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We use the optimality principle of dynamic programming to formulate a discrete version of the Nerlove-Arrow maximization problem. When the payoff function is concave we derive an explicit solution to the problem. If the time horizon is long enough there is a "transiently stationary" (turnpike) value for the optimal capital after which the capital must decay as the end of the time horizon approaches. If the time horizon is short the capital is left to decay after a first-period increase or decrease depending on the capital's initial value. Results are illustrated with the payoff function µK λ where K is the capital and 0 < λ < 1, µ > 0. With this function, the solution is in closed form.

Introduction

In their seminal paper [START_REF] Nerlove | Optimal Advertising policy under dynamic conditions[END_REF] describe the eponymous model which tackles a firm's search for the stream of advertising expenditure used to purchase the "goodwill" that will maximize the present value profit. The problem's generality is remarkable. Indeed, it rapidly became clear that goodwill can just as well be human capital of some sorts [START_REF] Becker | Investment in Human Capital: A Theoretical Analysis[END_REF], health capital [START_REF] Grossman | On the Concept of Health Capital and the Demand for Health[END_REF], or a stock of durable goods leased to others [START_REF] Weber | Infinite-horizon optimal advertising in a market for durable goods[END_REF]. The "profit" in those cases is an individual's earnings, a population's well-being or rents collected. (See [START_REF] Kamien | Dynamic Optimization -The Calculus of Variations and Optimal Control in Economics and Management[END_REF], Sethi (1977) and [START_REF] Feichtinger | Dynamical optimal control models in advertising: Recent developments[END_REF] for reviews; also De Souza and Yoneyama (1991) for an application in public health). In a general framework we will thus refer to a stock K of some unspecified capital instead of goodwill, and to a payoff function π(K) instead of a profit function.

The model has been extended not just to diverse application areas, but also to account for stochastic effects [START_REF] Raman | Boundary value problems in stochastic optimal control of advertising[END_REF], budgetary constraints (Sethi, 1977), or both [START_REF] Marinelli | The stochastic goodwill problem[END_REF]. Further extensions entail interactions between several firms (see [START_REF] Karray | Effectiveness of coop advertising programs in competitive distribution channels[END_REF], [START_REF] Rubel | A differential game of a dual distribution channel[END_REF], [START_REF] Doraszelski | Advertising Dynamics and Competitive Advantage[END_REF], [START_REF] Grosset | Optimal dynamic advertising with an adverse exogenous effect on brand goodwill[END_REF] for recent papers on this topic).

One aspect of the solution that has attracted considerable attention is the so-called "turnpike" [START_REF] Mckenzie | Turnpike theory[END_REF][START_REF] Mckenzie | A primal route to the turnpike and Liapounov stability[END_REF]. This imaginative terminology graphically captures a common characteristic of the solution when the time horizon is long enough. Indeed, in this case the payoff is maximized by bringing the capital to a "transiently stationary" value (the turnpike) where it must stay a certain duration before decaying as the end of the time horizon approaches.

The Nerlove-Arrow problem is a difficult one, usually formulated in continuous time, and solved using advanced mathematical techniques from the calculus of variation and from optimal control, both deterministic and stochastic [START_REF] Kamien | Dynamic Optimization -The Calculus of Variations and Optimal Control in Economics and Management[END_REF].

However, explicit solutions are rarely forthcoming. Insights are often provided in terms of "necessary conditions". Alternatively, numerical methods are used which usually amount to a discretization of the problem.

Here we will formulate the original Nerlove-Arrow problem in a discrete framework, then solve it explicitly. The solution will shed light, in particular, on conditions for the existence of a turnpike.

Section 2 describes the discretized form of the problem. The optimality principle of dynamic programming gives rise to a simple non-autonomous iterative procedure that yields the optimal solution for any payoff function. Section 3 moves the algorithm further when the payoff function is concave. In this case the operators {G m } used in the iterative procedure are extremely simple functions determined by a finite sequence {c m } that is calculated explicitly on the basis of the model's specifications (payoff function, discount rate, unit price of capital and depreciation rate). Section 4, in the mostly self-contained Proposition 3, translates the iterative procedure into explicit expressions for the solution. Section 5 illustrates the results with the profit function µK λ for which the solution is in closed form. Section 6 wraps things up with a brief discussion and concluding remarks.

2 Discretized Nerlove-Arrow model

Discretization

We let K be the capital and π(K) be the payoff function. The continuous-time Nerlove-Arrow dynamic optimization model aims to find the expenditure z on capital that maximizes the present-value payoff over a time horizon (0, T ). With K and z being function of time t, the maximized payoff is

W (T ) def. = max z T 0 e -rt (π(K) -z)dt (1) with z = β( K + Kδ) (2)
where r is the discount rate; β is the unit price of capital and δ is the rate at which capital depreciates; K(0) is the initial value of K.

We now consider a time horizon of k discrete periods with an initial capital K 0 and

k -1 subsequent unknown values K 1 , K 2 , ..., K k-1 .
The discrete version of Eq. ( 2) yields the expenditures

z m = β(K m+1 -K m (1 -δ)), m = 0, 1, . . . , k -2, (3) 
or

K m+1 = K m (1 -δ) + z m /β. (4) 
The discrete version of the maximization problem in Eq. ( 1) is then

W k (K 0 ) = max z m=k-1 m=0 (π(K m ) -z m )(1 + r) -m . ( 5 
)
The last expenditure z k-1 must be equal to 0 since any positive z k-1 would lower π(K k-1 ) -z k-1 , the last term of the sum in Eq. ( 5). Therefore

W 1 (K 0 ) = π(K 0 ). (6)

Dynamic programming formulation

We use the optimality principle of dynamic programming to write Eq. ( 5) as

W k (K 0 ) = max z (π(K 0 ) -z 0 ) + (1 + r) -1 m=k-1 m=1 (π(K m ) -z m )(1 + r) -m+1 = max z 0 ≥0 (π(K 0 ) -z 0 ) + (1 + r) -1 W k-1 (K 0 (1 -δ) + z 0 /β) = π(K 0 ) + βK 0 (1 -δ) + max K 1 ≥K 0 (1-δ) (1 + r) -1 W k-1 (K 1 ) -βK 1 , (7) 
where we have formulated the maximization problem by seeking the optimal K m 's rather than the optimal z m 's.

Working backwards we then have, for p = 0, 1, . . . , k -2,

W k-p (K p ) = π(K p ) + βK p (1 -δ)+ max K p+1 ≥Kp(1-δ) (1 + r) -1 W k-p-1 (K p+1 ) -βK p+1 (8) 
and W 1 (K k-1 ) = π(K k-1 ). We divide both sides of Eq. ( 8) by 1 + r and then subtract βK p to obtain

W k-p (K p ) 1 + r -βK p = π(K p ) -βK p (δ + r) + max K p+1 ≥Kp(1-δ) {(1 + r) -1 W k-p-1 (K p+1 ) -βK p+1 } 1 + r . (9) 
The expression on the left-hand side and the one in the curly braces on the righthand side of Eq. ( 9) have the same form, at the orders k -p for the former and k -p-1 for the latter. In order to exploit this fact we first define the function

J * (K) def. = π(K) -βK(δ + r) 1 + r (10)
which up to the multiplicative constant 1 + r is the net profit function of Eq. ( 12) in [START_REF] Nerlove | Optimal Advertising policy under dynamic conditions[END_REF].

We define the sequence H m (K) (m = 1, 2, ...) of functions on the left-hand side of Eq. ( 9):

H 1 (K) def. = W 1 (K) 1 + r -βK = π(K) 1 + r -βK = J * (K) + βK(δ -1) 1 + r (11) 
and

H m (K) = J * (K) + 1 1 + r ×        βK(δ -1) if m = 1 max K ≥K(1-δ) H m-1 (K ) if m ≥ 2. ( 12 
)
For the moment we assume that a finite max exists in Eq. ( 12). With these notations Eq. ( 9) becomes

H k-p (K p ) = W k-p (K p ) 1 + r -βK p (13) = J * (K p ) + max K p+1 ≥Kp(1-δ) {H k-p-1 (K p+1 )} 1 + r (14) 
where the optimal K p+1 is the value of K p+1 at which the maximum is attained. When this maximum is attained at K p+1 = K p (1 -δ) we will say that K p+1 is "sticky" or that the capital is left to decay with none being purchased (z p = 0).

If we define

G m (K) def. = {K ; K maximizes H m , K ≥ K(1 -δ)} , (15) 
then Eq. ( 14) shows that for a given initial K 0 , the optimal K m 's are given by the non-autonomous iterative process (operators changing with each iteration):

K 1 = G k-1 (K 0 ), K 2 = G k-2 (K 1 ), . . . , K k-1 = G 1 (K k-2 ). ( 16 
)
The solution thus hinges on the knowledge of the functions H m of Eq. ( 12), which can be calculated numerically, but at a considerable computational cost. Indeed, cal-culating H m (K) requires the composition of m functions, each with a maximum that usually has to be found numerically.

The solution given here will rest on the idea that we only need to know the value(s) at which each H m reaches a maximum. The problem is made simpler when H m has a single maximum, as will be the case when the payoff function is concave.

3 Assumptions and preliminary results

Assumptions

For the remainder of the paper the payoff function π is assumed to be differentiable and concave with π(0) = 0. The derivative π then decreases while remaining non-negative.

It must therefore converge to a limit d ≥ 0 when K → ∞.

Given the derivative

J * (K)= π(K) -β(δ + r) 1 + r (17) 
of J * we next dispose of two trivial cases: β either small or large. Equation (17) shows that if β < d r+δ then J * (K) has a positive lower bound. Therefore J * (K) tends to ∞ for K → ∞ and the problem does not have a bounded solution.

If π(0) r+δ < β then Eq. ( 17) shows that J * (K) < 0 for all K. The second term on the right-hand side of Eq. ( 12) is a non-increasing function of K and therefore H m is decreasing on [0, ∞). All optimal K m 's are therefore sticky:

K m = K 0 (1 -δ) m , m = 1, 2, . . . , k -1.
To avoid trivialities we assume for the remainder of the paper that

d r + δ < β < π(0) r + δ . ( 18 
)
In a later section we will illustrate the results with the concave function π(K) = µK λ (0 < λ < 1) for which d = 0 and π(0) = ∞. The problem will therefore be non-trivial for any β > 0.

The max in Eq. ( 12) complicates the definition of the H m 's. However the iterative procedure of ( 16) requires only the values at which the H m 's reach a maximum. We will produce a sequence of functions {H * m }, closely related to the H m 's, with each H * m reaching a single maximum at some tractable c m (with non-decreasing c m 's). We will

show that each H * m coincides with H m on [c m-1 /(1-δ), ∞) and that c m > c m-1 /(1-δ).
The functions H m and H * m therefore reach a maximum at the same value c m .

Each derivative Ḣ * m will be a decreasing function which makes the calculation of c m , the zero of Ḣ * m , a simple numerical matter. For some payoff functions, such as

π(K) = µK λ , the c m 's have a closed-form expression.

The functions {H

* m } m=1,2,...
We define

H * m (K) def. = J * (K) + 1 1 + r ×        βK(δ -1) if m = 1 H * m-1 (K(1 -δ)) if m ≥ 2. ( 19 
)
The functions H * 1 (K) and H 1 (K) of Eq. ( 12) are identical. For m ≥ 2 the one difference is that the max of H m-1 (K ) is replaced by

H * m-1 (K ) at K = K(1 -δ) (as
if the max were always attained at K(1 -δ), i.e. all K m 's were sticky).

It is easy to see that

H * m (K) = q=m q=1 π(K(1 -δ) q-1 ) (1 + r) q -βK, m = 1, 2, . . . ( 20 
)
The derivatives of these function are

Ḣ * m (K) = q=m q=1 (1 -δ) q-1 π(K(1 -δ) q-1 ) (1 + r) q -β (21) = 1 1 + r q=m q=1 ρ q-1 π(K(1 -δ) q-1 ) -β, (22) 
where

ρ def. = 1 -δ 1 + r < 1. ( 23 
)
Because π is bounded and ρ < 1, the sequence of derivatives Ḣ *

m converges to a limit Ḣ * ∞ (K) for m → ∞: Ḣ * ∞ (K) def. = lim m→∞ Ḣ * m (K) = 1 1 + r q=∞ q=1 ρ q-1 π(K(1 -δ) q-1 ) -β. ( 24 
)
Because π is decreasing, each derivative Ḣ * m is also a decreasing function with a value at 0 equal to:

Ḣ * m (0) = 1 1 + r q=m q=1 ρ q-1 π(0) -β (25) = π(0)(1 -ρ m ) (1 + r)(1 -ρ) -β (26) = π(0)(1 -ρ m ) δ + r -β, m = 1, 2, . . . (27) 
We next investigate when the derivatives go from being positive to negative, i.e.

circumstances under which H * m reaches a maximum.

Theoretical results on the H * m 's

The following proposition provides results on the behavior of the derivatives Ḣ * m .

Proposition 1. We assume that (18) holds. The derivative J * is a decreasing function that is positive at 0 and reaches 0 at K * , the root of

J * (K * ) = 0 = π(K * ) -β(δ + r) 1 + r . ( 28 
)
We define

m * def. =     ln 1 - β(r + δ) π(0) ln(ρ)     ≥ 0, (29)
where [•] is the integer part function.

If m * ≥ 1 then for any m ≤ m * the derivative Ḣ * m is non-positive at K = 0 and decreases on [0, ∞). This means that if we define

c m def. = inf K > 0; Ḣ * m (K) < 0 (30) then c m = 0 for m ≤ m * .
For any m > m * then Ḣ * m (K) is positive for K = 0 and drops below 0 at c m > 0 which is now the root of

Ḣ * m (c m ) = 1 1 + r q=m q=1 ρ q-1 π(c m (1 -δ) q-1 ) -β = 0. ( 31 
)
The c m 's increase for m → ∞ and reach a limit c ∞ which is the root of Ḣ * ∞ (K) = 0 and is strictly larger than K * , the root of J * (K) = 0. We can then define

p * def. = max {m; c m ≤ K * } (32)
and we have

0 = c 1 = c 2 = . . . = c m * < c m * +1 < c m * +1 1 -δ < c m * +2 < c m * +2 1 -δ . . . < c p * -1 1 -δ < c p * ≤ K * < c p * +1 <        c p * 1 -δ . c p * +2 < . . . < c ∞ . (33) 
Proof. See Appendix A.1.

The next proposition provides the required result on the maximum of each H m .

Proposition 2. When (18) holds then for m = 1, 2, . . . , p * we have:

• P 1 : H m (K) = H * m (K) for K ≥ c m-1 /(1 -δ) (c -1 ≡ 0).
• P 2 : The functions H m increase on [0, c m ] and decrease on (c m , ∞).

We also have

• P 3 : For m ≥ p * +1
the functions H m increase on [0, K * ] and decrease on (K * , ∞).

Proof. See Appendix A.2.

We now provide the explicit solutions to the discretized Nerlove-Arrow problem.

Main result

Proposition 2 states that each function H m (m = 1, 2, . . . , p * ) has a unique maximum at c m . We redefine the subsequent c m 's (m ≥ p * + 1) as being all equal to K * , rather than to the maximum of each H * m . In this way H m has a unique maximum at

c m re-def. =        c m for m = 1, 2, . . . , p * K * for m ≥ p * + 1. ( 34 
)
The functions G m of Eq. ( 15) are

G m (K) =        K(1 -δ) if K > c m /(1 -δ) c m otherwise (35)
where each G m has the unique fixed point

c m = G m (c m ).
To simplify the presentation of the results we define the following partition of the positive axis:

I 0 def. = 0, K * 1 -δ ; I m def. = K * (1 -δ) m , K * (1 -δ) m+1 , m = 1, 2, . . . . (36) 
The next result uses the index j of the interval I j that contains the initial K 0 to formulate the explicit solutions.

Proposition 3. We consider the discrete Nerlove-Arrow model of (5) with a concave payoff function π(K) whose derivative converges to d ≥ 0 for K → ∞. We assume that the unit price β of capital satisfies

d r + δ < β < π(0) r + δ . ( 37 
)
The time horizon is k and the initial stock is K 0 belonging to some I j . The integer p * is the largest integer m for which the root of Ḣ * m (K) = 0 is no larger than K * , the root of (28). We also recall the c m 's redefined in (34).

The optimal values K 1 , K 2 , . . . , K k-1 are obtained through the following iteration:

K m = G k-m (K m-1 ), m = 1, 2, . . . , k -1, ( 38 
)
where the G m 's are given by Eq. ( 35).

If we define w def.

= k -1 -p * (39)

we will say that the time horizon k is "short" (or "long") when w ≤ 0 (or w > 0).

Explicit expressions for the K m 's are obtained by considering two cases which depend on the value of w (Figure 1).

Case C1: w ≤ 0, i.e. "short time horizon". The optimal values are

K 1 =        K 0 (1 -δ) if K 0 ≥ c k-1 /(1 -δ) c k-1 if K 0 < c k-1 /(1 -δ) (40) 
and

K m = K 1 (1 -δ) m-1 , m = 2, 3, . . . , k -1. ( 41 
)
Case C2: w > 0, i.e. "long time horizon". We distinguish between two subcases, depending on the interval I j that contains K 0 .

1. Subcase C2a: K 0 ∈ I 0 , i.e. "low K 0 ". The first w K m 's are equal to the "transiently stationary" (turnpike) value K * :

K 1 = K 2 = . . . = K w = K * . ( 42 
)
Then

K w+1 = c p * (43)
with the last p * -1 K m 's being sticky ("exit period" of duration p * -1):

K m = c p * (1 -δ) m-w-1 , m = w + 2, w + 3, . . . , k -1. ( 44 
)
2. Subcase C2b. K 0 ∈ I j , j ≥ 1, i.e. "high K 0 ". If w < j then all K m 's are sticky:

K m = K 0 (1 -δ) m , m = 1, 2, . . . , k -1. ( 45 
)
If w ≥ j then only the first j K m 's are sticky

K m = K 0 (1 -δ) m , m = 1, 2, . . . , j. (46) 
When w > j the next w -j K m 's are equal to K * :

K m = K * , m = j + 1, j + 2, . . . , w. (47) 
Whether w = j or not we have

K w+1 = c p * , (48) 
with the last p * -1 K m 's being sticky (exit period):

K m = c p * (1 -δ) m-w-1 , m = w + 2, w + 3, . . . , k -1. ( 49 
)
Proof. See Appendix A.3.

The optimal expenditures z m are obtained through Eq. (3). In particular the "transiently stationary" expenditure z * corresponds to K * and is

z * = β(K * -K * (1 -δ)) = βδK * . ( 50 
)
The maximized present-value payoff W k (K 0 ) is given in Eq. ( 5).

The solution as described in Eqs. ( 40)-( 49) is consistent with what is known in the continuous framework (existence of a turnpike, etc). The fact that the solution depends on the time horizon is reflected in the iteration

K m = G k-m (K m-1 ) which
shows that each K m is a function of K m-1 that depends on the remaining duration k -m.

The results quantify precisely the fact that for a long enough time horizon the capital is brought down or up as quickly as possible to the transiently stationary value K * . The capital is left to decay with no more expenditures as the end of the time horizon approaches.

For a short time horizon k and an initial value K 0 larger than c k-1 /(1 -δ) the capital is left to decay. For an initial value smaller than c k-1 /(1 -δ) the optimal capital jumps up to

K 1 = c k-1 if K 0 < c k-1 and jumps down to the same K 1 = c k-1 if c k-1 < K 0 < c k-1 /(1 -δ).
After this first period the capital is left to decay.

Proposition 3 shows that for a given time horizon k each optimal K m is either sticky or one of three numbers: c k-1 , c p * or K * which are simple to calculate numerically. In the example given below, they are in closed form.

Application

Concave payoff function

We consider the payoff function

π(K) = µK λ , 0 < λ < 1, µ > 0 (51)
which is concave. The derivative π(K) = λµK λ-1 tends to d = 0 for K → ∞. The fact that d = 0 and π(0) = ∞ means that (37) holds for any positive β.

All quantities of interest can be expressed in closed form. Indeed, the stationary value K * of Eq. ( 28) is

K * = β(δ + r) µλ 1 λ -1 . (52) 
The integer p * of Eq. ( 32) is

p * =     ln δ -1 + (1 -δ) λ δ + r ln (1 -δ) λ 1 + r     (53) 
with [•] the integer part function. For m ≤ p * , each c m of Eq. ( 31) is

c m =      β(1 + r) 1 - (1 -δ) λ 1 + r µλ 1 - (1 -δ) λ 1 + r m      1 λ -1 . ( 54 
)
The solutions plotted in Figure 2 

Suboptimality analysis

In order to verify our results we perturbed the optimal z m 's and checked that the resulting payoff is indeed smaller than the optimal one. We did this with the example above (K 0 = 3, k = 8) by increasing every optimal z m to 130% of its optimal value.

The resulting payoff was 99.1 % of the optimal one. A decrease to 70 % of optimal values results in a payoff that is 98.8 % of the optimal one. When each optimal z m was independently and randomly taken between 70 % and 130 % of its optimal value (uniform distribution), the resulting payoff was basically never less than 99 % of the optimal one. A "suboptimality sensitivity analysis" is beyond the scope of this paper, but these results suggest that at least in some cases the payoff is quite insensitive to departures from optimality.

Sensitivity analysis

Substantive insights are gained from explicit solutions. For example the effect of the depreciation rate δ on p * of Eq. ( 53) sheds light on the durations of the transiently stationary period and of the exit period (during which the optimal stock decays at the rate δ). When δ increases from 0.0 to 1.0, then Eq. ( 53) shows that p * -1 drops from +∞ to 0. This means that for a fixed k and a δ sufficiently small then p * ≈ +∞ and the integer w = k -p * -1 is negative. We are in Case C1 with all K m 's sticky except possibly K 1 depending on the initial capital K 0 . This result has a substantive economic interpretation. Indeed, when the depreciation rate δ is small enough then the payoff is maximized with a single expenditure at the first period if K 0 is smaller

than c k-1 /(1 -δ). The payoff is maximized without any expenditure if K 0 is larger than c k-1 /(1 -δ).
With δ back at 0.3 and an interest rate r that increases from 0 to +∞, the duration p * -1 of the exit period drops from 3 to 0. For a fixed k the integer w = k-p * -1 is thus an increasing function of δ with consequences that can be explored with Proposition 3.

Concave to linear payoff function

We recover the case of a linear payoff function by letting λ of ( 51) tend to 1. Then p * of Eq. ( 53) tends to +∞ and with w ≤ 0 we are in Case C1. If µ < β(δ + r) then K * of Eq. ( 52) and the c m 's of Eq. ( 54) approach 0 when λ → 1. This means all optimal K m 's are sticky: the unit cost β of capital is too high relatively to the marginal profit µ and the optimal strategy is to let capital decay with no new purchase.

If µ > β(δ+r) then K * of Eq. ( 52) and the c m 's of Eq. ( 54) tend to +∞ when λ → 1.

A careful application of Proposition 3 in the Case C1 shows that K 1 = c k-1 → +∞ with other K m 's being sticky. The optimal overall payoff W k (K 0 ) is therefore unbounded when λ → 1 (because the unit cost β is low enough). This trivial result can be derived from first principles by considering the iteration of ( 16) combined with the fact that J * of Eq. ( 10) is itself linear when π is the linear function π(K) = µK.

Discussion

The derivatives Ḣ * m in Eq. ( 22) were decreasing only because every π(K(1 -δ) q-1 ) was decreasing, which hinged crucially on π being concave. However not all payoff functions are concave. It is no doubt possible to extend the results to a function that is concave only beyond some K + by restricting the initial K 0 to be larger than a minimum to be determined. It is unclear to what extent the approach used here could be generalized to other payoff functions.

Another extension is to include a budgetary constraint, as in Sethi (1977). Con-straining the model by imposing a maximum total expenditure is a difficult problem.

Having a maximum expenditure at each period can however be incorporated into Eq. ( 14). We do this by seeking an optimal K p+1 not in [K p (1 -δ), ∞), but rather in

[K p (1 -δ), K p (1 -δ) + ξ/β])
where ξ is an upper bound to the expenditure at each period.

Finally we note that if the time step tends to 0 then the discrete solution approaches the solution to the equivalent continuous-time problem. We conjecture that the nonautonomous iterative procedure of Eq. ( 16) would then converge to a non-autonomous differential equation, which may or may not yield a known solution of the continuoustime maximization problem of Eq. (1).

A Appendix

A.1 Proof of Proposition 1

The proofs up to Eq. ( 31) are elementary and omitted. Subsequent results hinge on the fact that m * of ( 29) is the largest value of m in Eq. ( 27) for which Ḣ * m (0) is negative.

Equation (21) shows that Ḣ * m (K) -Ḣ * m-1 (K) = (1 -δ) m-1 π(K(1 -δ) m-1 ) (1 + r) m > 0 (57) which means that Ḣ * m (K) increases with m. The c m 's (m > m * ) then also increase with m. The c m 's converge to some c ∞ , the root of Ḣ * ∞ (K) = 0. To show that c ∞ is strictly larger than K * , it is enough to prove that Ḣ * ∞ (K * ) > 0: Ḣ * ∞ (K * ) = 1 1 + r q=∞ q=1 ρ q-1 π(K * (1 -δ) q ) -β (58) > π(K * ) 1 + r q=∞ q=1 ρ q-1 -β (59) = π(K * ) r + δ -β = 0 (60) 
where ( 59) comes from the fact that π(K * ) is smaller than π(K * (1 -δ) q ) and ( 60) from the definition of K * (Eq. ( 28)). The integer p * defined in Eq. ( 28) is then the index of the last c m no larger than K * .

Differentiating both sides of Eq. ( 19) for m ≥ 2 yields

Ḣ * m+1 (K) = J * (K) + ρ Ḣ * m (K(1 -δ)). (61) 
Substituting c m /(1 -δ) for K in this equation yields for any m > m * : The fact that J * (c p * +1 ) < 0 means that Ḣ * p * (c p * +1 (1 -δ)) > 0 and therefore

Ḣ * m+1 (c m /(1 -δ)) = J * (c m /(1 -δ)) + ρ Ḣ * m (c m ) = J * (c m /(1 -δ)) (62) since Ḣ * m (c m ) = 0. We know that if c m /(1-δ) < K * then J * (c m /(1-δ)) > 0. Equation (62) shows that Ḣ * m+1 (c m /(1 -δ)) is
K * < c p * +1 < c p * (1 -δ) (64)
which completes the proof of ( 33). (The separate inequalities in the braces of (33) reflect the fact that the value of c p * 1 -δ relatively to c p * +2 and to c ∞ is uncertain (but unimportant)).

A.2 Proof of Proposition 2

We will prove P 1 and P 2 by finite induction. The results are true at the order m = 1 because H 1 (K) = H * 1 (K) for all K.

Proof of P 1 . We assume P 1 is true for an m ≤ p * -1. To prove the result at the order m + 1 we express H m+1 (K) for K ≥ c m /(1 -δ). In this case we have (with "IH" standing for induction hypothesis):

H m+1 (K) = J * (K) + max K ≥K(1-δ) H m (K ) 1 + r (definition) (65) = J * (K) + max K ≥K(1-δ) H * m (K ) 1 + r (IH P 1 ; c m ≥ c m-1 /(1 -δ)) (66) = J * (K) + H * m (K(1 -δ)) 1 + r (H * m max at c m ) (67) = H * m+1 (K) (definition (19)) (68) 
which proves P 1 at the order m + 1 and up to p * . This means that for any m ≤ p * -1 the function H m+1 increases in [c m /(1 -δ), c m+1 ] and decreases in [c m+1 , +∞).

Proof of P 2 . We assume P 2 is true for an m ≤ p * -1. Given that P 1 is proven we only need to show that H m+1 increases in [0, c m /(1 -δ)). In this interval we have

H m+1 (K) = J * (K) + max K ≥K(1-δ) H m (K ) 1 + r (definition) (69) = J * (K) + H m (c m ) 1 + r (IH P 2 ). (70) 
Equation ( 70) shows that up to an additive constant the functions H m+1 and J * coincide on [0, c m /(1 -δ)). The fact that c m /(1 -δ) < K * and that J * is increasing on [0, K * ] means that H m+1 is also increasing on [0, c m /(1 -δ)), which completes the proof of P 2 .

We first prove P 3 at the order m = p * + 1. For K ≤ c p * /(1 -δ) we then have, as in Eqs. ( 69)-( 70):

H p * +1 (K) = J * (K) + max K ≥K(1-δ) H p * (K ) 1 + r (definition) (71) = J * (K) + H * p * (c p * ) 1 + r (c p * ≥ c p * -1 /(1 -δ)). (72) 
The fact that K * < c p * /(1 -δ) means that H p * +1 (K) reaches a maximum at K * and then decreases on [K * , c p * /(1 -δ)). For K > c p * /(1 -δ) we have, as in Eq. ( 68):

H p * +1 (K) = J * (K) + max K ≥K(1-δ) H p * (K ) 1 + r (definition) (73) = J * (K) + H * p * (K(1 -δ)) 1 + r (c p * ≥ c p * -1 /(1 -δ)) (74) = H * p * +1 (K) (75) which decreases on [c p * /(1 -δ), ∞) because c p * +1 < c p * /(1 -δ).
This proves that H p * +1 (K) increases on [0, K * ] and decreases on (K * , ∞). An immediate induction carries the result over to H m for any m ≥ p * + 1.

A.3 Proof of Proposition 3

The results are direct consequences of the definition of G k-1 in (35) and of the inequalities of (33) recalled below with the redefined c m 's:

0 = c 1 = c 2 = . . . = c m * < c m * +1 < c m * +1 1 -δ < c m * +2 < c m * +2 1 -δ . . . < c p * -1 1 -δ < c p * ≤ K * = c p * +1        < c p * 1 -δ . = c p * +2 = c p * +2 . . . . (76) 
The expression for

K 1 = G k-1 (K 0 ) of Eq. (40) reflects the definition of G k-1 . Given that K 1 (1 -δ) ≥ c k-1 (1 -δ) ≥ c k-2 (77) 
we have

K 2 = G k-2 (K 1 ) = K 1 (1 -δ) (78) 
which proves Eq. ( 41) for m = 2. The proof proceeds in a similar fashion for m's up to k -1.

To prove (42) we note that

1 ≤ m ≤ w ⇒ k -m ≥ p * + 1 ⇒ K m = G k-m (K m-1 ) = K * (79) since K 0 (1 -δ) < K * and K * is the fixed point of each G k-m . We next have K w+1 = G k-w-1 (K w ) = G p * (K * ) = c p * (80) 
because from (76) we know that K * (1 -δ) < c p * . This proves Eq. ( 43).

We have

K w+2 = G k-w-2 (K w+1 ) = G p * -1 (c p * ) = c p * (1 -δ) (81) 
where the last equality comes from the fact that c p * (1 -δ) > c p * -1 . This proves Eq.

(44) for m = w + 2. A similar reasoning proves Eq. ( 44) for subsequent m's to k -1.

To prove Eq. ( 45) we recall that c m = K * for m ≥ p * + 1 and therefore 

c k-1 = K * ⇒ K 1 = G k-1 (K 0 ) = K 0 (1 -δ) ∈ I j-1 (82) c k-2 = K * ⇒ K 2 = G k-2 (K 1 ) = K 1 (1 -δ) ∈ I j-2 ( 
c k-1 because K 0 < c k-1 . If c k-1 < K 0 < c k-1 /(1 -δ)
there would be a first period "non-sticky" decrease to c k-1 with subsequent optimal capitals left to decay. In case C2a (long time horizon (w > 0) with an initial capital K 0 ∈ I 0 , (j = 0), the first optimal capital K 1 jumps to K * where the capital remains w periods before decaying. In Case C2b (long time horizon (w > 0) with an initial capital K 0 ∈ I j , (j ≥ 1), the capital is left to decay a number of periods that depends on how large K 0 is: if w < j (above the first diagonal) then the capital decays during the full k -1 periods. If w ≥ j (below the first diagonal) then the capital decays during the first j periods; it stays at the value K * for w -j periods; it then transits one period at the value c p * and decays over the last p * -1 periods. q q q q q q q q 0 1 2 Figure 2: Low initial capital K 0 (K 0 = 3 < K * ). Panels a1 and b1 represent the K m 's and corresponding z m 's for a long time horizon k = 8 (w > 0). The optimal capital K 1 at the first period is equal the stationary value K * (Panel a1). Optimal K m 's remain at K * for w = 4 periods (Eq. ( 42)). After one period at the value c p * (Eq. ( 43)) the optimal values are left to decay with no more expenditures: the last three z m 's are 0 (Figure b1). Panels a2 and b2 are for a short time horizon k = 3 (w < 0). The first optimal capital K 1 is equal to c k-1 = c 2 (Figure a2). Subsequent values are left to decay (Eqs. ( 40)-( 41)): there was an expenditure only during the first period (Panel b2).

q q q q q q q q 0 1 2 46)). Optimal K m 's remain at K * for w -j = 3 periods (Eq. ( 47)). After one period at the value c p * (Eq. ( 48)) the optimal values are left to decay with no more expenditures: the last three z m 's are 0 (Panel b1). Panels a2 and b2 are for a short time horizon k = 3 (w = -1 ≤ 0). The capital is left to decay (Eqs. ( 40)-( 41)) with no expenditure (Panel b2).

  Figure2(or Figure3) shows the optimal K m 's and z m 's for an initial value K 0 = 3 (or K 0 = 13) that is smaller (or larger) than K * . In each figure panels a1 and b1 depict the solution for a long time horizon (k = 8, w = k -p * -1 = 4 > 0, Case C2). Panels a2 and b2 depict the solution for a short time horizon (k = 3, w = k -p * -1 = -1 ≤ 0, Case C1).

  then also positive and therefore c m+1 (the value at which Ḣ * m+1 = 0) is necessarily larger than c m /(1 -δ). Equation (61) used with m = p * and K = c p * +1 yields Ḣ * p * +1 (c p * +1 ) = J * (c p * +1 ) + ρ Ḣ * p * (c p * +1 (1 -δ)) = 0. (63)

Figure 1 :

 1 Figure1: Optimal K m 's in (w, j) state space. In case C1, with a short time horizon (w ≤ 0) and K 0 ≥ c k-1 /(1 -δ), all K m 's are sticky (upper diagram on left side). If K 0 < c k-1 /(1 -δ) (which implies j = 0) then the first optimal capital K 1 is c k-1 and subsequent ones are left to decay. In the figure (lower diagram on left side) this means a first period increase toc k-1 because K 0 < c k-1 . If c k-1 < K 0 < c k-1 /(1 -δ)there would be a first period "non-sticky" decrease to c k-1 with subsequent optimal capitals left to decay. In case C2a (long time horizon (w > 0) with an initial capital K 0 ∈ I 0 , (j = 0), the first optimal capital K 1 jumps to K * where the capital remains w periods before decaying. In Case C2b (long time horizon (w > 0) with an initial capital K 0 ∈ I j , (j ≥ 1), the capital is left to decay a number of periods that depends on how large K 0 is: if w < j (above the first diagonal) then the capital decays during the full k -1 periods. If w ≥ j (below the first diagonal) then the capital decays during the first j periods; it stays at the value K * for w -j periods; it then transits one period at the value c p * and decays over the last p * -1 periods.

Figure 3 :

 3 Figure3: High initial K 0 (K 0 = 13 > K * ). Panels a1 and b1 represent the K m 's and corresponding z m 's for a long time horizon k = 8 (w > 0). The initial values K m (here only K 1 ) decay with no expenditures until they reach the stationary value K * (Panel a1, Eq. (46)). Optimal K m 's remain at K * for w -j = 3 periods (Eq. (47)). After one period at the value c p * (Eq. (48)) the optimal values are left to decay with no more expenditures: the last three z m 's are 0 (Panel b1). Panels a2 and b2 are for a short time horizon k = 3 (w = -1 ≤ 0). The capital is left to decay (Eqs. (40)-(41)) with no expenditure (Panel b2).

continuing up to

The last p * -1 K m 's are also sticky because when m ≥ w + 2 then for every iteration

H k-m reaches its maximum.

To prove ( 46) we note that k -1 > j + p * and therefore

up to

where K j of Eq. ( 90) is in the interval [K * , K * /(1 -δ)). When w -j > 0 the fact that c k-j-r = K * for 1 ≤ r ≤ w -j means that

which proves Eq. ( 47) when w -j > 0. Equations ( 48)-( 49) are proven in the same way Eqs. ( 43)-( 44) were.