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Abstract

We use the optimality principle of dynamic programming to formulate a dis-

crete version of the Nerlove-Arrow maximization problem. When the payoff

function is concave we derive an explicit solution to the problem. If the time

horizon is long enough there is a “transiently stationary” (turnpike) value for

the optimal capital after which the capital must decay as the end of the time

horizon approaches. If the time horizon is short the capital is left to decay after

a first-period increase or decrease depending on the capital’s initial value. Re-

sults are illustrated with the payoff function µKλ where K is the capital and

0 < λ < 1, µ > 0. With this function, the solution is in closed form.
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1 Introduction

In their seminal paper Nerlove and Arrow (1962) describe the eponymous model which

tackles a firm’s search for the stream of advertising expenditure used to purchase the

“goodwill” that will maximize the present value profit.

The problem’s generality is remarkable. Indeed, it rapidly became clear that good-

will can just as well be human capital of some sorts (Becker, 1962), health capital

(Grossman, 1972), or a stock of durable goods leased to others (Weber, 2005). The

“profit” in those cases is an individual’s earnings, a population’s well-being or rents

collected. (See Kamien and Schwartz (1991), Sethi (1977) and Feichtinger, Hartl and

Sethi (1994) for reviews; also De Souza and Yoneyama (1991) for an application in

public health). In a general framework we will thus refer to a stock K of some un-

specified capital instead of goodwill, and to a payoff function π(K) instead of a profit

function.

The model has been extended not just to diverse application areas, but also to

account for stochastic effects (Raman, 2006), budgetary constraints (Sethi, 1977), or

both (Marinelli, 2007). Further extensions entail interactions between several firms

(see Karray and Zaccour (2007), Rubel and Zaccour (2007), Doraszelski and Markovich

(2007), Grosset and Viscolani (2009) for recent papers on this topic).

One aspect of the solution that has attracted considerable attention is the so-called

“turnpike” (McKenzie, 1976, 1982). This imaginative terminology graphically captures

a common characteristic of the solution when the time horizon is long enough. Indeed,

in this case the payoff is maximized by bringing the capital to a ”transiently stationary”

value (the turnpike) where it must stay a certain duration before decaying as the end

of the time horizon approaches.

The Nerlove-Arrow problem is a difficult one, usually formulated in continuous time,

and solved using advanced mathematical techniques from the calculus of variation and

from optimal control, both deterministic and stochastic (Kamien and Schwartz, 1991).

However, explicit solutions are rarely forthcoming. Insights are often provided in terms
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of “necessary conditions”. Alternatively, numerical methods are used which usually

amount to a discretization of the problem.

Here we will formulate the original Nerlove-Arrow problem in a discrete framework,

then solve it explicitly. The solution will shed light, in particular, on conditions for the

existence of a turnpike.

Section 2 describes the discretized form of the problem. The optimality principle

of dynamic programming gives rise to a simple non-autonomous iterative procedure

that yields the optimal solution for any payoff function. Section 3 moves the algorithm

further when the payoff function is concave. In this case the operators {Gm} used in

the iterative procedure are extremely simple functions determined by a finite sequence

{cm} that is calculated explicitly on the basis of the model’s specifications (payoff

function, discount rate, unit price of capital and depreciation rate). Section 4, in

the mostly self-contained Proposition 3, translates the iterative procedure into explicit

expressions for the solution. Section 5 illustrates the results with the profit function

µKλ for which the solution is in closed form. Section 6 wraps things up with a brief

discussion and concluding remarks.

2 Discretized Nerlove-Arrow model

2.1 Discretization

We let K be the capital and π(K) be the payoff function. The continuous-time Nerlove-

Arrow dynamic optimization model aims to find the expenditure z on capital that

maximizes the present-value payoff over a time horizon (0, T ). With K and z being

function of time t, the maximized payoff is

W (T )
def.
= max

z

{∫ T

0

e−rt(π(K)− z)dt

}
(1)
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with

z = β(K̇ +Kδ) (2)

where r is the discount rate; β is the unit price of capital and δ is the rate at which

capital depreciates; K(0) is the initial value of K.

We now consider a time horizon of k discrete periods with an initial capital K0 and

k − 1 subsequent unknown values K1, K2, ..., Kk−1. The discrete version of Eq. (2)

yields the expenditures

zm = β(Km+1 −Km(1− δ)), m = 0, 1, . . . , k − 2, (3)

or

Km+1 = Km(1− δ) + zm/β. (4)

The discrete version of the maximization problem in Eq. (1) is then

Wk(K0) = max
z

{
m=k−1∑
m=0

(π(Km)− zm)(1 + r)−m

}
. (5)

The last expenditure zk−1 must be equal to 0 since any positive zk−1 would lower

π(Kk−1)− zk−1, the last term of the sum in Eq. (5). Therefore

W1(K0) = π(K0). (6)
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2.2 Dynamic programming formulation

We use the optimality principle of dynamic programming to write Eq. (5) as

Wk(K0) = max
z

{
(π(K0)− z0) + (1 + r)−1

m=k−1∑
m=1

(π(Km)− zm)(1 + r)−m+1

}

= max
z0≥0

{
(π(K0)− z0) + (1 + r)−1Wk−1(K0(1− δ) + z0/β)

}
= π(K0) + βK0(1− δ) + max

K1≥K0(1−δ)

{
(1 + r)−1Wk−1(K1)− βK1

}
, (7)

where we have formulated the maximization problem by seeking the optimal Km’s

rather than the optimal zm’s.

Working backwards we then have, for p = 0, 1, . . . , k − 2,

Wk−p(Kp) = π(Kp) + βKp(1− δ)+

max
Kp+1≥Kp(1−δ)

{
(1 + r)−1Wk−p−1(Kp+1)− βKp+1

}
(8)

and W1(Kk−1) = π(Kk−1). We divide both sides of Eq. (8) by 1 + r and then subtract

βKp to obtain

Wk−p(Kp)

1 + r
− βKp =

π(Kp)− βKp(δ + r) + max
Kp+1≥Kp(1−δ)

{(1 + r)−1Wk−p−1(Kp+1)− βKp+1}

1 + r
. (9)

The expression on the left-hand side and the one in the curly braces on the right-

hand side of Eq. (9) have the same form, at the orders k−p for the former and k−p−1

for the latter. In order to exploit this fact we first define the function

J∗(K)
def.
=

π(K)− βK(δ + r)

1 + r
(10)

which up to the multiplicative constant 1 + r is the net profit function of Eq. (12) in

Nerlove and Arrow (1962).
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We define the sequence Hm(K) (m = 1, 2, ...) of functions on the left-hand side of

Eq. (9):

H1(K)
def.
=

W1(K)

1 + r
− βK =

π(K)

1 + r
− βK = J∗(K) +

βK(δ − 1)

1 + r
(11)

and

Hm(K) = J∗(K) +
1

1 + r
×


βK(δ − 1) if m = 1

max
K′≥K(1−δ)

Hm−1(K
′) if m ≥ 2.

(12)

For the moment we assume that a finite max exists in Eq. (12). With these

notations Eq. (9) becomes

Hk−p(Kp) =
Wk−p(Kp)

1 + r
− βKp (13)

= J∗(Kp) +

max
Kp+1≥Kp(1−δ)

{Hk−p−1(Kp+1)}

1 + r
(14)

where the optimal Kp+1 is the value of Kp+1 at which the maximum is attained. When

this maximum is attained at Kp+1 = Kp(1 − δ) we will say that Kp+1 is “sticky” or

that the capital is left to decay with none being purchased (zp = 0).

If we define

Gm(K)
def.
= {K ′;K ′ maximizes Hm, K

′ ≥ K(1− δ)} , (15)

then Eq. (14) shows that for a given initial K0, the optimal Km’s are given by the

non-autonomous iterative process (operators changing with each iteration):

K1 = Gk−1(K0), K2 = Gk−2(K1), . . . , Kk−1 = G1(Kk−2). (16)

The solution thus hinges on the knowledge of the functions Hm of Eq. (12), which

can be calculated numerically, but at a considerable computational cost. Indeed, cal-
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culating Hm(K) requires the composition of m functions, each with a maximum that

usually has to be found numerically.

The solution given here will rest on the idea that we only need to know the value(s)

at which each Hm reaches a maximum. The problem is made simpler when Hm has a

single maximum, as will be the case when the payoff function is concave.

3 Assumptions and preliminary results

3.1 Assumptions

For the remainder of the paper the payoff function π is assumed to be differentiable and

concave with π(0) = 0. The derivative π̇ then decreases while remaining non-negative.

It must therefore converge to a limit d ≥ 0 when K →∞.

Given the derivative

J̇∗(K)=
π̇(K)− β(δ + r)

1 + r
(17)

of J∗ we next dispose of two trivial cases: β either small or large. Equation (17) shows

that if β < d
r+δ

then J̇∗(K) has a positive lower bound. Therefore J∗(K) tends to ∞

for K →∞ and the problem does not have a bounded solution.

If π̇(0)
r+δ

< β then Eq. (17) shows that J̇∗(K) < 0 for all K. The second term on

the right-hand side of Eq. (12) is a non-increasing function of K and therefore Hm is

decreasing on [0,∞). All optimal Km’s are therefore sticky: Km = K0(1 − δ)m, m =

1, 2, . . . , k − 1.

To avoid trivialities we assume for the remainder of the paper that

d

r + δ
< β <

π̇(0)

r + δ
. (18)

In a later section we will illustrate the results with the concave function π(K) = µKλ

(0 < λ < 1) for which d = 0 and π̇(0) =∞. The problem will therefore be non-trivial

for any β > 0.
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The max in Eq. (12) complicates the definition of the Hm’s. However the iterative

procedure of (16) requires only the values at which the Hm’s reach a maximum. We

will produce a sequence of functions {H∗m}, closely related to the Hm’s, with each H∗m

reaching a single maximum at some tractable cm (with non-decreasing cm’s). We will

show that each H∗m coincides with Hm on [cm−1/(1−δ),∞) and that cm > cm−1/(1−δ).

The functions Hm and H∗m therefore reach a maximum at the same value cm.

Each derivative Ḣ∗m will be a decreasing function which makes the calculation of

cm, the zero of Ḣ∗m, a simple numerical matter. For some payoff functions, such as

π(K) = µKλ, the cm’s have a closed-form expression.

3.2 The functions {H∗m}m=1,2,...

We define

H∗m(K)
def.
= J∗(K) +

1

1 + r
×


βK(δ − 1) if m = 1

H∗m−1(K(1− δ)) if m ≥ 2.

(19)

The functions H∗1 (K) and H1(K) of Eq. (12) are identical. For m ≥ 2 the one

difference is that the max of Hm−1(K
′) is replaced by H∗m−1(K

′) at K ′ = K(1− δ) (as

if the max were always attained at K(1− δ), i.e. all Km’s were sticky).

It is easy to see that

H∗m(K) =

q=m∑
q=1

π(K(1− δ)q−1)

(1 + r)q
− βK, m = 1, 2, . . . (20)

The derivatives of these function are

Ḣ∗m(K) =

q=m∑
q=1

(1− δ)q−1π̇(K(1− δ)q−1)

(1 + r)q
− β (21)

=
1

1 + r

q=m∑
q=1

ρq−1π̇(K(1− δ)q−1)− β, (22)

8



where

ρ
def.
=

1− δ
1 + r

< 1. (23)

Because π̇ is bounded and ρ < 1, the sequence of derivatives
{
Ḣ∗m

}
converges to a

limit Ḣ∗∞(K) for m→∞:

Ḣ∗∞(K)
def.
= lim

m→∞
Ḣ∗m(K) =

1

1 + r

q=∞∑
q=1

ρq−1π̇(K(1− δ)q−1)− β. (24)

Because π̇ is decreasing, each derivative Ḣ∗m is also a decreasing function with a

value at 0 equal to:

Ḣ∗m(0) =
1

1 + r

q=m∑
q=1

ρq−1π̇(0)− β (25)

=
π̇(0)(1− ρm)

(1 + r)(1− ρ)
− β (26)

=
π̇(0)(1− ρm)

δ + r
− β, m = 1, 2, . . . (27)

We next investigate when the derivatives go from being positive to negative, i.e.

circumstances under which H∗m reaches a maximum.

3.3 Theoretical results on the H∗m’s

The following proposition provides results on the behavior of the derivatives Ḣ∗m.

Proposition 1. We assume that (18) holds. The derivative J̇∗ is a decreasing function

that is positive at 0 and reaches 0 at K∗, the root of

J̇∗(K∗) = 0 =
π̇(K∗)− β(δ + r)

1 + r
. (28)

We define

m∗
def.
=

 ln

(
1− β(r + δ)

π̇(0)

)
ln(ρ)

 ≥ 0, (29)
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where [•] is the integer part function.

If m∗ ≥ 1 then for any m ≤ m∗ the derivative Ḣ∗m is non-positive at K = 0 and

decreases on [0,∞). This means that if we define

cm
def.
= inf

{
K > 0; Ḣ∗m(K) < 0

}
(30)

then cm = 0 for m ≤ m∗.

For any m > m∗ then Ḣ∗m(K) is positive for K = 0 and drops below 0 at cm > 0

which is now the root of

Ḣ∗m(cm) =
1

1 + r

q=m∑
q=1

ρq−1π̇(cm(1− δ)q−1)− β = 0. (31)

The cm’s increase for m→∞ and reach a limit c∞ which is the root of Ḣ∗∞(K) = 0

and is strictly larger than K∗, the root of J̇∗(K) = 0. We can then define

p∗
def.
= max {m; cm ≤ K∗} (32)

and we have

0 = c1 = c2 = . . . = cm∗

< cm∗+1 <
cm∗+1

1− δ
< cm∗+2 <

cm∗+2

1− δ
. . . <

cp∗−1

1− δ
< cp∗ ≤ K∗

< cp∗+1 <


cp∗

1− δ
.

cp∗+2 < . . . < c∞.

(33)

Proof. See Appendix A.1.

The next proposition provides the required result on the maximum of each Hm.

Proposition 2. When (18) holds then for m = 1, 2, . . . , p∗ we have:

• P1: Hm(K) = H∗m(K) for K ≥ cm−1/(1− δ) (c−1 ≡ 0).
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• P2: The functions Hm increase on [0, cm] and decrease on (cm,∞).

We also have

• P3: For m ≥ p∗+1 the functions Hm increase on [0, K∗] and decrease on (K∗,∞).

Proof. See Appendix A.2.

We now provide the explicit solutions to the discretized Nerlove-Arrow problem.

4 Main result

Proposition 2 states that each function Hm (m = 1, 2, . . . , p∗) has a unique maximum

at cm. We redefine the subsequent cm’s (m ≥ p∗ + 1) as being all equal to K∗, rather

than to the maximum of each H∗m. In this way Hm has a unique maximum at

cm
re-def.

=


cm for m = 1, 2, . . . , p∗

K∗ for m ≥ p∗ + 1.

(34)

The functions Gm of Eq. (15) are

Gm(K) =


K(1− δ) if K > cm/(1− δ)

cm otherwise

(35)

where each Gm has the unique fixed point cm = Gm(cm).

To simplify the presentation of the results we define the following partition of the

positive axis:

I0
def.
=

[
0,

K∗

1− δ

)
; Im

def.
=

[
K∗

(1− δ)m
,

K∗

(1− δ)m+1

)
, m = 1, 2, . . . . (36)

The next result uses the index j of the interval Ij that contains the initial K0 to

formulate the explicit solutions.
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Proposition 3. We consider the discrete Nerlove-Arrow model of (5) with a concave

payoff function π(K) whose derivative converges to d ≥ 0 for K → ∞. We assume

that the unit price β of capital satisfies

d

r + δ
< β <

π̇(0)

r + δ
. (37)

The time horizon is k and the initial stock is K0 belonging to some Ij. The integer p∗

is the largest integer m for which the root of Ḣ∗m(K) = 0 is no larger than K∗, the root

of (28). We also recall the cm’s redefined in (34).

The optimal values K1, K2, . . . , Kk−1 are obtained through the following iteration:

Km = Gk−m(Km−1), m = 1, 2, . . . , k − 1, (38)

where the Gm’s are given by Eq. (35).

If we define

w
def.
= k − 1− p∗ (39)

we will say that the time horizon k is “short” (or “long”) when w ≤ 0 (or w > 0).

Explicit expressions for the Km’s are obtained by considering two cases which depend

on the value of w (Figure 1).

Case C1: w ≤ 0, i.e. “short time horizon”. The optimal values are

K1 =


K0(1− δ) if K0 ≥ ck−1/(1− δ)

ck−1 if K0 < ck−1/(1− δ)
(40)

and

Km = K1(1− δ)m−1,m = 2, 3, . . . , k − 1. (41)

Case C2: w > 0, i.e. “long time horizon”. We distinguish between two subcases,

depending on the interval Ij that contains K0.
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1. Subcase C2a: K0 ∈ I0, i.e. “low K0”. The first w Km’s are equal to the “tran-

siently stationary” (turnpike) value K∗:

K1 = K2 = . . . = Kw = K∗. (42)

Then

Kw+1 = cp∗ (43)

with the last p∗ − 1 Km’s being sticky (“exit period” of duration p∗ − 1):

Km = cp∗(1− δ)m−w−1, m = w + 2, w + 3, . . . , k − 1. (44)

2. Subcase C2b. K0 ∈ Ij, j ≥ 1, i.e. “high K0”. If w < j then all Km’s are sticky:

Km = K0(1− δ)m,m = 1, 2, . . . , k − 1. (45)

If w ≥ j then only the first j Km’s are sticky

Km = K0(1− δ)m,m = 1, 2, . . . , j. (46)

When w > j the next w − j Km’s are equal to K∗:

Km = K∗,m = j + 1, j + 2, . . . , w. (47)

Whether w = j or not we have

Kw+1 = cp∗ , (48)
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with the last p∗ − 1 Km’s being sticky (exit period):

Km = cp∗(1− δ)m−w−1,m = w + 2, w + 3, . . . , k − 1. (49)

Proof. See Appendix A.3.

The optimal expenditures zm are obtained through Eq. (3). In particular the

“transiently stationary” expenditure z∗ corresponds to K∗ and is

z∗ = β(K∗ −K∗(1− δ)) = βδK∗. (50)

The maximized present-value payoff Wk(K0) is given in Eq. (5).

The solution as described in Eqs. (40)-(49) is consistent with what is known in

the continuous framework (existence of a turnpike, etc). The fact that the solution

depends on the time horizon is reflected in the iteration Km = Gk−m(Km−1) which

shows that each Km is a function of Km−1 that depends on the remaining duration

k −m.

The results quantify precisely the fact that for a long enough time horizon the

capital is brought down or up as quickly as possible to the transiently stationary value

K∗. The capital is left to decay with no more expenditures as the end of the time

horizon approaches.

For a short time horizon k and an initial value K0 larger than ck−1/(1 − δ) the

capital is left to decay. For an initial value smaller than ck−1/(1 − δ) the optimal

capital jumps up to K1 = ck−1 if K0 < ck−1 and jumps down to the same K1 = ck−1 if

ck−1 < K0 < ck−1/(1− δ). After this first period the capital is left to decay.

Proposition 3 shows that for a given time horizon k each optimal Km is either sticky

or one of three numbers: ck−1, cp∗ or K∗ which are simple to calculate numerically. In

the example given below, they are in closed form.
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5 Application

5.1 Concave payoff function

We consider the payoff function

π(K) = µKλ, 0 < λ < 1, µ > 0 (51)

which is concave. The derivative π̇(K) = λµKλ−1 tends to d = 0 for K → ∞. The

fact that d = 0 and π̇(0) =∞ means that (37) holds for any positive β.

All quantities of interest can be expressed in closed form. Indeed, the stationary

value K∗ of Eq. (28) is

K∗ =

(
β(δ + r)

µλ

) 1

λ− 1
. (52)

The integer p∗ of Eq. (32) is

p∗ =

 ln

(
δ − 1 + (1− δ)λ

δ + r

)
ln

(
(1− δ)λ

1 + r

)
 (53)

with [•] the integer part function. For m ≤ p∗, each cm of Eq. (31) is

cm =


β(1 + r)

(
1− (1− δ)λ

1 + r

)
µλ

{
1−

(
(1− δ)λ

1 + r

)m}


1

λ− 1

. (54)

The solutions plotted in Figure 2 and Figure 3 were obtained with

β = 0.4, δ = 0.3, r = 0.25, µ = 1, λ = 0.55 (55)

from which

K∗ = 7.66, p∗ = 3, cp∗ = 6.36. (56)
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Figure 2 (or Figure 3) shows the optimal Km’s and zm’s for an initial value K0 = 3 (or

K0 = 13) that is smaller (or larger) than K∗. In each figure panels a1 and b1 depict

the solution for a long time horizon (k = 8, w = k − p∗ − 1 = 4 > 0, Case C2). Panels

a2 and b2 depict the solution for a short time horizon (k = 3, w = k−p∗−1 = −1 ≤ 0,

Case C1).

5.2 Suboptimality analysis

In order to verify our results we perturbed the optimal zm’s and checked that the

resulting payoff is indeed smaller than the optimal one. We did this with the example

above (K0 = 3, k = 8) by increasing every optimal zm to 130% of its optimal value.

The resulting payoff was 99.1 % of the optimal one. A decrease to 70 % of optimal

values results in a payoff that is 98.8 % of the optimal one. When each optimal zm

was independently and randomly taken between 70 % and 130 % of its optimal value

(uniform distribution), the resulting payoff was basically never less than 99 % of the

optimal one. A “suboptimality sensitivity analysis” is beyond the scope of this paper,

but these results suggest that at least in some cases the payoff is quite insensitive to

departures from optimality.

5.3 Sensitivity analysis

Substantive insights are gained from explicit solutions. For example the effect of the

depreciation rate δ on p∗ of Eq. (53) sheds light on the durations of the transiently

stationary period and of the exit period (during which the optimal stock decays at

the rate δ). When δ increases from 0.0 to 1.0, then Eq. (53) shows that p∗ − 1 drops

from +∞ to 0. This means that for a fixed k and a δ sufficiently small then p∗ ≈ +∞

and the integer w = k − p∗ − 1 is negative. We are in Case C1 with all Km’s sticky

except possibly K1 depending on the initial capital K0. This result has a substantive

economic interpretation. Indeed, when the depreciation rate δ is small enough then

the payoff is maximized with a single expenditure at the first period if K0 is smaller
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than ck−1/(1 − δ). The payoff is maximized without any expenditure if K0 is larger

than ck−1/(1− δ).

With δ back at 0.3 and an interest rate r that increases from 0 to +∞, the duration

p∗−1 of the exit period drops from 3 to 0. For a fixed k the integer w = k−p∗−1 is thus

an increasing function of δ with consequences that can be explored with Proposition 3.

5.4 Concave to linear payoff function

We recover the case of a linear payoff function by letting λ of (51) tend to 1. Then p∗

of Eq. (53) tends to +∞ and with w ≤ 0 we are in Case C1. If µ < β(δ + r) then K∗

of Eq. (52) and the cm’s of Eq. (54) approach 0 when λ→ 1. This means all optimal

Km’s are sticky: the unit cost β of capital is too high relatively to the marginal profit

µ and the optimal strategy is to let capital decay with no new purchase.

If µ > β(δ+r) thenK∗ of Eq. (52) and the cm’s of Eq. (54) tend to +∞ when λ→ 1.

A careful application of Proposition 3 in the Case C1 shows that K1 = ck−1 → +∞ with

other Km’s being sticky. The optimal overall payoff Wk(K0) is therefore unbounded

when λ→ 1 (because the unit cost β is low enough). This trivial result can be derived

from first principles by considering the iteration of (16) combined with the fact that

J∗ of Eq. (10) is itself linear when π is the linear function π(K) = µK.

6 Discussion

The derivatives Ḣ∗m in Eq. (22) were decreasing only because every π̇(K(1−δ)q−1) was

decreasing, which hinged crucially on π being concave. However not all payoff functions

are concave. It is no doubt possible to extend the results to a function that is concave

only beyond some K+ by restricting the initial K0 to be larger than a minimum to be

determined. It is unclear to what extent the approach used here could be generalized

to other payoff functions.

Another extension is to include a budgetary constraint, as in Sethi (1977). Con-
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straining the model by imposing a maximum total expenditure is a difficult problem.

Having a maximum expenditure at each period can however be incorporated into Eq.

(14). We do this by seeking an optimal Kp+1 not in [Kp(1 − δ),∞), but rather in

[Kp(1 − δ), Kp(1 − δ) + ξ/β]) where ξ is an upper bound to the expenditure at each

period.

Finally we note that if the time step tends to 0 then the discrete solution approaches

the solution to the equivalent continuous-time problem. We conjecture that the non-

autonomous iterative procedure of Eq. (16) would then converge to a non-autonomous

differential equation, which may or may not yield a known solution of the continuous-

time maximization problem of Eq. (1).

A Appendix

A.1 Proof of Proposition 1

The proofs up to Eq. (31) are elementary and omitted. Subsequent results hinge on the

fact that m∗ of (29) is the largest value of m in Eq. (27) for which Ḣ∗m(0) is negative.

Equation (21) shows that

Ḣ∗m(K)− Ḣ∗m−1(K) =
(1− δ)m−1π̇(K(1− δ)m−1)

(1 + r)m
> 0 (57)

which means that Ḣ∗m(K) increases with m. The cm’s (m > m∗) then also increase

with m. The cm’s converge to some c∞, the root of Ḣ∗∞(K) = 0. To show that c∞ is

strictly larger than K∗, it is enough to prove that Ḣ∗∞(K∗) > 0:

Ḣ∗∞(K∗) =
1

1 + r

q=∞∑
q=1

ρq−1π̇(K∗(1− δ)q)− β (58)

>
π̇(K∗)

1 + r

q=∞∑
q=1

ρq−1 − β (59)

=
π̇(K∗)

r + δ
− β = 0 (60)
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where (59) comes from the fact that π̇(K∗) is smaller than π̇(K∗(1−δ)q) and (60) from

the definition of K∗ (Eq. (28)). The integer p∗ defined in Eq. (28) is then the index of

the last cm no larger than K∗.

Differentiating both sides of Eq. (19) for m ≥ 2 yields

Ḣ∗m+1(K) = J̇∗(K) + ρḢ∗m(K(1− δ)). (61)

Substituting cm/(1− δ) for K in this equation yields for any m > m∗:

Ḣ∗m+1(cm/(1− δ)) = J̇∗(cm/(1− δ)) + ρḢ∗m(cm)

= J̇∗(cm/(1− δ)) (62)

since Ḣ∗m(cm) = 0. We know that if cm/(1−δ) < K∗ then J̇∗(cm/(1−δ)) > 0. Equation

(62) shows that Ḣ∗m+1(cm/(1 − δ)) is then also positive and therefore cm+1 (the value

at which Ḣ∗m+1 = 0) is necessarily larger than cm/(1− δ).

Equation (61) used with m = p∗ and K = cp∗+1 yields

Ḣ∗p∗+1(cp∗+1) = J̇∗(cp∗+1) + ρḢ∗p∗(cp∗+1(1− δ)) = 0. (63)

The fact that J̇∗(cp∗+1) < 0 means that Ḣ∗p∗(cp∗+1(1− δ)) > 0 and therefore

K∗ < cp∗+1 <
cp∗

(1− δ)
(64)

which completes the proof of (33). (The separate inequalities in the braces of (33)

reflect the fact that the value of
cp∗

1− δ
relatively to cp∗+2 and to c∞ is uncertain (but

unimportant)).
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A.2 Proof of Proposition 2

We will prove P1 and P2 by finite induction. The results are true at the order m = 1

because H1(K) = H∗1 (K) for all K.

Proof of P1. We assume P1 is true for an m ≤ p∗ − 1. To prove the result at the

order m+ 1 we express Hm+1(K) for K ≥ cm/(1− δ). In this case we have (with “IH”

standing for induction hypothesis):

Hm+1(K) = J∗(K) +

max
K′≥K(1−δ)

Hm(K ′)

1 + r
(definition) (65)

= J∗(K) +

max
K′≥K(1−δ)

H∗m(K ′)

1 + r
(IH P1; cm ≥ cm−1/(1− δ)) (66)

= J∗(K) +
H∗m(K(1− δ))

1 + r
(H∗m max at cm) (67)

= H∗m+1(K) (definition (19)) (68)

which proves P1 at the order m+ 1 and up to p∗. This means that for any m ≤ p∗ − 1

the function Hm+1 increases in [cm/(1− δ), cm+1] and decreases in [cm+1,+∞).

Proof of P2. We assume P2 is true for an m ≤ p∗ − 1. Given that P1 is proven we

only need to show that Hm+1 increases in [0, cm/(1− δ)). In this interval we have

Hm+1(K) = J∗(K) +

max
K′≥K(1−δ)

Hm(K ′)

1 + r
(definition) (69)

= J∗(K) +
Hm(cm)

1 + r
(IH P2). (70)

Equation (70) shows that up to an additive constant the functions Hm+1 and J∗

coincide on [0, cm/(1 − δ)). The fact that cm/(1 − δ) < K∗ and that J∗ is increasing

on [0, K∗] means that Hm+1 is also increasing on [0, cm/(1− δ)), which completes the

proof of P2.

We first prove P3 at the order m = p∗ + 1. For K ≤ cp∗/(1 − δ) we then have, as

20



in Eqs. (69)-(70):

Hp∗+1(K) = J∗(K) +

max
K′≥K(1−δ)

Hp∗(K
′)

1 + r
(definition) (71)

= J∗(K) +
H∗p∗(cp∗)

1 + r
(cp∗ ≥ cp∗−1/(1− δ)). (72)

The fact that K∗ < cp∗/(1 − δ) means that Hp∗+1(K) reaches a maximum at K∗ and

then decreases on [K∗, cp∗/(1− δ)). For K > cp∗/(1− δ) we have, as in Eq. (68):

Hp∗+1(K) = J∗(K) +

max
K′≥K(1−δ)

Hp∗(K
′)

1 + r
(definition) (73)

= J∗(K) +
H∗p∗(K(1− δ))

1 + r
(cp∗ ≥ cp∗−1/(1− δ)) (74)

= H∗p∗+1(K) (75)

which decreases on [cp∗/(1 − δ),∞) because cp∗+1 < cp∗/(1 − δ). This proves that

Hp∗+1(K) increases on [0, K∗] and decreases on (K∗,∞). An immediate induction

carries the result over to Hm for any m ≥ p∗ + 1.

A.3 Proof of Proposition 3

The results are direct consequences of the definition of Gk−1 in (35) and of the inequal-

ities of (33) recalled below with the redefined cm’s:

0 = c1 = c2 = . . . = cm∗

< cm∗+1 <
cm∗+1

1− δ
< cm∗+2 <

cm∗+2

1− δ
. . . <

cp∗−1

1− δ
< cp∗ ≤ K∗

= cp∗+1


<

cp∗

1− δ
.

= cp∗+2 = cp∗+2 . . . .

(76)

The expression for K1 = Gk−1(K0) of Eq. (40) reflects the definition of Gk−1. Given
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that

K1(1− δ) ≥ ck−1(1− δ) ≥ ck−2 (77)

we have

K2 = Gk−2(K1) = K1(1− δ) (78)

which proves Eq. (41) for m = 2. The proof proceeds in a similar fashion for m’s up

to k − 1.

To prove (42) we note that

1 ≤ m ≤ w ⇒ k −m ≥ p∗ + 1⇒ Km = Gk−m(Km−1) = K∗ (79)

since K0(1− δ) < K∗ and K∗ is the fixed point of each Gk−m. We next have

Kw+1 = Gk−w−1(Kw) = Gp∗(K
∗) = cp∗ (80)

because from (76) we know that K∗(1− δ) < cp∗ . This proves Eq. (43).

We have

Kw+2 = Gk−w−2(Kw+1) = Gp∗−1(cp∗) = cp∗(1− δ) (81)

where the last equality comes from the fact that cp∗(1 − δ) > cp∗−1. This proves Eq.

(44) for m = w + 2. A similar reasoning proves Eq. (44) for subsequent m’s to k − 1.

To prove Eq. (45) we recall that cm = K∗ for m ≥ p∗ + 1 and therefore

ck−1 = K∗ ⇒ K1 = Gk−1(K0) = K0(1− δ) ∈ Ij−1 (82)

ck−2 = K∗ ⇒ K2 = Gk−2(K1) = K1(1− δ) ∈ Ij−2 (83)
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continuing up to

cp∗+2 = K∗ ⇒ Kw−1 = Gp∗+2(Kw−2) = Kw−2(1− δ) ∈ Ij−w+1, (84)

cp∗+1 = K∗ ⇒ Kw = Gp∗+1(Kw−1) = Kw−1(1− δ) ∈ Ij−w, (85)

cp∗ ≤ Kw(1− δ)⇒ Kw+1 = Gp∗(Kw) = Kw(1− δ) ∈ Ij−w−1. (86)

The last p∗ − 1 Km’s are also sticky because when m ≥ w + 2 then for every iteration

Km = Gk−m(Km−1) the quantity Km−1(1 − δ) is larger than the value ck−m at which

Hk−m reaches its maximum.

To prove (46) we note that k − 1 > j + p∗ and therefore

ck−1 = K∗ ⇒ K1 = Gk−1(K0) = K0(1− δ) ∈ Ij−1 (87)

ck−2 = K∗ ⇒ K2 = Gk−2(K1) = K1(1− δ)2 ∈ Ij−2 (88)

up to

ck−j−1 = K∗ ⇒ Kj−1 = Gk−j+1(Kj−2) = K0(1− δ)j−1 ∈ I1, (89)

ck−j = K∗ ⇒ Kj = Gk−j(Kj−1) = K0(1− δ)j (90)

where Kj of Eq. (90) is in the interval [K∗, K∗/(1− δ)). When w− j > 0 the fact that

ck−j−r = K∗ for 1 ≤ r ≤ w − j means that

Kj+1 = Gk−j−1(Kj) = K∗ (91)

Kj+2 = Gk−j−2(Kj+1) = K∗ (92)

. . .

Kw = Gk−w(Kw−1) = K∗ (93)

which proves Eq. (47) when w − j > 0. Equations (48)-(49) are proven in the same

way Eqs. (43)-(44) were.
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Figure 1: Optimal Km’s in (w, j) state space. In case C1, with a short time horizon
(w ≤ 0) and K0 ≥ ck−1/(1 − δ), all Km’s are sticky (upper diagram on left side). If
K0 < ck−1/(1 − δ) (which implies j = 0) then the first optimal capital K1 is ck−1

and subsequent ones are left to decay. In the figure (lower diagram on left side) this
means a first period increase to ck−1 because K0 < ck−1. If ck−1 < K0 < ck−1/(1 − δ)
there would be a first period “non-sticky” decrease to ck−1 with subsequent optimal
capitals left to decay. In case C2a (long time horizon (w > 0) with an initial capital
K0 ∈ I0, (j = 0), the first optimal capital K1 jumps to K∗ where the capital remains w
periods before decaying. In Case C2b (long time horizon (w > 0) with an initial capital
K0 ∈ Ij, (j ≥ 1), the capital is left to decay a number of periods that depends on how
large K0 is: if w < j (above the first diagonal) then the capital decays during the full
k − 1 periods. If w ≥ j (below the first diagonal) then the capital decays during the
first j periods; it stays at the value K∗ for w − j periods; it then transits one period
at the value cp∗ and decays over the last p∗ − 1 periods.
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Figure 2: Low initial capital K0 (K0 = 3 < K∗). Panels a1 and b1 represent the
Km’s and corresponding zm’s for a long time horizon k = 8 (w > 0). The optimal
capital K1 at the first period is equal the stationary value K∗ (Panel a1). Optimal
Km’s remain at K∗ for w = 4 periods (Eq. (42)). After one period at the value cp∗ (Eq.
(43)) the optimal values are left to decay with no more expenditures: the last three
zm’s are 0 (Figure b1). Panels a2 and b2 are for a short time horizon k = 3 (w < 0).
The first optimal capital K1 is equal to ck−1 = c2 (Figure a2). Subsequent values are
left to decay (Eqs. (40)-(41)): there was an expenditure only during the first period
(Panel b2).
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Figure 3: High initial K0 (K0 = 13 > K∗). Panels a1 and b1 represent the Km’s and
corresponding zm’s for a long time horizon k = 8 (w > 0). The initial values Km (here
only K1) decay with no expenditures until they reach the stationary value K∗ (Panel
a1, Eq. (46)). Optimal Km’s remain at K∗ for w− j = 3 periods (Eq. (47)). After one
period at the value cp∗ (Eq. (48)) the optimal values are left to decay with no more
expenditures: the last three zm’s are 0 (Panel b1). Panels a2 and b2 are for a short
time horizon k = 3 (w = −1 ≤ 0). The capital is left to decay (Eqs. (40)-(41)) with
no expenditure (Panel b2).
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