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This paper briefly describes and evaluates XSDF, a new XML Semantic Disambiguation Framework, taking as input: an XML document and a general purpose semantic network, and then producing as output a semantically augmented XML tree made of unambiguous semantic concepts. Experiments demonstrate the effectiveness of XSDF in comparison with alternative methods.

I. INTRODUCTION

XML-based data processing has been at the center stage of Web-based information retrieval (IR) and database (DB) applications for the past two decades, taking advantage of the semi-structured nature of XML documents to improve the quality of IR and DB data management solutions [START_REF] Maguitman | Algorithmic Detection of Semantic Similarity[END_REF]. Recently, various studies have highlighted the impact of integrating semantic features in XML-based applications, to allow semantic-aware query rewriting and expansion [START_REF] Cimiano | Towards the Self-Annotating Web[END_REF][START_REF] Navigli | An Analysis of Ontology-based Query Expansion Strategies[END_REF], XML document classification and clustering [START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF][START_REF] Tekli | A Novel XML Structure Comparison Framework based on Sub-tree Commonalities and Label Semantics[END_REF], XML schema matching and integration [START_REF] Do | Matching Large Schemas: Approaches and Evaluation[END_REF][START_REF] Tekli | Minimizing User Effort in XML Grammar Matching[END_REF], and more recently XML-based semantic blog analysis and event detection in social networks and tweets [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF][START_REF] Berendt | Bridging the Gap -Data Mining and Social Network Analysis for Integrating Semantic Web and Web 2.0[END_REF]. Here, a major challenge remains unresolved: XML semantic disambiguation, i.e., how to resolve the semantic ambiguities and identify the meanings of terms in XML documents [START_REF] Krovetz | Lexical Ambiguity and Information Retrieval[END_REF]. The problem is made harder with the volume and diversity of XML data on the Web.

Usually, heterogeneous XML data sources exhibit different ways to annotate similar (or identical) data, where the same real world entity could be described in XML using different structures and/or tagging, depending on the data source at hand. For instance (according to a general purpose knowledge base, such as WordNet [START_REF] Fellbaum | Wordnet: An Electronic Lexical Database[END_REF]) the XML tag name "director" in document 2 (Fig. 1) can have several meanings, e.g., "manager of a company", "film director", "theater director" or "music director". The same goes for most terms/tag names in XML documents 1 and 2, e.g., "Transcendence", "actor", "plot", "cast", "star", etc., which can have more than 2 or 3 different semantic senses each, (following WordNet). In essence, the core problem is lexical ambiguity: a term (e.g., an XML element/attribute tag name or data value) may have multiple meanings (homonymy), or may be implied by other related terms (metonymy). Also, several terms can have the same meaning (synonymy) [START_REF] Krovetz | Lexical Ambiguity and Information Retrieval[END_REF]. In this context, word sense disambiguation (WSD), i.e., the computational identification of the meaning of words in context [START_REF] Navigli | Word Sense Disambiguation: a Survey[END_REF], is central to automatically resolve the semantic ambiguities and identify the intended meanings of XML element/attribute tag names and data values, in order to effectively process XML documents. While WSD has been extensively studied for flat textual data [START_REF] Ide | Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art[END_REF][START_REF] Navigli | Word Sense Disambiguation: a Survey[END_REF], nonetheless, the disambiguation of structured XML data remains largely untouched. The few existing approaches dedicated to XML semantic-aware analysis, e.g., [START_REF] Mandreoli | Knowledge-based sense disambiguation (almost) for all structures[END_REF][START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF][START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF][START_REF] Taha | CXLEngine: A Comprehensive XML Loosely Structured Search Engine[END_REF][START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF][START_REF] Theobald | Exploiting Structure, Annotation, and Ontological Knowledge for Automatic Classification of XML Data[END_REF], have been directly extended from traditional flat text WSD, while maintaining several limitations, motivating this work: i) completely ignoring the problem of semantic ambiguity: most existing approaches perform semantic disambiguation on all XML document nodes (which is time consuming and sometimes needless) rather than only processing those nodes which are most ambiguous, e.g., [START_REF] Mandreoli | Knowledge-based sense disambiguation (almost) for all structures[END_REF][START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF][START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF][START_REF] Taha | CXLEngine: A Comprehensive XML Loosely Structured Search Engine[END_REF][START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF][START_REF] Theobald | Exploiting Structure, Annotation, and Ontological Knowledge for Automatic Classification of XML Data[END_REF].; ii) only partially considering the structural relations/context of XML nodes (e.g., solely focusing on parent-node relations [START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF], or ancestor-descendent relations [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF]). For instance, in Fig. 1, processing XML node "cast" for disambiguation: considering (exclusively) its parent node label (i.e., "picture"), its root node path labels (i.e., "films" and "picture"), or its node sub-tree labels (i.e., "star"), remains insufficient for effective disambiguation; iii) making use of syntactic processing techniques such as the bag-of-words paradigm [START_REF] Tagarelli | Semantic Clustering of XML Documents[END_REF][START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF] (commonly used with flat text) in representing XML data as a plain set of words/nodes, thus neglecting XML structural and/or semantic features as well as compound node labels; and iv) existing methods are mostly static in adopting a fixed context size (e.g., parent node [START_REF] Taha | XCDSearch: An XML Context-Driven Search Engine[END_REF], or root path [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF]) or using preselected semantic similarity measures (e.g., edge-based measure [START_REF] Mandreoli | Knowledge-based sense disambiguation (almost) for all structures[END_REF], or glossbased measure [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF]), such that user involvement/system adaptability is minimal.

This paper describes XSDF, a novel XML Semantic Disambiguation Framework to semantically augment XML documents using a machine-readable semantic network (e.g., WordNet [START_REF] Fellbaum | Wordnet: An Electronic Lexical Database[END_REF], Roget's thesaurus [START_REF] Yaworsky | Word-Sense Disambiguation Using Statistical Models of Roget's Categories Trained on Large Corpora[END_REF], FOAF [START_REF] Aleman-Meza | Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection[END_REF], etc.), identifying the semantic definitions and relationships among concepts in the underlying XML structure, while overcoming the limitations mentioned above. XSDF takes as input traditional syntactic XML trees and transforms them into semantic XML trees (or graphs, when hyperlinks come to play), i.e., XML trees made of concept nodes with explicit semantic meanings. Each concept will represent a unique lexical sense, assigned to one or more XML element/attribute labels and/or data values in the XML document, following the latter's structural context.

The groundwork results and overall design of XSDF has been described in [START_REF] Charbel | Resolving XML Semantic Ambiguity[END_REF], and an extended study has been submitted for publication in [START_REF] Tekli | A Dynamic Framework for XML Semantic Disambiguation[END_REF]. In this short paper, we briefly describe XSDF's overall architecture in Section 0 and discuss some experimental results in Section 0.

II. OVERALL SYSTEM ARCHITECTURE

XSDF is as an unsupervised and knowledge-based solution to resolve semantic ambiguities in XML documents. Its overall architecture is shown in Fig. 2 and consists of four modules: -Module 1: Linguistic pre-processing of XML node labels and values, performing tokenization, stop words removal, and stemming, as well as handling compound element tag names such that one sense is associated to the tag name, which is formed by the best combination of its compound terms' senses; in contrast with existing studies in [29, 56] which process token senses separately as distinct labels.

-Module 2: Selecting ambiguous XML nodes as primary targets for disambiguation using a dedicated ambiguity degree measure (see in Formula a. Input syntactic XML tree (representing Doc 1 in Figure 1).

b. Output semantic XML tree, where nodes 6 and 7 were not targeted for disambiguation. The XSDF prototype system 1 was implemented as an open software using Java. It receives as input: i) an XML document tree, ii) a reference semantic network or knowledge base (the current version uses WordNet 3.0), and iii) user parameters (to tune the disambiguation process following her needs), to produce as output a semantic XML tree (cf. Fig. 3).

The prototype also includes implementations of existing XML disambiguation methods which were used to conduct comparative experiments. A prototype snapshot is shown in Fig. 4.

III. EXPERIMENTS

A battery of experiments was conducted to evaluate three criteria: i) semantic ambiguity, ii) disambiguation quality, and iii) processing time. We first briefly describe the test data, and then discuss the results. II). The former feature highlights the average amount of ambiguity of XML nodes in the XML tree, estimated using our ambiguity degree measure, Amb_Deg [0, 1]. The latter feature describes the average amount of structural richness of XML nodes, in terms of node depth, fan-out, and density in the XML tree, averaged over all nodes in the XML tree, formally: 

B. XML Ambiguity Degree Correlation

We compared XML node ambiguity ratings produced by human users with those produced by our system (i.e., via our ambiguity degree measure, Amb_Deg, ), using Pearson's correlation coefficient, pcc = xy/( x+ y) where: x and y designate user and system generated ambiguity degree ratings respectively, x and y denote the standard deviations of x and y respectively, and xy denotes the covariance between the x and y variables. The values of pcc [-1, 1] such that: -1 designates that one of the variables is a decreasing function of the other variable (i.e., values deemed ambiguous by human users are deemed unambiguous by the system, and visa-versa), 1 designates that one of the variables is an increasing function of the other variable (i.e., values are deemed ambiguous/unambiguous by human users and the system alike), and 0 means that the variables are not correlated. Five test subjects were involved in the experiment. Manual ambiguity ratings (integers [0, 4], i.e., [min, max] ambiguity) where acquired for 12-to-13 randomly pre-selected nodes per document, i.e., a total of 1000 nodes (during an average 10 hours rating time per tester) and then correlated with system ratings, computed with variations of Amb_Deg's parameters to stress the impact of its factors (Amb Polysemy , Amb Depth , and Amb Density ): i) Test #1 considers all three factors equally (w Polysemy = w Depth = w Density = 1), ii) Test #2 focuses on the polysemy factor (w Polysemy =1 while w Depth = w Density = 0), iii) Test #3 focuses on the depth factor (w Depth =1 while w Polysemy = 0.2 and w Density = 0), iv) Test #4 focuses on the density factor (w Density =1, w Polysemy = 0.2 and w Depth = 0). Results compiled in TABLE III highlight several observations. First, XML ambiguity seems to be perceived and evaluated similarly by human users and our systemobtaining maximum positive correlation between human and Amb_Deg scores -when highly ambiguous and highly structured XML nodes are involved (e.g., Group 1). Second, ambiguity seems to be evaluated differently by users and our system when less ambiguous and/or poorly structured XML nodes are involved, attaining: negative or close to null correlation when low ambiguity and/or poorly structured XML nodes are evaluated (e.g., Groups 2, 3, and 4). This is due to the intuitive understanding of semantic meaning by humans, in comparison with the intricate processing done by our automated system. For instance, in the case of documents of Data-set 9 of Group 4, the meaning of child node label "state" under node label "address" was obvious for our human testers (providing an ambiguity score of 0/4). Yet, "state" has 8 different meanings following WordNet and thus its meaning is not so obvious for a machine. Concerning Amb_Deg's parameter weight variations (for w Polysemy , w Depth , and w Density ) with tests 2, 3, and 4, all three parameters seem to have comparable impacts on ambiguity evaluation. Note that evaluating XML node ambiguity is dismissed in existing approaches, since they do not address the issue of selecting target (ambiguous) nodes for disambiguation (they simply disambiguate all nodes in an XML tree, which can be complex and needless).

C. XML Disambiguation Quality

In addition, we evaluated the disambiguation quality of our approach in comparison with two of its recent alternatives: RPD (Root Path Disambiguation) [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF], and VSD (Versatile Structure Disambiguation) [START_REF] Mandreoli | Knowledge-based sense disambiguation (almost) for all structures[END_REF]. A qualitative comparison is shown inTABLE IV. We ran a battery of tests considering the different features and configurations or our approach. Fig. 5. Average PR, R and F-value scores comparing our approach with RPD [START_REF] Tagarelli | Word Sense Disambiguation for XML Structure Feature Generation[END_REF] and VSD [START_REF] Mandreoli | Knowledge-based sense disambiguation (almost) for all structures[END_REF].

Results in Fig. 5 show that our method yields precision, recall, and f-value levels higher than those achieved by its predecessors, with almost all test groups except with Group 4 (cf. Fig. 5.d) where RPD produces better results. In fact, XML nodes in Group 4 are less ambiguous and poorly structured in comparison with remaining test groups. Hence, choosing a simple context made of root path nodes has proven to be less noisy in this case (including less context nodes) in comparison with the more comprehensive context models used with our approach and with VSD. One can also realize that our method produces highest precision, recall, and f-value levels with Group 1 (high ambiguity and rich structure XML nodes), with an average 35% improvement over RDP and VSD (cf. Fig. 5.a), in comparison with average 25%, 5%, and almost 0% improvements with Groups 2, 3, and 4 respectively (cf. Fig. 5.b,c,d). This concurs with our results of the previous section: our method is more effective when dealing with highly ambiguous nodes within a rich XML structure, in comparison with less ambiguous/poorly structured XML. 

D. Performance Evaluation

We have also conducted a detailed complexity analysis and various time experiments to study and evaluate the performance of our approach. Comparative results in Fig. 6 show that our method is of average polynomial complexity, and that its time performance is closely comparable to those of its alternatives (cf. details in [START_REF] Tekli | A Dynamic Framework for XML Semantic Disambiguation[END_REF]). In the oral demonstration, we aim to showcase our system's effectiveness and efficiency in disambiguating XML data, while emphasizing its logical design, implementation, and functionality. 
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 4 Output inverted concept indexes, generated after disambiguation along with the output semantic tree. Module XML semantic disambiguation, running sphere neighborhood vectors through a hybrid disambiguation process, combining two approaches: concept-based and context-based disambiguation methods developed in[START_REF] Charbel | Resolving XML Semantic Ambiguity[END_REF], allowing the user to tune disambiguation parameters following her needs; in contrast with static methods.
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2 )

 2 ) Max( -(T)) Max( -(T)) depth fan out fan out (where x is an XML node, T an XML document tree, SN a reference semantic network, x.d the node's depth, x.f the node's fan-out, . x f the node's density, w Depth + w Fan-out + w Density =1 and (w Depth , w Fan-out, w Density ) 0. In other words, high node depth, fan-out, and/or density here indicate a highly structured XML tree, whereas low node depth, fanout, and/or density indicate a poorly structured (relatively flat) tree. In our experiments, we set equal weights w Depth = w Fan-out = w Density = 1/3 when measuring Struct_Deg (cf. Formula 2).

a.

  Results with Group 1. b. Results with docs of Group 2. c. Results with Group 3. d. Results with Group 4.

Fig. 6 .
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Fig. 3. Sample input (syntactic) XML tree and output (semantic) XML trees.

TABLE I .

 I Characteristics of test documents.We used a collection of 80 test documents gathered from several data sources having different properties (cf. TABLEI), which we categorize following two features: i) node ambiguity, and ii) node structure (cf. TABLE

	Groups		Datasets	N# of docs	Avg.. N# of nodes per doc	Avg. Node label polysemy	Avg. Node Depth	Avg. Node Fan-out	Avg. Node Density
	Group 1 1 Shakespeare collection 1 10	192.054	7.052	3.687 0.604	0.38
	Group 2 2 Amazon product files 2	10	113.333	8.407	4.309 0.539	0.38
		3	SIGMOD Record 3	6	39.375	4.615	2.743	0.692	0.692
	Group 3	4	IMDB database 4	6	15.475	4	2.666	1.066	1
		5	Niagara collection 5	8	26.5	4.384	2.961 0.884	0.884
		6	W3Schools 6	4	16.5	3.937	2.312	0.812	0.812
		7	W3Schools	4	16	2.375	2.437	0.562	0.562
	Group 4	8	W3Schools	4	11.675	3.454	2	1.181	1.181
		9	Niagara collection	4	19	3.947	2.368 1.157	1.157
		10	Niagara collection	4	15.5	4.533	2.266	1.4	1.4

1 Available online at http://sigappfr.acm.org/Projects/XSDF/ A. Experimental Test Data

TABLE II .

 II XML test documents organized based on average node ambiguity and structure.

TABLE III .

 III Correlation between human ratings and system generated ambiguity degrees (cf. detailed graphs in[START_REF] Tekli | A Dynamic Framework for XML Semantic Disambiguation[END_REF]).

			Test #1	Test #2	Test #3	Test #4
			All factors	Polysemy	Depth	Density
	Group 1	Dataset 1	0.394	0.411	0.335	0.439
	Group 2	Dataset 2	0.017	0.181	0.243	0.139
		Dataset 3	-0.087	-0.139	-0.071	-0.138
	Group 3	Dataset 4	0.408	0.438	0.390	0.398
		Dataset 5	-0.184	-0.185	-0.131	-0.235
		Dataset 6	-0.284	-0.291	-0.243	-0.316
		Dataset 7	-0.177	-0.190	-0.254	-0.143
	Group 4	Dataset 8	-0.119	-0.025	0.033	-0.156
		Dataset 9	-0.452	-0.301	-0.251	-0.456
		Dataset 10	-0.258	0.180	0.412	0.276

TABLE IV .

 IV Comparing XSDF with existing approaches

	Approaches	Considers linguistic pre-processing	Considers tag tokenization (compound terms)	Addresses XML node ambiguity	Integrates an inclusive XML structure context	Flexible w.r.t. context size	Adopts relational information approach	Combines the results of various semantic similarity measures	Straightforward mathematical functions	Disambiguates XML structure and content
	RPD [50]		x	x	X	x	x	x	x	x
	VSD [29]			x				x	x	x
	XSDF (our approach)