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Abstract—Observation streams can be considered as a special
case of data streams produced by sensors. With the growth
of the Internet of Things (IoT), more and more connected
sensors will produce unbounded observation streams. In order
to bridge the gap between sensors and observation consumers,
we have witnessed the design and the development of Cloud-
based IoT platforms. Such systems raise new research challenges,
in particular regarding observation collection, processing and
consumption. These new research challenges are related to obser-
vation streams and should be addressed from the implementation
phase by developers to build platforms able to meet other
non-functional requirements later. Unlike existing surveys, this
paper is intended for developers that would like to design and
implement a Cloud-based IoT platform capable of handling
sensor observation streams. It provides a comprehensive way
to understand main observation-related challenges, as well as
non-functional requirements of IoT platforms such as platform
adaptation, scalability and availability. Last but not the least, it
gives recommendations and compares some relevant open-source
software that can speed up the development process.

Index Terms—Internet of Things; sensors; observations;
streams; Quality of Information; Autonomic Computing; Cloud
Computing; Software Architecture Patterns

I. INTRODUCTION

In a report issued in 2011, Cisco predicts that 50 billion
connected Things will be in use worldwide in 2020 [1]. In
order to report information, these Things will require adequate
connectivity and will contribute to the extension of the Internet
of Things (IoT) [2], [3]. Among these Things, sensors are
ubiquitous. Indeed, whether physical or virtual, they represent
an opportunity to gather information about our daily lives and
our surrounding world.

To ingest and process large data streams coming from sen-
sors, we have witnessed the deployment of many Cloud-based
IoT platforms. Their main purpose is generally to provide
enhanced services or information to end consumers (either
users or applications) by taking advantage of gathered obser-
vations (e.g., Smart City services for citizens). However, the
design and the implementation of such platforms raise new
research challenges. In particular, the collection, processing
and consumption of dynamic and heterogeneous unbounded
observation streams are challenging.

The past decade has seen the development of many Cloud-
based IoT platforms. Some of these solutions are proprietary
commercial solutions. Therefore, they are of little interest for
developers that would like to design and implement their own
platforms with custom features. Other research efforts exist but
they mainly focus on specific considerations (protocols for ob-
servation collection, sensor selection, in-network aggregation,
etc.) and cannot be directly applied by developers.

On the contrary, this paper aims to present main design chal-
lenges and some open-source softwares that may help to build
Cloud-based IoT platforms able to deal with sensor observa-
tion streams. Far from being exhaustive, this paper provides a
comprehensive way to understand major observation-related
challenges, as well as non-functional requirements of IoT
platforms like platform adaptation, scalability and availability.
Finally, it also gives recommendations and compares some rel-
evant open-source software that can speed up the development
process. The thoughts and “lessons learned” presented in this
paper come from software documentation, research papers and
from the custom implementation of an integration platform
for QoI Assessment as a Service (iQAS) [4]. The iQAS
platform is one of our previous contributions, intended for
Smart City stakeholders who want to assess, better understand
and improve Quality of Information (QoI) in a collaborative
way.

The rest of this paper is structured as follows: Section II
introduces three observation-related challenges, dealing with
observation levels, Quality of Observation and unbounded
observation streams. Then, Section III presents technical
solutions to perform observation collection, processing and
consumption. Section IV focuses more on non-functional re-
quirements for Cloud-based IoT platforms. Finally, Section V
presents related work while Section VI concludes and gives
some perspectives.

II. OBSERVATION-RELATED CHALLENGES

A. Observation levels

IoT platforms receive observations from sensors. Each
observation may be considered as the representation of a
physical-observed phenomenon (the temperature of a place, a
person that enters a room, etc.) or a virtual-occurred event (a
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Fig. 1: Example of four observation levels that could be de-
livered by an IoT platform implementing the “DIKW ladder”

new tweet from someone, an incoming e-mail, the availability
of a new software update, etc.).

Previous studies have proposed taxonomies to denote the
different observation levels that an IoT platform may provide.
Indeed, the same phenomenon or event can be reported in
several ways, including more or less details about the unit of
the measure, sensor type, location, etc. As a matter of fact,
these taxonomies use ladder representations to denote these
different observation levels. For instance, Sheth proposed the
“Data, Information, Knowledge, and Wisdom (DIKW) ladder”
for the IoT [5]. Such taxonomies are useful to estimate the
level of complexity required to process and “understand” the
observations by consumers. In the case of IoT platforms, these
consumers may either be applications or users. Figure 1 shows
different observation levels that an IoT platform may deliver
to its consumers. Please note that definitions of observation
levels may vary according to authors and use cases.

Raw Data generally refers to unprocessed observations
directly coming from sensors. Raw observations can either
refer to phenomena (for physical sensors) or events (for virtual
sensors). Information denotes richer observations that have
been processed or annotated with Context information [6]. For
instance, sensor provenance, spatio-temporal information and
sensor confidence level are some example of concrete Context
attributes. The use of semantic-based representations (in gen-
eral using ontologies) allows consumers to consume machine-
understandable Knowledge. We kindly remind the reader that
ontologies allow to model sensor-related thematic fields (such
as the weather or oceanography for instance) with the defini-
tion of concepts, relationships, as well as other representation
details (units, ranges values, etc.). Therefore, ontologies also
allow high-level inference and reasoning from sensor observa-
tions. The most popular ontology for sensors and observations
is certainly the Semantic Sensor Network Ontology (SSN) [7]
and have been developed by the W3C. Finally, the analysis and
processing of incoming Knowledge is denoted as Wisdom.
To deliver this last level of sensor observations, IoT platforms
must often perform Complex Event Processing (CEP) or other

advanced processing techniques (see also Section III-B).

B. Quality of Observation (QoO)

For developers, the design and implementation of
information-centric platforms come with new research chal-
lenges closely linked to information quality [8]. Considered
for a while, common Quality of Service (QoS) metrics have
shown limitations to characterize and evaluate information
quality [9]. In practice, QoS mostly refers to network QoS (i.e.,
mainly to network packet transportation). Besides, network
QoS is no longer suitable to characterize information required
by a given consumer within a specific context.

Quality of Information (QoI) has been introduced to extend
the commonly-used QoS metrics (bandwidth, delay, jitter and
losses), which were too restrictive. In [9], Bisdikian et al.
defined QoI as “the body of tangible evidence available (i.e.,
the innate information properties) that can be used to make
judgments about the fitness-of-use and utility of information
products”. Others quality dimensions have been extensively
studied, such as Context information [6], in particular in the
domain of Context-aware systems [10]. In the following, we
use the term “Quality of Observation (QoO)” to denote QoI
applied to sensor observations in general.

Within IoT platforms, Observations are the new Informa-
tion. Most of the time, these platforms provide services by
assuming that observations received from sensors are reliable
and of better quality than that required by consumers. Un-
fortunately, since this is not always the case, IoT platforms
should be able to characterize Quality of Observation to
take appropriate decisions if needed. Depending on sensors,
applications and use cases, it may be relevant to use several
quality dimensions (e.g., network QoS, QoI and Context
information together) to improve this characterization process.
For instance, using both network QoS and QoI, an observation
consumer can better understand if some outdated observations
are the result of poor network performances or due to a sensor
sampling rate too low.

C. Unbounded observation streams

Compared to common information-centric systems that rely
on traditional databases, IoT platforms have to deal with
unbounded observation streams. To cope with their inherent
challenges, non-blocking operators and sliding windows are
some techniques that are almost always considered to pro-
cess data streams [11]. These techniques allow the design
and the implementation of adaptation mechanisms such as
Aggregation, Fusion or Filtering for instance. Within IoT
platforms, such adaptation mechanisms are required given
that underlying sensors may produce observations of diverse
quality (i.e., diverse spatio-temporal granularities) due to their
different capabilities. To handle this observation heterogeneity,
the platform may enable or disable adaptation mechanisms on
the fly to meet consumer needs.

Figure 2 shows an example of three unbounded observa-
tion streams. The first one (marked as “Incoming stream”)
will be used to produce the two others thanks to a sliding
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Fig. 2: An example of two non-blocking operators applied to
an original unbounded observation stream

window. Please note that a sliding window can either be time-
based (e.g., 2 seconds) or count-based (e.g., 2 observations).
In this example, we use a 2-observation sliding window. The
second stream is computed by doing the average of observation
values contained within the sliding window. Finally, the last
stream only contains observations that report a value greater
than 3. To simplify the figure, we intentionally neglected the
processing time required to obtain the last two streams.

Despite the fact that challenges of data streams have been
identified and extensively studied in the literature, the im-
plementation of IoT platforms capable of correctly handling
unbounded observation streams is still a challenging issue.
Late 2013, this statement has motivated the creation of the
Reactive Streams Initiative1. The main goal of this on-
going initiative is to provide a standard for “asynchronous
stream processing with non-blocking back pressure”. Within
this project, several working groups have been formed. They
address various aspects from runtime environments to net-
work protocols. According to this initiative, Reactive Streams
have to be responsive, resilient, elastic and message-driven.
The interested reader can read the Reactive Manifesto2 that
describes these main requirements. As for developers, this
initiative has already produced Java and JavaScript Application
Programming Interfaces (APIs) that may be reused to develop
new IoT platforms.

III. IMPLEMENTATION CONSIDERATIONS

In the following, we assume that developers want to imple-
ment a Cloud-based IoT platform following either the Lambda
architecture [12] or the Kappa architecture3. Given the Related
Work (see Section V) and from our own developer experience,
we found this assumption realistic enough.

1http://www.reactive-streams.org
2http://www.reactivemanifesto.org
3http://kappa-architecture.com

Figure 3 shows a high-level comparison of these two
software architecture patterns. The Kappa architecture can be
seen as a simplification of the Lambda one [13]. Instead of
maintaining two different codes for real-time and batch layers,
developers may now focus on a single and unified Stream
Processing layer to process observations. In this case, the
system needs to retain the full log of observations worthy
of interest. Then, a new processing job may take these
historical observations and output different results according
to code processing changes and consumer needs. Although
the implementation of these two architectures is different, the
philosophy of having two distinct serving models (real-time
and offline) remains valid.

In this section, we highlight recent software solutions that
we have found particularly appropriate to address observation
collection (see Section III-A), observation processing (see Sec-
tion III-B) and observation consumption (see Section III-C).

A. Observation collection

Collection corresponds to the ingestion of observations from
sensors into the platform, as well as the pre-processing of these
observations (by sensors or the platform, when applicable).
Sensors may directly send their observations in case of direct
connectivity with platform (using IoT protocols such as CoAP
for instance). If required, middlewares and other gateways can
also be involved at this collection phase. However, the study
of these means is out of the scope of this article. Instead,
this section focuses more on virtual sensors and platform-side
software.

a) Virtual sensors: when developing IoT platforms, de-
velopers may want a convenient way to test the good behavior
of the whole system. In particular, when assessing platform
scalability (see Section IV-B), developers may not have suffi-
cient time or resources to perform a real deployment. During
the development of the iQAS platform, we addressed this issue
by proposing a custom Virtual Sensor Container (VSC)
packaged into a Docker4 container. Using Docker virtualiza-
tion, developers can quickly set up hundreds of virtual sensors
that generate observations to their IoT platform.

Our VSC proposal is composed of three main components,
namely a REST web server, the sensor application and an
observation file (see Figure 4). For now, a VSC publishes
the observations contained in the observation file (one record
per line) to an URL through HTTP protocol with JSON
body. VSCs are fully customizable and developers can specify
sensing rate, URL to publish, etc. VSCs also expose APIs
to modify their individual behavior while they are running.
This may be useful in the case where the platform has
some control over sensors. Wireless Sensor and Actuators
Networks (WSAN) [14] are an example of such systems.

b) Platform-side software: In order to complete observa-
tion collection, it is important that developers do not reinvent
the wheel and use existing solutions like Apache NiFi5 for
instance.

4https://www.docker.com
5https://nifi.apache.org



Speed (real-time) layer 

Batch (offline) layer 

Observation 
ingestion 

Observation 
sources 

Observation  
consumers 

Distributed 
storage 

Cloud-based IoT platform 

Observation 
collection 

Observation 
processing 

Observation 
consumption 

Serving 
layer 

(a) Lambda-style architecture

Unified Stream 
Processing layer 

Observation 
ingestion 

Observation 
sources 

Observation  
consumers 

Distributed 
storage 

Cloud-based IoT platform 

Observation 
collection 

Observation 
processing 

Observation 
consumption 

Serving layer 

Job version n 

Job version n+1 

Result n 

Result n+1 

(b) Kappa-style architecture

Fig. 3: High-level overview of two Cloud-based IoT platforms following the Lambda and Kappa architectures, respectively
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Fig. 4: High-level composition of a Virtual Sensor Con-
tainer (VSC) packaged into a Docker container

NiFi is an open-source solution specifically designed to
perform data ingestion at platform-side. First created by the
National Security Agency (NSA), it became an open-source
project in 2014 and a top-level project within the Apache
foundation in 2015. This software allows developers to create
real-time information Flows by linking Processors through a
web-based graphical user interface. The main advantages of
NiFi are the number of available processors (that allow to
connect with message brokers, databases, to perform basic
information processing, routing, etc.), its distributed archi-
tecture (deployment in local or with Zookeeper cluster) and
the possibility to add new custom processors. However, even
if Apache NiFi allows basic processing, a more powerful
solution is often needed to extract value from Raw Data
and provide higher observation levels (e.g., Knowledge or
Wisdom) to consumers.

Storm Spark
streaming Samza Flink Kafka

Streams

First
release 2011 2013 2014 2015 2016

Windowing

time-
based or
count-
based

time-
based

time-
based

time-
based or
count-
based

time-
based

Back-
Pressure yes yes yes yes N/A

Auto-
scaling no yes no no yes

TABLE I: Some examples of popular Apache softwares that
enable Complex Event Processing (CEP)

B. Observation processing

A challenging feature of IoT platforms is that they may ana-
lyze, process and transform received observations according to
different consumer needs. Among these needs, some of them
may relate to pre-processed observations. For instance, an alert
monitoring service may want to be notified only when there
is a gas leak (Smart City use case). Of course, observation
processing must be performed in real-time, in order not to
introduce additional latency.

Most of the time, the processing of observation streams is
achieved with Complex Event Processing (CEP) [15]. CEP
help to track and analyze observation streams in order to infer
occurred events. These events are then used by the platform
to provide services to consumers (alerts, reporting, statistics,
etc.). In practice, the term “CEP” is also used to denote Event
Stream Processing (ESP).

In this section we perform a short and non-exhaustive com-
parison of popular CEP softwares of the Apache foundation.
Table I lists five Apache solutions. In particular, it surveys the
following features:

a) First release: the date of the first known version of
the given software.



b) Windowing: the type of supported windowing (time-
based and/or count-based).

c) Back-Pressure: this mechanism corresponds to the
ability of a system to be resilient under load. A CEP that sup-
ports back-pressure is able to warn upstream components (in
case of stress for instance) and it is able to adapt its production
rate to the consumption rate of downstream components.

d) Auto-scaling: ability for a CEP to handle more re-
quests, jobs or tasks. A CEP that provides this feature can
scale up during peaks and scale down afterwards. This is often
achieved with dynamic resources allocation or dynamic work
re-balancing.

As a continuously and quickly evolving field, few CEP
comparisons are publicly available. The interested reader can
found a comparison of Spark, Flink and Storm in [16]. This
comparison has been performed by Yahoo Storm Team in 2015
and confirms that the choice of a particular CEP software is
subject to many factors such as performance but also security,
integration, etc. and that there is no “clear winner at this
point”. From our own experience, Flink and Kafka Streams
are good solutions for a developer who wants to quickly
add CEP feature to its platform. They both support real-
time event processing and can be either used for speed or
batch processing. They are also both compliant with the
Reactive Streams philosophy: Flink natively supports Back-
Pressure while Kafka Streams relies on a Kafka cluster to
handle processing load among instances. Lastly, these two
CEP solutions provide Java clients that can take advantage
of Java 8 Lambda Expressions.

C. Observation consumption

In the considered architectures, observation consumption
is performed through the serving layer by consumers (either
applications or users) that can ask for different kind of
observations (Raw Data, Information, Knowledge or Wisdom).
Incoming requests may involve real-time and/or offline pro-
cessing and may change over time. Therefore, developers
need to reconcile both observation production and observation
consumption. Indeed, these two processes are correlated and
highly dynamic.

To comply with the Reactive Streams vision, we advice de-
velopers to use message brokers that implement the Publish-
Subscribe pattern [17]. A message broker allows developers
to define several message queues (or topics) that can serve
as buffers between key components of the IoT platform.
Since most of message brokers are distributed (see Table II),
they offer a reliable, high-throughput and low-latency ob-
servation distribution. With a message broker, sensors can
asynchronously publish their observations without waiting for
a consumer. When an observation consumer is interested by a
given topic, it subscribes to it and start listening synchronously
for messages directly from the message broker.

Table II presents three popular message brokers. In the
following, we highlight some notable differences between
them:

RabbitMQ Apache
ActiveMQ Apache Kafka

First release 2007 2012 2014

Solution based
on AMQP JMS N/A

Distributed yes (cluster) yes (Zookeeper
cluster)

yes (Zookeeper
cluster)

Exchange types Queues, Topics Queues, Topics Topics

Routing support yes yes no

Written in Erlang Java Scala

Producer
performance

(messages/sec.)
25000 2000 50000

Consumer
performance

(messages/sec.)
4800 5000 22500

TABLE II: Comparison of three popular message brokers

a) Implemented protocol: RabbitMQ and ActiveMQ im-
plements Advanced Message Queuing Protocol (AMQP) and
Java Message Service (JMS), respectively. Differently, Kafka
relies on the “log” data structure abstraction and does not
keep track of what messages clients have consumed. Instead,
within Kafka, all messages are retained during a specified
time. Finally, Kafka writes/reads messages directly from disk,
leveraging kernel-level input/output.

b) Distributed: all presented message brokers can be
distributed to improve their scalability. For Apache brokers, it
is first required to set up a Zookeeper cluster that coordinates
the whole cluster.

c) Exchange types: within RabbitMQ and ActiveMQ,
sensors can either publish their observations to a given mes-
sage queue or to a given topic. Within Apache Kafka, there
is no queue abstraction since it is assumed that sensors
and producers express their interests through topics (what
observations are about) rather than message queues (where
observations are stored).

d) Routing support: some message brokers allow the
routing of messages between their queues/topics based on
a routing key. Since it does not provide queue abstraction,
Apache Kafka does not provide routing either.

e) Producer and consumer performances: it is difficult
to evaluate performances of a message broker since results
may vary according to deployment, configuration and mes-
sage benchmarks themselves. The figures presented in this
paper are taken from a LinkedIn technical report dated from
2011 [18]. We estimate these figures from two comparative
graphs presented in this report to give an order of magnitude
of the supported loads. Again, we kindly warn the reader that
these experimental results are highly dependent on software
versions, configuration and used benchmarks.

On the one hand, Apache Kafka [19] seems to be a par-
ticularly reliable and scalable solution, with high-throughput
delivery rate and low latency in the case of observation



streams. It is successfully used at LinkedIn to handles more
than 10 billion message writes with peaks of 172000 messages
per second and to deliver more than 55 billion messages [20].
On the other hand, both RabbitMQ and ActiveMQ have more
features than Kafka (such as message queues and routing
support for instance). In fact, there is no message broker
suitable for all implementations and use cases. Besides, it is
important to bear in mind that observation consumers are often
considered as the bottleneck when it comes to observation
consumption. Therefore, we argue that the features and the
APIs provided should primarily be considered when choosing
a message broker solution.

IV. NON-FUNCTIONAL REQUIREMENTS

So far, this paper has shown that sensor observation streams
bring new observation-centric issues that translate into con-
crete implementation challenges. In Section III, we made the
assumption that a Cloud-based architecture was a suitable
solution to deploy an IoT platform without elaborating more.
In this section, we highlight three non-functional requirements
for IoT platforms and we explain how Cloud Computing
paradigm [21] can help to address them.

A. Platform adaptation

Cloud Computing has promoted the Everything as a Ser-
vice (XaaS) model [22]. As a consequence, we have recently
witnessed the birth of Sensing as a Service [23]. This model
consists in taking advantage of certain features of Cloud-based
platforms (pay as you go, elasticity, multi-tenancy, Service
Level Agreements, etc.) while considering distinct entities and
stakeholders that maintain, manage and take advantage of
sensor-based platforms. Cloud-based IoT platforms fall into
the Sensing as a Service model, acting as middlewares between
sensors and sensor data consumers. Indeed, they are required
to bridge the gap between sensor capabilities from one hand
and consumer needs from another hand. In order to bridge
this gap and guarantee Service Level Agreements (SLAs), IoT
platforms should adapt their own behavior. This adaptation
must take into account consumers’ SLAs (that may include
QoO aspects) but also available resources and adaptation
mechanisms at platform-side.

To achieve dynamic adaptation at runtime, loop-based
adaptation frameworks like the Autonomic Computing
paradigm [24] are commonly envisioned, especially within
Cloud-based systems [25]. Regarding the Autonomic Com-
puting paradigm, it has been defined by IBM as the ability
for systems to “manage themselves given high-level objectives
from administrators” [24]. More generally, autonomic systems
are a set of Autonomic Elements. Each of these elements is
composed of one or many Managed Elements controlled by a
single Autonomic Manager. The latter continuously monitors
the internal state of its different Managed Elements; then ana-
lyzes this information; and finally takes appropriate decisions
based on both its knowledge base and high-level objectives.
In the end, these decisions are converted into actions and
transmitted to appropriate Managed Elements for execution.

These different steps form the MAPE-K adaptation control
loop (Monitor, Analyze, Plan, Execute, Knowledge base).

In [24], IBM has identified four self-* fundamental adap-
tation properties for autonomic systems (self-configuration,
self-optimization, self-healing and self-protection). In the case
of IoT platforms, self-optimization is critical to deliver high-
quality observations to each consumer and may involve dif-
ferentiated processing of observation streams (e.g., Fusion,
Aggregation, Filtering) or other adaptation mechanisms (Ma-
chine Learning, Caching, etc.). Self-healing and self-protection
features can also be implemented to provide better platform
scalability and platform availability. We explain in more details
these two requirements in following sections.

B. Platform scalability

According to the NIST definition, Cloud-based platforms
are characterized by on-demand self-service, resource pool-
ing and rapid elasticity [21]. While scalability denotes the
capacity of a system to grow in order to accommodate a
more important amount of work, elasticity feature refers to
the ability for a scalable system to release unused resources
when the workload decreases.

Many strategies exist in order to build scalable Cloud-based
systems. The use of “shock absorbing” technologies (mes-
sage brokers, Reactive Streams, distributed databases, load
balancers, etc.) is generally sufficient to handle a small number
of observation streams and build a first prototype of an IoT
platform. However, when there are too many observation
producers or consumers, the platform may be unable to process
and deliver observations to its consumers according to the
contracted SLAs. To avoid such a scenario, Cloud-based
platforms may be configured to automatically provide hori-
zontal scalability (by deploying additional virtual instances)
or vertical scalability (by increasing the allocated resources
per virtual instance).

The scalability of an IoT platform can be evaluated with two
main scenarios. The first one is a scenario where the platform
must answer to an increasing number of observation requests
per second. To emulate this scenario, developers can use dedi-
cated stress tools like the open-source load-testing framework
Gatling6 for instance. The second scenario is the one where
the platform has to ingest more observations. This situation
arises either when more sensors are connected to the platform
or when the sensing rate of some sensors increases. This
scenario may be easily emulated if developers use our Virtual
Sensor Containers approach (see the description of a VSC
in Section III). By taking advantage of Docker virtualization,
developers may quickly configure and deploy hundreds (nay
thousands) of VSCs depending on the capabilities of the
Docker machine.

C. Platform availability

The availability of a system is generally represented as a
fraction of time during which the system has successfully

6http://gatling.io



answered to consumer requests. For Cloud-based platforms,
availability is commonly expressed with “Monthly Uptime
Percentage”. Commercial Cloud-based IoT solutions such as
IBM Watson IoT platform [26] or AWS IoT [27] guarantee a
Monthly Uptime Percentage greater than 99%, offering some
service credit when this SLA clause is not met. However,
commercial platforms only take into account the availability
of the Cloud infrastructure and not the availability of sensors
themselves (considered to be developer’s responsibility).

Differently, within a custom-made IoT platform, we argue
that platform availability is affected by both the underlying
Cloud infrastructure and sensors themselves. When developing
their own IoT platforms, developers should consider a broader
notion of availability and implement appropriate mechanisms
to handle sensor failures or sensor unavailability. For instance,
one may imagine a preliminary sensor selection process based
on sensor battery lifetime.

Another challenge that may impact platform availability is
the CAP theorem [28]. This theorem states that a shared data
system could only offer two of the three following features at a
given time: Consistency, Availability and tolerance to network
Partitions. Yet, a great majority of IoT platforms rely on
distributed NoSQL databases [29] and message brokers, which
are two shared data systems. Regarding distributed message
brokers, most of them focus on Availability and Consistency,
assuming a reliable network to synchronize and manage the
whole cluster. According to the CAP theorem, one would
say that these softwares sacrifice the tolerance to network
Partitions feature but that it is not as simple.

In fact, since its original formulation, there have been
discussions around the CAP theorem to also encompass la-
tency [30] and precise the three different features that shared
data systems should provide. First, CAP-availability is often
impossible to achieve but High-Availability (HA) may be suffi-
cient enough for many SLA-based platforms in practice. In this
case, a short unavailability is acceptable but systematic high-
latency responses to requests may be considered as platform
unavailability. Second, CAP-consistency refers to linearizable
consistency, which is very costly and most of the time not even
needed. Last but not the least, no network is 100% reliable and
network Partitions happen more than expected in reality, even
in the context of a Cloud-based IoT platform. Even worse,
network Partitions may be caused by a multitude of factors
like hardware problems, wrong configurations, software bugs,
etc. Even if the CAP theorem describes a very specific read-
write use case and relies on very strong definitions that may
not be applicable in reality, developers must be aware of the
implications of using shared data systems since they may
impact the availability of the whole IoT platform.

V. RELATED WORK

Data streams [31] have been extensively studied in the
literature, including from the perspective of the Internet of
Things (IoT) [3]. Instead, this paper envisions sensor obser-
vation streams, which can be seen as a particular type of
data streams. As a consequence, this restriction also raises

specific research challenges linked to the Quality of Informa-
tion (QoI) [9]. To address this issue and characterize sensor
observations, this paper proposes to reuse existing work on
QoI and Context information.

Previously, some efforts have been done to standardize
either sensor-based platforms or IoT-based architectures in
general. For example, OGC SWE standards [32] are intended
for Sensor Web systems while the IoT-A project [33] is
destined to the IoT. However, the use of such frameworks
remains very limited since they require an important learning
phase. As a consequence, we witness the development of a
great number of custom-made IoT platforms. Regarding im-
plementation considerations, a lot of studies have highlighted
the benefits of using Cloud-based architectures to support the
IoT [34]. Some of them have even proposed the term “Cloud
of Things” [35] to denote this new paradigm. However, most
of these studies only focus on technical considerations (by
proposing protocols or integration frameworks for instance)
and do not take into account observation streams and their
inherent challenges. Some Cloud-based commercial IoT so-
lutions like AWS IoT [27] or IBM Watson IoT [26] are
also available to developers. Nevertheless, these proprietary
solutions are application-oriented and do not provide any QoO
insights. Besides, since these platforms are not open-source,
developers can only customize them with available proprietary
components.

Some platforms have successfully been designed and de-
ployed to handle sensor observation streams [36], providing
Cloud-based query processing [37] or QoI characterization for
observations [38]. However, these solutions are of little interest
for developers since they do not detail how they specifically
address challenges (and which ones) related to unbounded
observation streams. Therefore, developers cannot learn from
these projects and reuse these teachings at design phase.

Finally, closer to our work, Elnahrawy reviewed the differ-
ent research directions for sensor data streams [39]. Although
it presents interesting challenges and solutions, this work
focuses on low-level observation collection (sensor gateways,
in-network aggregation) and does not consider Cloud-based
platforms. On the contrary, our paper aims to present some
lessons learned and recommendations from a custom imple-
mentation of a concrete Cloud-based IoT platform able to han-
dle sensor streams with QoO support. Different from a simple
software review, this paper explains some important concepts
inherent to sensor streams (Reactive Streams, Lambda and
Kappa Architecture, CAP theorem) and presents some open-
source solutions that may help to address them.

VI. CONCLUSIONS AND PERSPECTIVES

Far from being exhaustive, this paper aims to help develop-
ers in the design and the implementation of Cloud-based IoT
platforms capable of handling sensor observation streams. It
puts into perspective observation-related challenges with some
implementation considerations. Indeed, from collection to
consumption through processing, observation streams require
suitable softwares or paradigms. By correctly addressing these



challenges from design phase, developers may be able to build
IoT platforms that meet important non-functional requirements
like platform adaptation, scalability and availability.

With the growth of Internet of Things (IoT) and the emer-
gence of Smart Cities, we believe that observation-related
challenges will become more and more critical within these
information-centric platforms. Just like network Quality of
Service (QoS), we envision that more and more consumers
will require guarantees about Quality of Observation (QoO).

We hope that this paper will stimulate the creation of new
Cloud-based IoT platforms which collect, extract Knowledge
or Wisdom and provide enhanced services to final consumers.
We also expect that more IoT-related softwares will be released
in the future, providing new tools to developers to deal with
sensor observation streams.
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