
HAL Id: hal-01909097
https://univ-pau.hal.science/hal-01909097v1

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Web Datatype Inference: Towards Better RDF
Matching

Irvin Dongo, Yudith Cardinale, Firas Al-Khalil, Richard Chbeir

To cite this version:
Irvin Dongo, Yudith Cardinale, Firas Al-Khalil, Richard Chbeir. Semantic Web Datatype Inference:
Towards Better RDF Matching. Web Information Systems Engineering - WISE 2017 - 18th Interna-
tional Conference, Puschino, Russia, October 7-11, 2017, Proceedings, Part II, Oct 2017, Puschino,
Russia. pp.57-74, �10.1007/978-3-319-68786-5_5�. �hal-01909097�

https://univ-pau.hal.science/hal-01909097v1
https://hal.archives-ouvertes.fr

Semantic Web Datatype Inference: Towards
Better RDF Matching

Irvin Dongo1, Yudith Cardinale2 Firas Al-Khalil3, and Richard Chbeir1

1 Univ Pau & Pays Adour, LIUPPA, EA3000, 64600, Anglet, France
{irvin.dongo, richard.chbeir}@univ-pau.fr

2 Dpto. de Computación y Tecnoloǵıa de la Información, U. Simón Boĺıvar, Venezuela
ycardinale@usb.ve

3 University College Cork, CRCTC, 13 South Mall, Cork, Ireland
firas.alkhalil@ucc.ie

Abstract. In the context of RDF document matching/integration, the
datatype information, which is related to literal objects, is an important
aspect to be analyzed in order to better determine similar RDF docu-
ments. In this paper, we propose a datatype inference process based on
four steps: (i) predicate information analysis (i.e., deduce the datatype
from existing range property); (ii) analysis of the object value itself by
a pattern-matching process (i.e., recognize the object lexical-space); (iii)
semantic analysis of the predicate name and its context; and (iv) gen-
eralization of numeric and binary datatypes to ensure the integration.
We evaluated the performance and the accuracy of our approach with
datasets from DBpedia. Results show that the execution time of the
inference process is linear and its accuracy can increase up to 97.10%.

Keywords: Datatype Analysis, Datatype Inference, XML, RDF, Semantic Web

1 Introduction

The Semantic Web enables the integration and combination of data from differ-
ent sources by providing standard models such as RDF, OWL, etc. [22]. Particu-
larly, heterogeneous RDF documents can express similar concepts using different
vocabularies. Hence, many efforts focus on describing the similarity between con-
cepts, properties, and relations to support RDF document matching/integration
(e.g., Linked Open Data integration, ontology matching) [17,4,3].

RDF describes concepts as triples, 〈subject, predicate, object〉, where
subject, predicate, and object are resources identified by their IRIs. Objects
can also be literals (e.g., a number, a string), which can be annotated with
optional type information, called datatype. A datatype is a classification of
data, which defines types for RDF, adopted from XML Schema [19]. There are
two classes of datatypes: Simple and Complex. Simple datatypes can be primitive
(e.g., boolean, float), derived (e.g., long, int derived from decimal), or user-
defined, which are built from primitive and derived datatypes by constraining

some of its properties (e.g., range, precision, length, format). Complex data-
types contain elements defined as either simple or complex datatypes. A W3C
Recommendation [18] points out the importance of the existence of simple data-
type annotations to detect entailments between objects that have identical data-
type but a value represented in different formats. Moreover, it has been proven
that the presence of datatype information, constraints, and annotations on an
object improves the similarity measures between two documents (up to 14%) [4].

When this information is missing, datatype inference emerges as a new chal-
lenge in order to obtain more accurate RDF document matching results. In
the context of XSD, works such as [7,11] infer simple datatypes by a pattern-
matching process on the format of the values; i.e., the characters that make
unique a datatype, which is called lexical space according to the W3C Rec-
ommendation [19]. These works consider a limited number of simple datatypes
(date, decimal, integer, boolean, and string), thus for other datatypes, as
year (e.g., 1999), this method cannot determine its correct datatype. Others
works in the context of programming languages and OWL are focused on in-
ferring complex datatype through axioms, assigned operations, and inference
rules [9,12,20], which are elements not present in an RDF document for simple
datatypes. Thus, in the context of RDF document matching/integration, these
works are not suitable mainly for two reasons: (i) lexical space based methods
cannot infer all simple datatypes, since there are intersections between datatype
lexical spaces (e.g., 1999 can be an integer or a gYear according to the lexical
space of both W3C datatypes); and (ii) complex datatype inference methods
cannot be applied to simple datatypes, since in RDF, a simple datatype is an
atomic value associated to a predicate.

To overcome these limitations, we propose a new approach that considers, in
addition to the lexical space analysis, the analysis of the predicate information
related to the object. It consists of four steps: (i) Analysis of predicate informa-
tion, such as range property that defines and qualifies the type of the object value;
(ii) Analysis of lexical space of the object value, by a pattern-matching process;
(iii) Semantic analysis of the predicate and its semantic context, which consists
in identifying related words or synonyms that can disambiguate two datatypes
with similar lexical space; and (iv) Generalization of Numeric and Binary data-
types, to ensure a possible integration among RDF documents. Moreover, we
experimentally evaluated the accuracy and performance of our approach by us-
ing DBpedia databases. Results show a high accuracy (F-score up to 97.10%)
and a linear execution time (O(n)).

The rest of the paper is organized as follows: Section 2 presents a motivating
scenario. Section 3 surveys the related literature. RDF terminologies are pre-
sented in Section 4. Section 5 describes our inference approach. Section 6 shows
the experiments. We conclude in Section 7.

2 Motivating Scenario

In order to illustrate the importance of datatype information for RDF docu-
ments, we consider a scenario in which we need to integrate three RDF doc-

(a) Light Switch. Datatype boolean: Binary Lexical Space (0, 1)

(b) Light Switch. Datatype boolean: String Lexical Space
(false, true)

(c) Light Bulb

Fig. 1. Three concepts from three different RDF documents

uments with similar concepts (resources) but based on different vocabularies.
Fig. 1 shows three concepts from three different RDF documents. Figs. 1a and 1b
describe the concept Light Switch, with property (predicate) isLight, whose
datatype is boolean. However, they are represented with different lexical spaces:
binary lexical space with value 1 in Fig. 1a and string lexical space with value
true in Fig. 1b. In both cases, isLight property expresses the state of the light
switch (i.e., turned on or turned off). Fig. 1c shows the concept Light Bulb,
with property Efficiency, whose datatype is integer, and property Light rep-
resenting the luminosity of the light (luminous flux), whose datatype is float.

For the integration, it is necessary to analyze the information of their concept
properties. Intuitively, considering the datatype information, we can say that:
1. Both Light Switch concepts from Figs. 1a and 1b are similar, since their

properties are similar: the isLight property is boolean in both cases, and
boolean literals can be expressed either as binary values (0 or 1) or string
values (true or false) according to the W3C [19].

2. Light Bulb concept is different from the other ones. Indeed, the Light prop-
erty is expressed with float values, expressing the light intensity instead of
light switch state (i.e., turned on or turned off).

If the datatype information is missing and the integration is made only based
on literals, we have problems related to the ambiguity of properties. Contrary to
our intuition, concepts in Figs. 1a and 1b are incompatible because of the use
of different lexical spaces (i.e., value 1 is not compatible with value true, which
can be considered as a string datatype instead of boolean). The integration of
concept Light Switch from Fig. 1a with concept Light Bulb from Fig. 1c will
be possible, even though it is incorrect. The Light properties of both documents
are compatible because the lexical spaces of their values are the same (1 and 1275
respectively, can be integer). With the presence of datatype information, we
can avoid this ambiguity even if the lexical spaces of the values are compatible.

In this scenario, we can realize the role of datatypes for matching/integration
of RDF documents. Thus, when this information is missing, an approach capable
of inferring the datatype from the existing information is needed.

3 Related Work

To the best of our knowledge, no prior work manages simple datatype inference
for RDF documents. However, datatype inference has been addressed in the

context of XSD, programming languages, and OWL (theoretical approaches and
tools). To evaluate the existing works, we have identified the following criteria of
comparison: (i) consideration of simple or complex datatypes; (ii) analysis of local
information, such the object value, and external information, since the Semantic
Web allows the integration of resources available on the Web; and (iii) suitability
for the Semantic Web, the whole method should be objective and complete.

For theoretical approaches, we classify the existing works into four groups:

- Lexical space based approaches: In the inference of XSD from XML docu-
ments, datatypes are reduced to a small set of values (date, decimal, integer,
boolean, and string) or to only string datatypes. The authors in [7,11] pro-
pose a hierarchy between the reduced datatypes according to the lexical spaces
of the W3C Recommendation. The proposal returns the most specific datatype
that subsumes the candidate datatypes obtained from the patter-matching of
the values. However, a gYear value is reduced to interger, which is incorrect.

- Axioms, constructors, and operations based approaches: In the context
of programming languages, the authors in [9] focus on inferring complex data-
types, modelling them as a collection of constructor, destructor, and coercion
functions. Other works [12,24], also use axioms and pattern matching over the
constructors of the datatype during the inference process. In [5,6], operations and
a syntax associated to datatypes are analyzed to infer complex datatypes. Simple
datatypes such as date and integer are mainly inferred by a pattern-matching
process of the value format using the lexical spaces. However, some simple data-
types have intersection among their lexical spaces as gYear and integer.

- Inference rules based approaches: In the context of OWL, the authors in
[20] propose a method to heuristically generate type information by exploiting
axioms in a knowledge base. They assign type probabilities to the assertions. In
the domain of health-care, [23] proposes a type recognition approach (inference
type) by associating a weight to each predicate, using support vector machines
to model types and by building a dictionary to map instances. For [15], the
Semantic Web needs an incremental and distributed inference method because
of the long ontology size. The authors use a parallel and distributed process
(MapReduce) to “reduce” the “map” of new inference rules. The authors in [14]
state that DBpedia only provide 63.7% of type information. Hence, they propose
an approach to discover complex datatypes in RDF datasets by grouping entities
according to the similarity between incoming and outgoing properties. They
also use a hierarchical clustering and the confidence of types for an entity. The
use of inference rules helps to infer datatypes where a specific information is
known (e.g., type of properties, knowledge database). However, RDF data is not
always available with its respective ontology, which makes impossible the task
of formulating inference rules.

- Semantic analysis based approaches: In [10], the authors analyze two
types of predicates: object property and datatype property. They propose an
approach to infer the semantic type of string literals using the word detection
technique called Stanford CoreNLPto identify the principal term. However, a
semantic type is not always related to the same datatype, since it depends on

Table 1. Related Work Classification

Work
Inference
Method

Requirements
Information Semantic Web

Simple
Datatypes

Local External XML/XSD RDF/OWL

[7,11] Lexical Space Reduced Set X X X X

[9,12,24,5,6]
Axioms, operations,

constructors
Only Complex X X X X

[20,23,14] Inference rules Only Complex X X X X
[10] Semantic Analysis Only string X X X X

Tools: [1,2,16] Not provided Not provided X X X X

the datatype defined in the structure. A value can be expressed as a string or
integer according to two different ontologies.

On the other hand, there are tools that generate XSD from XML docu-
ments, such as XMLgrid [1], FreeFormatted [2], and XmlSchemaInference by
Microsoft [16]. However, they do not share a standard process to infer data-
types. For example, the attribute weight and isLight from the following XML
document extracted from Fig. 1, have different inferred datatypes according to
these three tools.

<Light_Bulb> <Light>1250</Light> <weight>30.00</weight> </Light_Bulb>

<Light_Switch> <isLight>1</isLight> </Light_Switch>

XMLgrid infers weight as double and isLight as int; using FreeFormatted,
the datatype for weight is float and for isLight is byte; while according
XmlSchemaInference weight is decimal and isLight is unsignedByte. The
criteria used to infer the datatype are unknown since these tools do not describe
their algorithms. Thus, the direct application of existing approaches presents
limitations in the context of RDF document integration/matching.

Table 1 shows our related work classification. Note that none of the works
satisfies all the defined requirements. Before describing how our approach over-
comes the limitations of existing works and addresses these requirements, the
following section introduces some common terminologies and definitions of RDF.

4 RDF Terminologies and Definitions

RDF is the common format to describe resources that represent the abstraction
of an entity (document, abstract concept, person, company, etc.) in the real
world. RDF uses IRIs, blank nodes, and literals nodes as elements to build
triples and provide relationships among resources.

The RDF Schema (RDFS) is a set of classes with certain properties (vo-
cabulary), which are extensions of the basic RDF vocabulary [8]. RDFS defines
properties to better describe resources. For example, the rdfs:domain prop-
erty designates the type of subject that can be associated to a predicate and the
rdfs:range property designates the type of object. The Semantic Web proposes
an implicit representation of the datatype property in the literal object as a de-
scription of the value (e.g., "value"^^xml:string). Def. 1 presents the formal
definition of datatype according to W3C [13].

Definition 1. Simple Datatype (dt): In RDF, a simple datatype, denoted
as dt, is characterized by: (i) a value space, denoted as VS(dt), which is a
non-empty set of distinct valid values; (ii) a lexical space, denoted as LS(dt),

which is a non-empty set of Unicode strings; and (iii) a total mapping from
the lexical space to the value space, denoted as L2V(dt) [13]. �

The datatype boolean from Fig. 1a, has the following characteristics:
− V S(boolean) = {true,false}; − LS(boolean) = {”true”, ”false”, ”1”, ”0”};

− L2V (boolean) = {”true”⇒ true, ”false”⇒ false, ”1”⇒ true, ”0”⇒ false}.

Table 2 presents abbreviations to denoted several sets of RDF elements, that
we use in our formal approach description.

Table 2. Description of sets

Set Description
I A set of IRIs is defined as: I = {i | i is an IRI}.
L A set of literal nodes is defined as: L = {l | l is a literal node}.
BN A set of blank nodes is defined as: BN = {bn | bn is a blank node}.
DT A set of Datatypes is defined as: DT = {dt | dt is a datatype}.
SDT The set of simple datatypes proposed by the W3C, is defined as: SDT = {string, boolean, decimal, ...}

Definition 2. Triple (t): A Triple is defined as an atomic structure consisting
of a 3-tuple with a Subject (s), a Predicate (p), and Object (o), denoted as
t :< s, p, o >, where:
− s ∈ I ∪BN represents the subject to be described;
− p is a property defined as an IRI in the form namespace prefix:proper-
ty name; Namespace prefix is a local identifier of the IRI, where the property
(property name) is defined;
− o ∈ I ∪BN ∪ L describes the object.

The predicate (p) is also known as the property of the triple. �

The example presented in Fig. 1 underlines four triples with different RDF
resources, properties, and literals:
− t1: <Light Switch,house:isLight,1> − t2: <Light Switch,house:isLight,true>

− t3: <Light Bulb,light:Light,125> − t4: <Light Bulb,dbp:weight,30.00>

In the following section, we describe our datatype inference process.

5 Inference Process: Our Proposal

Our datatype inference approach mainly relies on a four step process that consid-
ers the annotations on the predicate, the specific format of literal object values,
the semantic context of the predicate; and the generalization of datatype for
Numeric and Binary groups. Fig. 2 shows the framework of our inference pro-
cess composed by the four steps. Each step can be applied independently and in
different orders according to user parameters.

Fig. 2. Framework of our RDF Inference process

The input of our framework is an RDF Description which can be in different
serializations (such as RDF/XML, Turtle, N3) and the user parameters (infer-

ence steps and their order). The output is an RDF Description with its respective
inferred datatypes. A description of each step is presented as follows:

− Step 1 – Predicate Information Analysis: In a triple t: <s,p,o>, the
predicate p establishes the relationship between the subject s and the object o,
making the object value o a characteristic of s. Information (properties) such
as rdfs:domain and rdfs:range can be associated to each predicate to deter-
mine the type of subject and object. We propose as a first step to deduce the
simple datatype of a particular literal object, based on the use of the property
rdfs:range, if this information exists. We formally describe the Step 1 with the
following definitions and rule.

Definition 3. Predicate Information (PI): Given a triple t :< s, p, o >,
Predicate Information is a function, denoted as PI(t), that returns a set of
triples defined as: PI(t) = {ti | ti =< si, pi, oi >}, where:
− si is the predicate of t (t.p), acting as a subject on each ti triple;
− pi is an RDF defined property ∈ {rdfs : type, rdfs : label, rdfs :range, ...};
− oi is the value of pi. �

Table 3 shows the set of triples (PI), returned by the function Predicate
Information, for property dbp:weight, which is presented in Fig. 1c.

Table 3. Example of the set of triples of Predicate information (PI) for dbp:weight
Subject Predicate (Property) Object (Value)
dbp:weight rdf:type owl:DatatypeProperty
dbp:weight rdfs:label weight (g) (en)
dbp:weight rdfs:range xsd:double
dbp:weight prov:wasDerivedFrom http://mappings.dbpedia.org/OntologyProperty:weight

Definition 4. Predicate Range Information (PRI): Given a triple t :<
s, p, o >, Predicate Range Information is a function, denoted as PRI(t), that
returns the value associated to the rdfs:range property, defined as:

PRI(t) =

{
ti.o if ∃ti ∈ PI(t) | ti.p = rdfs:range,

null otherwise.
�

Applying Def. 4 to the set of predicate information (PI) of property dbp-

:weight (see Table 3), the Predicate Range Information function returns the
value xsd:double.

Definition 5. Is Available (IA): Given a predicate p, Is Available is a boolean
function, denoted as IA(p), that verifies if p is an IRI available on the web:

IA(p) =

{
True if p returns code 200;

False otherwise.
�

Using the three previous definitions, we formalize our first inference rule.

Rule 1. Datatype Inference by Predicate Information Analysis:
Given a triple t :< s, p, o >, in which o ∈ L, the datatype of o is determined as
follows: R1: if IA(p) =⇒ datatype = PRI(t).

Rule 1 verifies if the predicate of the triple is an IRI available (Def. 5),
extracts the set of triples corresponding to the predicate information (Def. 3),
and determines if the rdfs:range property exists (Def. 4).

Table 4. Lexical Space for several Simple Datatypes (W3C Recommendation [19])

Datatype Lexical Space Examples
date CCYY-MM-DD 1999-05-31
gYear CCYY 1999
boolean true, false, 1, 0 false
float 32-bit floating point type 12.78e-2, 1999
decimal Arbitrary precision 12.78e-2, 1999
integer [0-9] 1999

− Step 2 – Datatype Lexical Space Analysis: According to a W3C Recom-
mendation, the lexical space of a datatype describes the representation format
and restricts the use of characters for the object values. Table 4 shows the lexi-
cal spaces of several simple datatypes according to the W3C. In some cases, the
datatype can be inferred from its lexical space, when it is uniquely formatted
(e.g., value 1999-05-31 matches with the format CCYY-MM-DD, which is the lexi-
cal space of datatype date). However, in several cases (such as boolean, gYear,
decimal, double, float, integer, base64Binary, and hexBinary), the lexi-
cal spaces of datatypes have common characteristics, leading to ambiguity (e.g.,
value 1999 matches with lexical spaces of gYear and float – see Table 4).

Figure 3 illustrates graphically the lexical space intersections of W3C simple
datatypes. To analyze the lexical spaces, we propose the following definition.

Fig. 3. Datatype Lexical Space Intersection

Definition 6. Candidate Datatypes (CDT): Given a literal object o, the
set of its candidate datatypes is determined by the function Candidate Data-
types, defined as: CDT (o) = {dt | dt ∈ SDT ∧ o ∈ LS(dt)} �

By Def. 6, the set of candidate datatypes of the object literal value 1 presented
in Fig. 1a is: CDT(1)={float, decimal, double, hexBinary, base64Bina-

ry, integer, boolean, string}. Based on this definition, we formally define
our second inference rule.

Rule 2. Datatype Inference by Lexical Space:
Given a triple t :< s, p, o >, in which o ∈ L, the datatype of o is determined as
follows:

R2: datatype =

string if |CDT (o)| = 1,

dt | dt ∈ CDT (o) ∧ dt 6= string if |CDT (o)| = 2,

null otherwise.

Rule 2 analyzes the number of possible datatypes of a literal object value.
In all cases, the datatype string is a candidate datatype, since it has the most
general lexical space (see Fig. 3); if the number of candidate datatypes is one,
then the only datatype, which is string, is returned. If the number of candidate
datatypes is two, then the other datatype is returned. Otherwise, we have an
ambiguous case and cannot provide any decision.

− Step 3 – Predicate Semantic Analysis: In presence of ambiguous cases, a
semantic analysis of the predicate can be done to resolve ambiguity. Regarding
the W3C datatype lexical spaces, the datatypes boolean, gYear, decimal, dou-
ble, float, integer, base64Binary, and hexBinary datatypes are ambiguous.
However, the ambiguity of boolean, gYear, and integer, in some specific sce-
narios, can be resolved by examining the context of its predicate according to a
knowledge base. For example, the predicate dbp:dateOfBirth has the context
date, then it is possible to assume gYear as the datatype; the predicate dbp:era

has the context period and the datatype assigned can be integer; however, for
predicate dbp:salary, it is possible to assign datatypes decimal, double, or
float; the ambiguous case persists. In order to describe our inference process in
this step, we formalize a knowledge base as follows:

Definition 7. Knowledge Base (KB): Knowledge bases (thesaurus, taxo-
nomies, and ontologies) provide a framework to organize entities (words/expressions,
generic concepts, etc.) into a semantic space. A knowledge base has the following
defined functions:

− Similarity (sim): Given two word values n and m, Similarity is a func-
tion, denoted as sim(n,m), that returns the similarity value among the words:

sim(n,m) = A similarity value ∈ [0, 1] between n and m according to KB.

− IsPlural (IP): Given a string value n, IsPlural is a function, denoted as
IP(n), that returns True if the word n is plural:

IP (n) =

{
True if n is plural according to KB;

False otherwise.

− IsCondition (IC): Given a string value n, IsCondition is a function, de-
noted as IC(n), that returns True if the word n is a condition:

IC(n) =

{
True if n is a condition according to KB;

False otherwise.
�

The semantic context is formalized, based on the knowledge base, as follows:

Definition 8. Context (ct): A context is a related word or synonym, which
clarifies or generalizes the domain of a word. It is associated to a similarity value
according to a knowledge base. A context is denoted as a 3-tuple ct :< w, y, v >,
where w is a word; y is a related word of w; and v is sim(w,y) ∈ [0, 1]. �

Definition 9. Set of Contexts (CT): Given a word w, a set of contexts of w
is defined as CT = {cti | cti :< w, yi, vi > is a context of w}. �

For example, from Fig. 1c, the set of contexts of predicate weight is: CT =

{<weight,load,0.8>, <weight,heaviness,0.5>, ...}

Definition 10. Predicate Context (PC): Given a triple t :< s, p, o > and a
threshold h, Predicate Context is a function, denoted as PC(t,h), that returns
a set of contexts defined as:

PC(t, h) = {cti | cti :<p.property namei, yi, vi>, vi ≥ h}. �

The context can determine the datatype for some literal objects through a
semantic analysis, then we assume two scenarios for an ambiguous case:
− If the context is date (< word,date, 0.5 >), the datatype is gYear because
gYear (1999) is a part of datatype date (1999-05-31);
− If the context is period (< word,period, 0.5 >), the datatype is integer

because it is about quantity.
However, if the context is date, the word from which we obtain the context, can
not be plural, since plural words express quantities and it is related to data-
type integer according to our scenarios. Based on our scenarios, the following
definition is formulated:

Definition 11. Predicate Name Context (PNC): Given a triple t :< s, p,-
o >, in which o ∈ L, and a threshold h, Predicate Name Context is a function,
denoted as PNC(t,h), that returns a datatype defined as:

PNC(t, h) =

gYear if∃cti ∈ PC(t, h) | cti = date ∧ gYear ∈ CDT (o);

integer if∃cti ∈ PC(t, h) | cti = date ∧ integer ∈ CDT (o)

∧IP (p.property name);

integer if∃cti ∈ PC(t, h) | cti = period ∧ integer ∈ CDT (o);

null otherwise.

�

In addition, to determine a datatype as boolean, we assume that a word is
defined as condition in a knowledge base (e.g., Wordnet).

Using the previous definitions, we formally define our third inference rule.

Rule 3. Datatype Inference by Semantic Analysis:
Given a triple t :< s, p, o >, in which o ∈ L, and a threshold h the datatype of o
is determined as follows:

R3: datatype =

{
boolean ifboolean ∈ CDT (o) ∧ IC(p.name property);

PNC(t, h) otherwise.

Rule 3 returns the datatype of the object value when a defined context as-
sociated to the predicate exists. If that is not the case, we are still under an
ambiguous case. Note that Rule 3 is proposed for a scenario where the data is
consistent with the W3C recommendations (e.g., self-descriptive names).

− Step 4 – Generalization of Numeric and Binary Groups: If we still have
ambiguity, as an alternative to disambiguate the datatypes decimal, double,
float, integer, base64Binary, and hexBinary, we propose two groups of data-
types: Numeric and Binary. In each group, we define an order among the data-
types by considering lexical space intersection (see Fig. 3). Hence, for the Numeric
Group, we have decimal > double > float > integer and in the Binary
Group, base64Binary > hexBinary. According to these groups, we return the
most general datatype, if all candidate datatypes belong only to one of these
two groups.

Definition 12. Generalization (G): Given a literal object o, the set of its
candidate datatypes is reduced by the function Generalization, defined as: G(o) =
{dt | dt ∈ CDT (o) ∧ (dt is the most general datatype according to Nume-
ric and Binary groups)} �

Note that datatype string is always part of candidate datatypes. We for-
mally define our fourth inference rule as follows:

Rule 4. Datatype Generalization:
Given a triple t :< s, p, o >, in which o ∈ L, the datatype of o is determined as
follows:

R4: datatype =

{
dt | dt ∈ G(o) ∧ dt 6= string if |G(o)| = 2,

null otherwise.

However, we can have a case where an object value has decimal and base64-

Binary as candidate datatypes and our inference approach cannot determinate
the most appropriate datatype.

Our inference approach allows to improve the datatype analysis for RDF
matching/integration by complying with the identified requirements (see Sec-
tion 3): (i) the use of local available information, as the predicate value in Step 1
and Step 3 and the datatype lexical space in Step 2, as well as external available
information, such the predicate information in Step 1 and the predicate context
in Step 3); and (ii) this method is objective and complete for the Semantic Web,
since all simple datatypes are considered, which are available in the most com-
mon Semantic Web databases as DBpedia.

Complexity Analysis. A complexity analysis of our inference approach
indicates a linear order performance in terms of the number of triples (O(n)).
For Step 1, the predicate information of each triple is extracted to search the
rdfs:range property, since the number of properties associated to the predicate
of each triple (Def. 3) is constant, then its execution order is O(n). In the case
of Step 2, for each triple a pattern-matching is executed for all simple datatypes
(finite number of execution) thus, it is of linear order (O(n)). In Step 3, for each
triple, its set of contexts is extracted to determine the best related work (in a
constant time), thus its time complexity is also O(n). Finally, Step 4 reduces the
finite set of candidate datatypes (generalization) in a linear order (O(n)). As
the four steps are executed sequentially, the whole inference datatype process
exhibits a linear order complexity, O(n). The following section evaluates the
accuracy and demonstrate the linear order performance of our proposal.

6 Experimental Evaluation

To evaluate and validate our inference approach, an online prototype system,
called RDF2rRDF 4, was developed using PHP and Java. For Step 3, we imple-
mented our assumptions of contexts using the semantic similarity service UMBC:
Semantic Similarity Service Computing, which is based on distributional simi-
larity and Latent Semantic Analysis (Def. 10). UMBC service is available online
and an API is provided5. Also, we used Wordnet6 to recognize if a word is plu-
ral assuming that every word has a root lemma where the default plurality is
singular. Additionally, we assume that a word is a condition if it has the prefix
“is” or “has”. All these assumptions compose our knowledge base.

4 http://rdf2rrdf.sigappfr.org/
5 http://swoogle.umbc.edu/SimService/api.html
6 WordNet is a large lexical database of English (nouns, verbs, adjectives, etc.)

Table 5. Semantic Web databases
DataBase Datatypes
DBpedia integer, gYear, date, gMonthDay, float, nonNegative, double, Integer and decimal
Wordnet string
GeoLinked data point (complex datatype)

Table 5 shows the different datatypes available in several semantic web
databases. Note that DBpedia has more variety of datatypes compared with the
others, thus our experiments were made with DBpedia database. Experiments
were undertaken on a MacBook Pro, 2.2 GHz Intel Core(TM) i7 with 16.00GB,
running a MacOS Sierra and using a Sun JDK 1.7 programming environment.

Our prototype was used to perform a large battery of experiments to evaluate
the accuracy and the performance (execution time) of our approach in compari-
son with the related work. To do so, we considered two datasets: (i) Case 1: 5603
RDF documents gathered from DBpedia person data7, in which 1059822 triples,
38292 literal objects, and 8 different datatypes are available, and (ii) Case 2: the
whole DBpedia person data as a unique RDF document with 16842176 triples,
in which only datatypes date, gMonthDay, and gYear are presented.

For Case 1, we evaluated the accuracy and performance of each step of our
datatype inference approach, Step 1 + Step 2, Step 1 + Step 3, Step 2 + Step
3, and the whole inference process. The order of the whole inference process was
established starting from a general solution (Step 1), that can be applied to all
simple datatypes, until a specific solution for particular cases (Step 3 and Step
4). In Case 2, we only evaluated the whole inference process, since it is mainly
used for performance because the high number of triples.

6.1 Accuracy evaluation

To evaluate the accuracy of our approach, we calculated the F-score, based on
the Recall (R) and Precision (PR). These criteria are commonly adopted in
information retrieval.

Test 1: In Table 6, for Step 1, 24059 datatypes were inferred (45.35% of the to-
tal, 38292) with a Precision, Recall, and F-score of 99.89%, 62.81%, and 77.12%
respectively. This process inferred 26 invalid simple datatypes because inconsis-
tencies on the data. In Step 2, 17435 datatypes were inferred (45.35% of the
total) with a Precision, Recall, and F-score of 96.91%, 44.76%, and 61.24% re-
spectively. This process inferred 537 invalid datatypes (14 simple and 523 com-
plex datatypes) and it could not determine the datatype for 20857 literal objects.
Combining Step 1 and Step 2, the Precision, Recall and F-score values increased
considerably (99.17%, 88.85%, and 93.73% respectively). In Step 3, only 2480
datatypes were inferred (Recall 6.85%), since it is proposed for particular cases
(context rules). Precision in Step 4 is less than all other Steps; however, the
Recall is greater than Step 2 and it makes a F-score similar to Step 2. Other
combinations as Step 1 and Step 3 and Step 2 and Step 3 have high Precision
but low Recall, because the Recall of Step 3 (specific cases).

Executing the whole approach, 37066 datatypes were inferred (96.80%). The
Precision, Recall and F-score are 97.71%, 96.50%, and 97.10% respectively.

7 Information about persons extracted from the English and Germany Wikipedia,
represented by the FOAF vocabulary - http://wiki.dbpedia.org/Downloads2015-10

Table 6. Accuracy Evaluation
Inference
Process

Accuracy Evaluation
Valid Not Valid Ambiguity Precision Recall F-score

Case 1: Step 1 24033 26 14233 99.89% 62.81% 77.12%
Case 1: Step 2 16898 537 20857 96.92% 44.76% 61.24%
Case 1: Step 3 2480 119 35812 95.20% 6.85% 11.62%
Case 1: Step 4 16899 1962 19431 89.60% 46.52% 61.24%
Case 1: Step 1 + Step 2 33771 281 4240 99.17% 88.85% 93.73%
Case 1: Step 1 + Step 3 26394 145 11753 99.45% 69.19% 81.61%
Case 1: Step 2 + Step 3 19259 656 18377 96.71% 51.17% 66.93%
Case 1: Whole Approach 36132 551 1609 97.71% 96.50% 97.10%

Case 2: Whole Approach 2250402 710234 0 76.01% 100.00% 86.37%

The best F-score was obtained with the whole inference process; however,
the Precision decreased from 99.89% (Step 1) to 97.71% because of Step 3 and
Step 4 (Precision 95.20% and 89.60% respectively). For Case 2, the Precision
decreased to 76.01%. It is caused by the noise and inconsistencies of the DBpedia
datasets [21] (e.g., dbo:deathDate should have the datatype property date, but
in the queried datasets, it was set as gYear).

Table 7. Accuracy Comparison with the Related Work for Case 1
Work Precision Recall F-score
Xstruct 83.28% 100% 90.88%
XMLgrid 83.61% 100% 91.07%
FreeFormated 43.32% 100% 60.45%
XMLMicrosft 43.23% 100% 60.36%
RDF2rRDF 97.71% 96.50% 97.10%

Test 2: We also evaluated the accuracy of our approach in comparison with
alternative methods and tools, namely Xstruct, XMLgrid, FreeFormated, and
XMLMicrosoft [1,2,11,16]. Since these works infer datatypes in XML documents,
we transformed all literal nodes to XML format by using the value and its
relation. Table 7 shows the accuracy results obtained for Case 1. Note that our
approach has the best Precision and F-score. Our Recall is less than the other
ones because we consider a bigger number of datatypes and thus, there are more
ambiguous cases (lexical space intersections).

6.2 Performance evaluation

To evaluate the performance, we measured the average time of 10 executions for
each test. Table 8 shows the results obtained in our performance evaluation.
Test 3: In Case 1, the execution time of Step 1 was greater than Step 2, because
the use of external calls increased the execution time. However, the execution
time of Step 1 + Step 2 was similar to Step 1, since Step 1 works as a filter of
triples and leaves less analysis for Step 2. Step 3 has the greatest execution time,
since it depends of an external service. Step 4 depends of the list of candidate
datatypes; thus its execution time should be greater than Step 2 because the
use of extra operations to reduce the set of datatypes (generalization).

Table 8. Performance Evaluation
Inference
Process

Performance Evaluation
Execution Time Cache Building Time

Case 1: Step 1 31.336s 11.582s
Case 1: Step 2 15.939s 15.939s
Case 1: Step 3 243.826s 40.764s
Case 1: Step 4 17.879s 17.879s
Case 1: Step 1 + Step 2 33.216s 13.966s
Case 1: Whole Approach 53.247s 14.236s

Case 2: Whole Approach - 59.282s

Test 4: Additionally, we implemented in Step 1 and Step 3 the use of cache
to store predicate information and predicate contexts, respectively (see Table

8 - column 3). This cache is reused for consequential analysis of triples, since
same predicates are available in different triples. For Case 1, the use of cache in
Step 1 reduced the execution time in more than 65% and made the execution
time of Step 1 + Step 2 less than Step 1 and Step 2, separately. The cache in
the whole inference approach represented more than 70% of improvement in the
performance and an average of 157 × 10−7sec. per triple. Moreover, for more
than 16 millions of triples (Case 2), the execution time remained in the order
of seconds (59.28s) and the average execution time per tripe was reduced to
35 × 10−7sec. We presume in Case 2 that the majority of triples were inferred
in Step 1, which uses cache.

Fig. 4. Execution Time of our Inference Approach

Fig. 4 shows the execution time with respect to the number of triples. The
performance obtained confirms the linearity of our inference approach. Note that
the use of cache makes the function stable for high number of triples because of
the finite number of predicates available in the DBpedia database.

7 Conclusion
In this paper, we investigated the issue of datatype inference for RDF documents
matching/integration. We proposed an approach, consisting of four steps: the
analysis of the predicate information associated to the object value, analysis of
the lexical space of the value itself, semantic analysis of the predicate name, and
generalization of datatypes. We evaluated the accuracy and performance of our
inference process with DBpedia datasets (DBpedia person data). Results show
that the inference approach increases the F-score up to 97.10% (accuracy) and it
does not incur in high execution time (performance). We are currently working
on extending this work to include other datatypes and propose more context
rules to resolve extra ambiguity. We also plan to evaluate our approach with
other databases from Semantic Web initiatives.

Acknowledgments: FINCyT/INNOVATE Peru - N 104-FINCyT-BDE-2014.

References

1. XML Grid - Online XML Editor. http://xmlgrid.net/xml2xsd.html, 2010. On-
line; accessed 2017-05-03.

2. Free Formatter - Free Online Tools For Developers. https://www.freeformatter.
com/xsd-genearator.html, 2011. Online; accessed 2017-05-03.

3. A. Algergawy and et al. A sequence-based ontology matching approach. In Proc.
of European Conference on Artificial Intelligence Workshops, pages 26–30, 2008.

4. A. Algergawy, R. Nayak, and G. Saake. XML Schema Element Similarity Measures:
A Schema Matching Context, pages 1246–1253. Berlin, Heidelberg, 2009.

http://xmlgrid.net/xml2xsd.html
https://www.freeformatter.com/xsd-genearator.html
https://www.freeformatter.com/xsd-genearator.html

5. T. Arts, L. M. Castro, and J. Hughes. Testing erlang data types with quviq
quickcheck. In Proc. of the 7th ACM SIGPLAN Workshop on ERLANG, pages
1–8, NY, USA, 2008. ACM.

6. D. Boulytchev. Combinators and type-driven transformers in objective caml. Sci-
ence of Computer Programming, 114:57 – 73, 2015.

7. B. Chidlovskii. Schema extraction from xml collections. In Proceedings of the 2Nd
ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’02, pages 291–292,
New York, NY, USA, 2002. ACM.

8. R. G. Dan Brickley. RDF Schema 1.1. https://www.w3.org/TR/rdf-schema/.
Online; accessed 2016-12-06.

9. M. Fluet and R. Pucella. Practical datatype specializations with phantom
types and recursion schemes. Electronic Notes in Theoretical Computer Science,
148(2):211 – 237, 2006.

10. K. Gunaratna, K. Thirunarayan, A. Sheth, and G. Cheng. Gleaning types for
literals in rdf triples with application to entity summarization. In Proc. of the 13th
International Conference on The SW., pages 85–100, NY, USA, 2016.

11. J. Hegewald, F. Naumann, and M. Weis. Xstruct: Efficient schema extraction from
multiple and large xml documents. In Proc. of the 22Nd International Conference
on Data Engineering Workshops, pages 81–, Washington, DC, USA, 2006.

12. S. Holdermans. Random testing of purely functional abstract datatypes: Guidelines
for dealing with operation invariance. In Proc. of the 15th Symposium on Principles
and Practice of Declarative Programming, pages 275–284. ACM, 2013.

13. J. Z. P. Jeremy J. Carroll. XML Schema Datatypes in RDF and OWL, W3C Work-
ing Group Note 14 March 2006. https://www.w3.org/TR/swbp-xsch-datatypes/
#sec-values, 2006. Online; accessed 2016-12-06.

14. K. Kellou-Menouer and Z. Kedad. Discovering types in rdf datasets. In European
Semantic Web Conference, pages 77–81. Springer, 2015.

15. B. Liu, K. Huang, J. Li, and M. Zhou. An incremental and distributed inference
method for large-scale ontologies based on mapreduce paradigm. Transac. on
Cybernetics, 45(1):53–64, 2015.

16. Microsoft. Xml Schema Inference - Developer Network. https://msdn.microsoft.
com/en-us/library/system.xml.schema.xmlschemainference.aspx. Online; ac-
cessed 2017-05-03.

17. L. Mukkala, J. Arvo, T. Lehtonen, T. Knuutila, et al. Current state of ontology
matching. a survey of ontology and schema matching. 2015.

18. P. F. P.-S. Patrick J. Hayes. RDF 1.1 Semantics, W3C Recommendation 25 Febru-
ary 2014. https://www.w3.org/TR/rdf11-mt/#literals-and-datatypes, 2014.
Online; accessed 2016-12-06.

19. A. M. Paul V. Biron. XML Schema Part 2: Datatypes Second Edition,
W3C Recommendation 28 October 2004. https://www.w3.org/TR/xmlschema-2/
#built-in-datatypes, 2004. Online; accessed 2016-12-06.

20. H. Paulheim and C. Bizer. Type inference on noisy rdf data. In International
Semantic Web Conference, pages 510–525. Springer, 2013.

21. A. Polleres, A. Hogan, A. Harth, and S. Decker. Can we ever catch up with the
web? Semantic Web, 1(1, 2):45–52, 2010.

22. P. A. Sandro Hawke, Ivan Herman. W3C Semantic Web Activity. https://www.

w3c.org/2001/sw/, 2001. Online; accessed 2016-12-06.
23. J. Sleeman, T. Finin, and A. Joshi. Entity type recognition for heterogeneous

semantic graphs. AI Magazine, 36(1):75–86, 2015.
24. M. Wang, J. Gibbons, K. Matsuda, and Z. Hu. Refactoring pattern matching.

Science of Computer Programming, 78(11):2216 – 2242, 2013.

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/swbp-xsch-datatypes/#sec-values
https://www.w3.org/TR/swbp-xsch-datatypes/#sec-values
https://msdn.microsoft.com/en-us/library/system.xml.schema.xmlschemainference.aspx
https://msdn.microsoft.com/en-us/library/system.xml.schema.xmlschemainference.aspx
https://www.w3.org/TR/rdf11-mt/#literals-and-datatypes
https://www.w3.org/TR/xmlschema-2/#built-in-datatypes
https://www.w3.org/TR/xmlschema-2/#built-in-datatypes
https://www.w3c.org/2001/sw/
https://www.w3c.org/2001/sw/

	Semantic Web Datatype Inference: Towards Better RDF Matching

