its ancestors, descendants, and siblings) in defining its disambiguation context. We define the notion of XML ring as the set of nodes situated at a specific distance from the target node. An XML sphere would encompass all rings included at distances less or equal to the size (radius) of the sphere. The distance between two XML nodes in an XML tree, Dist(xi, xj), is typically evaluated as the number of edges separating the nodes. For instance, in tree T of Figure 6.a, the distance between nodes T [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF] and T [START_REF] Banerjee | Extended Gloss Overlaps as a Measure of Semantic Relatedness[END_REF] of labels "cast" and "Kelly" respectively is equal to 2. Hence, the XML ring R1(T [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF]) centered around node T [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF] ("cast") at distance 1 consists of nodes: T [START_REF] Abiteboul | Data on the Web: From Relations to Semistructured Data and XML[END_REF] ("Picture"), T [START_REF] Amitay | Multi-Resolution Disambiguation of Term Occurrences[END_REF] ("star") and T [START_REF] Banerjee | An adapted Lesk algorithm for word sense disambiguation using WordNet[END_REF] ("star"). Note that our approach can be straightforwardly extended to consider different kinds of tree node distance functions (including edge weights, density, or direction, etc. [START_REF] Ganesan | Exploiting Hierarchical Domain Structure To Compute Similarity[END_REF][START_REF] Jiang | Semantic Similarity based on Corpus Statistics and Lexical Taxonomy[END_REF]). Yet, we restrict ourselves to the most intuitive notion of node distance here, and report the investigation of other distance functions to a dedicated study. 5 While comparable with the concept of XML sphere exploited in [START_REF] Hopfield | Neural Computation of Decisions in Optimization Problems[END_REF], the latter consists of an XML retrieval paradigm for computing TF-IDF scores to rank XML query answers, which is orthogonally different, in its use and objectives, from our disambiguation proposal. In Figure 6.b, the XML sphere S2(T [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF]) centered around node T [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF] of label "cast" with radius 2 consists of: ring R1(T [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF]) of radius 1 comprising nodes T [START_REF] Abiteboul | Data on the Web: From Relations to Semistructured Data and XML[END_REF] ("picture"), T [START_REF] Amitay | Multi-Resolution Disambiguation of Term Occurrences[END_REF] ("star") and T [START_REF] Banerjee | An adapted Lesk algorithm for word sense disambiguation using WordNet[END_REF] ("star"), and ring R2(T [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF]) of radius 2 comprising nodes T[0] ("Films"), T [START_REF] Artiles | Word Sense Disambiguation based on Term to Term Similarity in a Context Space[END_REF] ("Stewart"), T [START_REF] Banerjee | Extended Gloss Overlaps as a Measure of Semantic Relatedness[END_REF] ("Kelly"), and T [START_REF] Berendt | Bridging the Gap: Data Mining and Social Network Analysis for Integrating Semantic Web and Web 2[END_REF] ("Plot").

The size (radius) of the XML sphere context is tuned following user preferences and/or the nature of the XML data at hand (e.g., XML trees might contain specialized and domain-specific data, and thus would only require small contexts to achieve good disambiguation, whereas more generic XML data might require larger contexts to better describe the intended meaning of node labels and values, cf. experiments in Section 4).

Context Vector Representation

Having identified the context of a given XML target node, we need to evaluate the impact of each of the corresponding context nodes in performing semantic disambiguation (in contrast with existing methods using the bag-of-words paradigm where context is processed as a set of words/nodes disregarding XML structure: Motivation 3). Here, we introduce a relational information solution based on the general vector space model in information retrieval [START_REF] Mcgill | Introduction to Modern IR[END_REF] (in comparison with the specific decay function used in [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF]), designed to consider the structural proximity/relations among XML nodes in computing disambiguation scores following our sphere neighborhood model. Our mathematical formulation follows two basic assumptions:

Assumption 5: XML context nodes closer to the target node should better influence the latter's disambiguation, whereas those farther away from the target node should have a smaller impact on the disambiguation process. This is based on the structured nature of XML, such as nodes closer together in the XML hierarchy are typically more related than more separated ones. Assumption 6: Nodes with identical labels, occurring multiple times in the context of a target node, should better influence the latter's disambiguation in comparison with nodes with identical labels occurring a lesser number of times. This is based on the notion of context in WSD, where words occurring multiple times in the context of a target word have a higher impact on the target's meaning. Therefore, we represent the context of a target XML node x as a weighed vector, which dimensions correspond to all distinct node labels in its sphere neighborhood context, weighted following their structural distances from the target node.

Definition 6 -XML Context Vector: Given a target node

x XML tree T, and its sphere neighborhood Sd (x) T, the corresponding context vector ()

d x
V is defined in a space which dimensions represent, each, a single node label r Sd (x), such as 1 < r < n where n is the number of distinct node labels in Sd (x). 6 The notion of sphere here is equivalent to that of a disk in 2D space.

Yet, we adopt the sphere nomination for clearness of presentation.

The coordinate of a context vector For instance, given the XML tree in Figure 6, Figure 7 shows context vectors of sphere neighborhoods S1(T [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF]) and S2(T [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF]) centered around node T [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF] of label "Cast". One can realize that label weights in Figure 7 The lemma's proof is omitted here, and can be found in [START_REF] Charbel | Resolving XML Semantic Ambiguity -Technical Report[END_REF], along with detailed computation examples.

In short, context nodes are weighted based on their labels' occurrences as well as the sizes (radiuses) of the sphere contexts to which they correspond, varying context node weights and thus their impact on the target node's disambiguation accordingly.

Cast Picture Star ] ([ 2 ) 1 T V 0.4 0.2 0.4
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] ([ 2 ) 2 T V 0.25 0.1667 0.3334 0.0835 0.0835 0.0835 0.0835 

XML Semantic Disambiguation

Once the contexts of XML nodes have been determined, we process each target node and its context nodes for semantic disambiguation. Here, we propose to combine two strategies: the concept-based approach and the context-based a p p r o a c h . T h e former is based on semantic concept comparison between target node senses (concepts) and those of its sphere neighborhood context nodes, whereas the latter is based on context vector comparison between the target node's sphere context vector in the XML tree and context vectors corresponding to each of its senses in the reference semantic network. The user will be able to combine and fine-tune both approaches (answering Motivation 4). Definition 8 -Concept-based Semantic Score: Given a target node x XML tree T and its sphere neighborhood Sd (x) T, and given sp as one possible sense for x. in a (weighted) reference semantic network SN , we define Concept_Score(sp, Sd(x), SN ) to quantify the semantic impact of sp as the potential candidate for the intended sense (meaning) of x. within context Sd(x) in T w.r.t. SN , computed as the average of the weighted maximum similarities between sp and context node senses: 

Concept-based Semantic Disambiguation

Concept_Score(sp, Sd(x), SN ) = i d i j id i pj i V( x ) . d S() sx xx Max Sim s s x . 0,1 Sx , )( ) |( ) | SN w (, (8) 
where:

wEdge+ wNode + wGloss =1 and (wEdge, wNode, wGloss) ≥ 0 SimEdge is a typical edge-based measure from [START_REF] Wu | Verb Semantics and Lexical Selection[END_REF],

SimNode is a typical node-based measure from [START_REF] Lin | An Information-Theoretic Definition of Similarity[END_REF],

SimGloss is a normalized extension of a typical gloss-based measure from [START_REF] Banerjee | Extended Gloss Overlaps as a Measure of Semantic Relatedness[END_REF] • Special case: If the target node label x. is a compound word consisting of two tokens t1 and t2 for which no single match was found in the reference semantic network SN (cf. Section 3.2), an average score for each possible combination of senses (sp, sq) corresponding to each of the individual token senses (sp for token t1, and sq for t2) is computed to identify the sense combination which is most suitable for the compound target node label: Sim s s Sim s s Sim s s s 0,

Concept_Score((sp, sq), Sd(x), SN ) = i d i j id i pp j i V( x ) . d S() xx Max Sim s s s x . 0,1 Sx , ,)( ) |( ) | SN w sx (( ), (10) where 

SN SN SN (( (( ),

Note that a compound context node label xi. which tokens 1 i t and 2 i t do not match any single concept in SN , is processed similarly to a compound target node label.

Context-based Semantic Disambiguation

It consists in comparing the target node sphere neighborhood in the XML tree with each of its possible sense (concept) sphere neighborhoods in the reference semantic network. To do so, we adopt the same notions of sphere neighborhood and context vector (Definitions 4-7) defined for XML nodes in an XML tree, to build the sphere neighborhood and context vector of a semantic concept in the semantic network. The only difference here is that sphere rings in the semantic network are built using the different kinds of semantic relations connecting semantic concepts (e.g., hypernyms, hyponyms, meronyms, holonyms, cf. Definition 2), in contrast with sphere rings in an XML tree which are built using XML structural containment relations (Definition 1). Here, given 7 SN designates a semantic network SN weighted with corpus statistics needed to compute a node-based similarity measure [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF][START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF]. Yet, the original non-weighted semantic network SN is sufficient to compute typical edge-based and gloss-based measures (cf. Section 2.1). 8 Here, we use three typical semantic similarity measures, yet any other semantic similarity measure can be used, or combined with the latter.

a reference semantic network SN, a semantic concept c SN, and a radius d, we designate by Rd(c), Sd(c), and

() d c
V the ring, sphere, and context vector of radius d corresponding to concept c in SN respectively. Note that linguistic pre-processing (cf. Section 3.2) can be applied to concept labels (when needed 9 ) before building context vectors and computing vector weights. Formally: Definition 10 -Context-based Semantic Score: Given a target node x XML tree T, its sphere neighborhood Sd (x) T and context vector 

d x V , () p d s V ) [0, 1] (11) 
where cos designates the cosine vector similarity measure 10 • Special case: If the target node label x. is a compound word consisting of tokens t1 and t2 for which no single match was found in the reference semantic network SN, an integrated score for each possible combination of senses (sp, sq) corresponding to each of the individual token senses (sp for token t1, and sq for token t2) is computed. Here, the sphere neighborhoods and context vectors of individual senses sp and sq are combined together to represent the context sphere of the combination of senses (sp, sq) in SN: Concept_Score((sp, sq), Sd(x), SN)= cos( ()

d x V , () , pq d s s V ) 0,1 (12) 
where () , pq d s s V is a compound context vector generated based on compound sphere neighborhood Sd(sp, sq) = Sd(sp) Sd(sq).

Combined Semantic Disambiguation

While concept-based and context-based disambiguation can be applied separately as described in the above sections, yet we allow the user to combine and fine-tune both approaches (answering Motivation 4), producing a combined score as the weighted sum of concept-based and context-based scores: ) respectively (cf. details in [START_REF] Charbel | Resolving XML Semantic Ambiguity -Technical Report[END_REF]). 9 This depends on the semantic network (not required with WorldNet).

EXPERIMENTAL EVALUATION

We have developed a prototype titled XSDF 11 to test and compare our approach with its most recent alternatives. We have evaluated two criteria: i) semantic ambiguity and ii) disambiguation quality.

Experimental Test Data

We used a collection of 80 test documents gathered from several data sources having different properties (cf. Table 3), which we describe and organize based on two features: i) node ambiguity, and ii) node structure (cf. Table 1). The former feature highlights the average amount of ambiguity of XML nodes in the XML tree, estimated using our ambiguity degree measure, Amb_Deg [0, 1]. The latter feature describes the average amount of structural richness of XML nodes, in terms of node depth, fan-out, and density in the XML tree, estimated as the sum of normalized node depth (1-AmbDepth), fan-out, and density (1-AmbDensity) factors, averaged over all nodes in the XML tree, formally: where wDepth+ wFan-out + wDensity =1 and (wDepth, wFan-out, wDensity) ≥ 0. In other words, high node depth, fan-out, and/or density here indicate a highly structured XML tree, whereas low node depth, fan-out, and/or density indicate a poorly structured (relatively flat) tree. In our experiments, we set equal weights wDepth = wFanout = wDensity = 1/3 when measuring Struct_Deg (cf. Table 1). In this study, we do not address the issue of assigning weights, which could be performed using optimization techniques (e.g., linear programming and/or machine learning [START_REF] Hopfield | Neural Computation of Decisions in Optimization Problems[END_REF][START_REF] Gal | Boosting Schema Matchers[END_REF][START_REF] Ming | A Harmony Based Adaptive Ontology Mapping Approach[END_REF]) to help fine-tune input parameters and obtain optimal results (cf. Section 3.3). Such a study would require a thorough analysis of the relative effect of each parameter on disambiguation quality, which we report to a dedicated subsequent study. 

XML Ambiguity Degree Correlation

We compare XML node ambiguity ratings produced by human users with those produced by our system (i.e., via our ambiguity degree m e a s u r e , Amb_Deg, cf. Section 3.3), using Pearson's correlation coefficient, pcc = XY/( X+ Y) where: x a n d y designate user and system generated ambiguity degree ratings respectively, X and Y denote the standard deviations of x and y respectively, and XY denotes the covariance between the x and y variables. The values of pcc [-1, 1] such that: -1 designates that one of the variables is a decreasing function of the other variable (i.e., values deemed ambiguous by human users are deemed unambiguous by the system, and visa-versa), 1 designates that one of the variables is an increasing function of the other variable (i.e., values are deemed ambiguous/unambiguous by human users and the system alike), and 0 means that the variables are not correlated. Five test subjects (two master students and three doctoral students, who were not part of the system development team) were involved in the experiment. Manual ambiguity ratings (integers [0, 4], i.e., [min, max] ambiguity) where acquired for 12-to-13 randomly pre-selected nodes per document, i.e., a total of 1000 nodes (during an average 10 hours rating time per tester) and then correlated with system ratings, computed with variations of Amb_Deg's parameters to stress the impact of its factors (AmbPolysemy, AmbDepth, and AmbDensity): i) Test #1 considers all three factors equally (wPolysemy = wDepth = wDensity = 1), ii) Test #2 focuses on the polysemy factor (wPolysemy =1 while wDepth = wDensity = 0), iii) Test #3 focuses on the depth factor (wDepth =1 while wPolysemy = 0.2 and wDensity = 0), iv) Test #4 focuses on the density factor (wDensity =1, wPolysemy = 0.2 and wDepth = 0).

Results compiled in Table 2 highlight several observations. First, XML ambiguity seems to be perceived and evaluated similarly by human users and our system -obtaining maximum positive correlation between human and Amb_Deg scores -when highly ambiguous and highly structured XML nodes are involved (e.g., Group 1). Second, ambiguity seems to be evaluated differently by users and our system when less ambiguous and/or poorly structured XML nodes are involved, attaining: negative or close to null correlation when low ambiguity and/or poorly structured XML nodes are evaluated (e.g., Groups 2, 3, and 4). This might be due to the intuitive understanding of semantic meaning by humans, in comparison with the intricate processing done by our automated system. For instance, in the case of documents of Dataset 9 of Group 4 (conforming to the personnel.dtd grammar of the Niagara XML document collection, cf. [START_REF] Charbel | Resolving XML Semantic Ambiguity -Technical Report[END_REF]), the meaning of child node label "state" under node label "address" was obvious for our human testers (providing an ambiguity score of 0/4). Yet, the interpretation of the meaning of "state" is not so obvious for a machine, especially using a rich lexical dictionary such as WordNet where word "state" has 8 different meanings.

Here, a label considered relatively unambiguous form the user's point of view was assigned a higher ambiguity score by the system based on the expressiveness of the lexical reference.

Concerning Amb_Deg's parameter weight variations (for wPolysemy, wDepth, and wDensity) with tests 2, 3, and 4, all three parameters seem to have comparable impacts on ambiguity evaluation. Note that evaluating XML node ambiguity is not addressed in existing approaches (they do not select t a r g e t n o d e s , b u t s i m p l y disambiguate all of them, which can be complex and needless).

XML Semantic Disambiguation Quality

In addition to evaluating our XML ambiguity degree measure, we ran a series of experiments to evaluate the effectiveness of our XML disambiguation approach. We used the same test datasets described previously. Target XML nodes were first subject to manual disambiguation (12-to-13 nodes were randomly preselected per document yielding a total of 1000 target nodes, allowing the same human testers to manually annotate each node by choosing appropriate senses from WordNet, which required an average 22 hours per tester) followed by automatic disambiguation. We then compared user and system generated senses to compute precision, recall and f-value scores.

Testing with Different Configurations

We first tested the effectiveness of our approach considering its different features and possible configurations, considering: i) the properties of XML data (w.r.t. ambiguity and structure), ii) context size (sphere neighborhood radius), and iii) the disambiguation process used (concept-based, context-based, and the combined approach). We only show f-value levels in Figure 8 for space limitation (precision and recall levels follow similar patterns). Several interesting observations can be made here. over all the tested configurations. The highest levels were reached with Dataset 1 of Goup1 having high ambiguity and rich structure, which resonates with the node ambiguity results discussed in the previous section (highly ambiguous and structurally rich XML nodes seem to be most effectively processed by our approach).

2) Considering context size, optimal f-value levels are obtained with the smallest sphere neighborhood radius d=1 with Group 1 (high ambiguity and rich structure XML nodes), whereas optimal levels are obtained with larger contexts having d=3 with Groups 2, 3, and 4 (low ambiguity and/or poor structure). This is expected since increasing context size with highly ambiguous/structure rich XML would increase the chances of including noise (e.g., unrelated/heterogeneous XML nodes) in the disambiguation context and thus d i s r u p t t h e p r o c e s s . Y e t , increasing context size with less ambiguous/poorly structured XML could actually help in creating a large-enough and/or richenough context to perform effective disambiguation.

3) Considering the disambiguation process, one can realize that the concept-based approach12 generally produces higher f-value levels in comparison with the context-based approach, the latter appearing to be more sensitive to context size. This is expected since the context-based approach primarily depends on the notion of context and context nodes, in both the XML document and semantic network, and thus increasing/decreasing context size would disturb its effectiveness. The effect of context size here could be aggravated when using a rich semantic network (such as WordNet) where a small increase in sphere neighborhood radius could include a huge number of concepts (synsets) in the semantic network context vector, thus adding considerable noise.

To sum up, the above results emphasize the usefulness and need for a flexible approach (such as ours), allowing the user to finetune the disambiguation process in order to optimize disambiguation following the nature and properties of the data. 

Comparative Study

In addition, we evaluated the effectiveness of our approach in comparison with two of its most recent alternatives: RPD (Root Path Disambiguation) [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF], and VSD (Versatile Structure Disambiguation) [START_REF] Mandreoli | Versatile Structural Disambiguation for Semantic-Aware Applications[END_REF]. A qualitative comparison is shown in Table 4. We ran a battery of tests considering the different features and configurations or our approach. Here, we provide a compiled presentation considering optimal input parameters for our approach 19 (i.e., context size d=1 when processing Group 1, d=3 when processing Groups 2, 3, 4, using the concept-based disambiguation process with all groups) and its alternatives (as indicated in corresponding studies). Results in Figure 9 show that our method yields precision, recall, and f-value levels higher than those achieved by its predecessors, with almost all test groups except with Group 4 where RPD produces better results. In fact, XML nodes in Group 4 are less ambiguous and poorly structured in comparison with remaining test groups. Hence, choosing a simple context made of root path nodes has proven to be less noisy in this case, in comparison with the more comprehensive context models used with our approach and with VSD. One can also realize that our method produces highest precision, recall, and f-value levels with Group 1 (high ambiguity and rich structure XML nodes), with an average 35% improvement over RDP and VSD (Figure 9.a), in comparison with average 25%, 5%, and almost 0% improvements with Groups 2, 3, & 4 respectively. This concurs with our results of the previous section: our method is more effective when dealing with highly ambiguous nodes within a rich XML structure, in comparison with less ambiguous/poorly structured XML. 

CONCLUSION

This paper introduces a novel XML Semantic Disambiguation Framework titled XSDF, to semantically annotate XML documents with the help of machine-readable lexical knowledge base (e.g., WordNet), which is a central pre-requisite to various applications ranging over semantic-aware query rewriting [START_REF] Cimiano | Towards the Self-Annotating Web[END_REF][START_REF] Navigli | An Analysis of Ontology-based Query Expansion Strategies[END_REF], XML document classification and clustering [START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF][START_REF] Tekli | A Novel XML Structure Comparison Framework based on Subtree Commonalities and Label Semantics[END_REF], XML schema matching [START_REF] Do | Matching Large Schemas: Approaches and Evaluation[END_REF][START_REF] Tekli | Minimizing User Effort in XML Grammar Matching[END_REF], and blog analysis and event detection in social networks [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF][START_REF] Berendt | Bridging the Gap: Data Mining and Social Network Analysis for Integrating Semantic Web and Web 2[END_REF]. XSDF covers the whole disambiguation pipeline from: i) linguistic pre-processing of XML node labels to handle compound words (neglected in most existing solutions), to ii) selecting ambiguous nodes for disambiguation using a dedicated ambiguity degree m e a s u r e ( u n a d d r e s s e d i n m o s t solutions), iii) representing target node contexts as comprehensive and flexible (user chosen) sphere neighborhood v e c t o r s ( i n contrast with partial and fixed context representations, e.g., parent node or sub-tree context), and iv) running a hybrid disambiguation process, combining two (user chosen) methods: concept-based and context-based (in contrast with static methods). Experimental results w.r.t. user judgments reflect our approach's effectiveness in selecting ambiguous XML nodes and identifying node label senses, in comparison with existing solutions.
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 1 Figure 1. Sample documents with different structures andtagging, yet describing the same information.
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 2 Figure 2. Extract of the (weighted) WordNet semantic network. Numbers next to concepts represent concept frequencies (based on the Brown text corpus [15]). Sentences next to concepts represent concept glosses.
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 3 Figure 3. Overall XSDF architecture.
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 41 .a and b), based on the Document Object Model (DOM)[START_REF] W3c | The Document Object Model[END_REF]. Rooted Ordered Labeled Tree: It is a rooted tree in which the nodes are labeled and ordered. We denote by T[i] the i th node of T in preorder traversal, T[i]. its label, T[i].d its depth (in number of edges), and T[i].f its out-degree (i.e., the node's fan-out). R(T)=[0] designates the root node of tree T 1 •

Definition 2 -

 2 Semantic network: It is made of concepts representing groups of words/expressions designating word senses, and links connecting the concepts designating semantic relations, and can be represented as SN=(C, L, G, E, R, f, g): C: set of nodes representing concepts in SN (synsets as in WordNet [14]), L: set of words describing concept labels, G: set of glosses describing concept definitions, E: set of edges connecting concept nodes, E C C, R: set of semantic relations, R = {Is-A, Has-A, Part-Of, Has-Part…}, the synonymous words/expressions being integrated in the concepts themselves, f: function designating the labels, sets of synonyms, and glosses of concept nodes, f: C L, L n , G where n designates the number of synonyms per concept, g: function designating the labels of edges, g: E R.
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 4 Figure 4. Sample input (syntactic) XML tree and output (semantic) XML trees.
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 5 Figure 5. Sample XML document trees.

  Output inverted concept indexes, generated after disambiguation along with the output semantic tree.Concept-Doc IndexConcept-Output semantic XML tree, where nodes 6 and 7 were not targeted for disambiguation.

  Max fan out i s t h e m ax i m u m n u m b e r o f c h i l d r e n nodes with distinct node labels in T. We identify this factor as node density factor to distinguish it from traditional node fan-out: number of children nodes (regardless of label, cf. Definition 1)
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 1 where wPolysemy, wDepth, wDensity [0, 1] are independent weight parameters allowing the user to fine-tune the contributions of polysemy, depth, and density factors respectively • The ambiguity degree measure Amb_Deg i n Definition 3 varies in accordance with Propositions 1-3, and conforms to Assumptions 1-4

Definition 4 -Figure 6 .

 46 Figure 6. Sample XML (ring and) sphere neighborhoods.

Definition 5 -XML Sphere 6 :

 56 XML sphere S2(T[START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF]) centered around node T[START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF] of label "cast". XML ring R1(T[START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF]) centered around node T[START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF] of label "cast". Given an XML tree T, a target node x T, and a set of XML rings () sphere with center x and radius d as the set of nodes in the rings centered around x at distances less or equal to d, i.e., Sd(x) = {xi T | xi ()j d R x dj ≤ d} •

(

  the weight of label r in sphere Sd (x) • Definition 7 -XML Node Label Weight: T h e w e i g h t o d e l a b e l r i n c o n t e x t v e c t o r () d x V corresponding to the sphere neighborhood Sd (x) of target node x and radius d, consists of the structural frequency of nodes xi Sd (x) having label xi. = r. It is composed of a normalized occurrence s e d o n A s s u m p t i o n 5 ) . F o r m a l l y , g i v e n |Sd(x)| the cardinality (in number of nodes) of Sd(x): underlines the total number of occurrences of nodes xi Sd (x) having label xi. = r, weighted w.r.t. structural proximity, formally: x underlines the structural proximity between each context node xi Sd (x) having xi. = r, and the target (sphere center) node x, formally: x is incremented by 1 (i.e., d+1) to allow context nodes occurring in the farthest ring of the sphere context Sd(x), i.e., the ring Rd(x) of radius d, to have a nonnull weight in () d x V , and thus a non-null impact on the disambiguation of target node x •

2 ]

 2 increase as nodes occur closer to the target node (Assumption 5), and as the number of node label occurrences increases in the sphere context (Assumption 6, e.g.Star" occurs twice in S1(T[START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF]) while "Picture" occurs once; also in in accordance with Assumptions 5 and 6

Figure 7 .

 7 Figure 7. Sample sphere context vectors based on the sphere neighborhoods in Figure 6.

sDefinition 9 -

 9 designates the jth sense of context node xi. Sd (x), and i pj ,) Sim s s SN (, designates the semantic similarity measure between senses sp and i j s w.r.t. SN • Semantic Similarity Measure: It quantifies the semantic similarity (relatedness) between two concepts (i.e., word senses) c1 and c2 in a reference (weighted) semantic network SN 7 , computed as the weighted sum of several semantic similarity measures 8 . Formally: Sim(c1, c2, SN ) = wEdge SimEdge (c1, c2, SN) + wNode SimNode(c1, c2, SN )) + wGloss SimGloss(c1, c2, SN)) [0, 1]

  sp as one possible sense for x. i n a r e f e r e n c e s e m a n t i c n e t w o r k SN, with its sphere neighborhood Sd (sp) SN and context vector () Context_Score(sp, Sd(x), SN) to quantify the semantic impact of sp as the potential candidate designating the intended sense (meaning) of x. within context Sd(x) in T w.r.t. SN, computed using a vector similarity measure between , Sd(x), SN) = cos( ()

, 1 ] ( 13 )

 113 Concept_Score(sp, Sd(x), SN ) = wConcept Concept_Score(sp, Sd(x), SN ) + wContext Context_Score(sp, Sd(x), SN) [0where wConcept+ wContext =1 and (wConcept, wContext) ≥ 0 Note that disambiguation algorithms have been omitted for space limitations. Overall complexity simplifies to the sum of the complexities of concept-based and context-based disambiguation processes, i.e., O(|senses(x. )| | Sd(x)| | senses(xi. )|), and O(|senses(x. )| (|Sd(x)| + |Sd(sp)|

Figure 8 .

 8 Figure 8. Average f-value scores considering different features andconfigurations of our approach.13 14 15 16 17 18 

a.

  Results with Group 1. b. Results with docs of Group 2. c. Results with Group 3. d. Results with Group 4.

Figure 9 .

 9 Figure 9. Average PR, R and F-value scores comparing our approach with RPD [50] and VSD [29].

  or d=4 if Max(Depth(T))

Table 1 . XML test documents organized based on average node ambiguity and structure.

 1 

		Structure +	Structure -
		Group 1	Group 2
	Ambiguity +	Amb_Deg = 0.1127 &	Amb_Deg = 0.1378 &
		Struct_Deg = 0.6803	Struct_Deg = 0.6621
		Group 3	Group 4
	Ambiguity -	Amb_Deg = 0.0625 &	Amb_Deg = 0.0447 &
		Struct_Deg = 0.612	Struct_Deg = 0.5515

Table 2 . Correlation between human ratings and system generated ambiguity degrees (cf. graphs in [38]).

 2 

			Test #1	Test #2	Test #3	Test #4
			All factors	Polysemy	Depth	Density
	Group 1	Doc 1	0.394	0.411	0.335	0.439
	Group 2	Doc 2	0.017	0.181	0.243	0.139
		3	-0.087	-0.139	-0.071	-0.138
	Group 3	Doc 4	0.408	0.438	0.390	0.398
		5	-0.184	-0.185	-0.131	-0.235
		6	-0.284	-0.291	-0.243	-0.316
		7	-0.177	-0.190	-0.254	-0.143
	Group 4	Doc 8	-0.119	-0.025	0.033	-0.156
		Doc 9	-0.452	-0.301	-0.251	-0.456
		Doc 10	-0.258	0.180	0.412	0.276
	1) Considering XML data properties, one can realize that our
	approach produced consistent f-value levels	[0.55, 0.69]

Table 3 . Characteristics of test documents.

 3 

	Groups	Datasets	Source dataset	Grammar	N# of docs	Avg. N# of nodes per doc	Node label polysemy (N# of senses) Avg. Max.	Node Depth Avg. Max.	Node Fan-out Avg. Max.	Node Density Avg. Max.
	Group 1	1	Shakespeare collection 1	shakespeare.dtd	10	192.054	7.052	30	3.687	6	0.604	20	0.38	6
	Group 2	2	Amazon product files 2	amazon_product.dtd	10	113.333	8.407	72	4.309	7	0.539	13	0.38	6
		3	SIGMOD Record 3	ProceedingsPage.dtd	6	39.375	4.615	16	2.743	6	0.692	9	0.692	9
	Group 3	4	IMDB database 4	movies.dtd	6	15.475	4	10	2.666	5	1.066	5	1	5
		5	Niagara collection 5	bib.dtd	8	26.5	4.384	13	2.961	5	0.884	5	0.884	5
		6	W3Schools 6	cd_catalog.dtd	4	16.5	3.937	10	2.312	3	0.812	6	0.812	6
		7	W3Schools	food_menu.dtd	4	16	2.375	7	2.437	3	0.562	4	0.562	4
	Group 4	8	W3Schools	plant_catalog.dtd	4	11.675	3.454	15	2	3	1.181	6	1.181	6
		9	Niagara collection	personnel.dtd	4	19	3.947	9	2.368	5	1.157	4	1.157	4
		10	Niagara collection	club.dtd	4	15.5	4.533	10	2.266	4	1.4	5	1.4	5

Table 4 . Comparing our method with existing approaches

 4 

	Approaches	Considers linguistic pre-processing	Considers tag tokenization (compound terms)	Addresses XML node ambiguity	Integrates an inclusive XML structure context	Flexible w.r.t. context size	Adopts relational information approach	Combines the results of various semantic similarity measures	Straightforward mathematical functions	Disambiguates XML structure and content
	RPD [50]	√	x	x	x	x	x	x	x	x
	VSD [29]	√	√	x	√	√	√	x	x	x

Tree and rooted ordered labeled tree are used interchangeably hereafter.

While the order of attributes (unlike elements) is irrelevant in XML[START_REF] Abiteboul | Data on the Web: From Relations to Semistructured Data and XML[END_REF], yet we adopt an ordered tree model to simplify processing[START_REF] Pradhan | Semeval-2007 task-17: English lexical sample, SRL and all words[END_REF][START_REF] W3c | The Document Object Model[END_REF].

We adopt cosine since it is widely used in IR[START_REF] Miller | WordNet: An On-Line Lexical Database[END_REF]. Yet, other vector similarity measures can be used, e.g., Jaccard, Pearson corr. coeff., etc.

Available online at http://sigappfr.acm.org/Projects/XSDF/

W h e n a p p l y i n g t h e c o n c e p t -b a s e d a p p r o a c h , s e m a n t i c s i m i l a r i t y measures were considered with identical parameter weights (w Edge = w Node = w Gloss = 1/3 = 0.3334), since evaluating the effectiveness of different semantic similarity measures is out of the scope of this paper.

√ √ √ √ √ a. F-value results with Group 1. b. F-value results with Group 2. c. F-value results with Group 3. d. F-value results with Group 4.

Available at http://metalab.unc.edu/bosak/xml/eg/shaks200.zip

Available at simply-amazon.com/content/XML.html

Available at http://www.acm.org/sigmod/xml

Data extracted from http://www.imdb.com/ using a wrapper generator.

Available at http://www.cs.wisc.edu/niagara/

Available from http://www.w3schools.com

Manually identified from repeated tests with different parameter values.

We are currently investigating different XML tree node distance functions (including edge weights, density, direction, etc. [16,21]), to define more sophisticated neighborhood contexts. Finetuning user parameters using dedicated optimization techniques [19,30] is another work in progress. We are also investigating the use of additional/alternative lexical knowledge sources such as Google [22], Wikipedia [12], and FOAF [2] to acquire a wider word sense coverage, and thus explore our approach in practical applications, namely semantic blog and wiki document clustering.