Pré-Publication, Document De Travail Année : 2025

Discrete Markov Probabilistic Models

Résumé

This paper introduces the Discrete Markov Probabilistic Model (DMPM), a novel algorithm for discrete data generation. The algorithm operates in the space of bits {0, 1} d , where the noising process is a continuous-time Markov chain that can be sampled exactly via a Poissonian clock that flips labels uniformly at random. The time-reversal process, like the forward noise process, is a jump process, with its intensity governed by a discrete analogue of the classical score function. Crucially, this intensity is proven to be the conditional expectation of a function of the forward process, strengthening its theoretical alignment with score-based generative models while ensuring robustness and efficiency. We further establish convergence bounds for the algorithm under minimal assumptions and demonstrate its effectiveness through experiments on low-dimensional Bernoulli-distributed datasets and high-dimensional binary MNIST data. The results highlight its strong performance in generating discrete structures. This work bridges theoretical foundations and practical applications, advancing the development of effective and theoretically grounded discrete generative modeling.
Fichier principal
Vignette du fichier
arxiv/main.pdf (1) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim12_stepsbest_schedulecosine_Tf3.png (183) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_steps100_schedulecosine_Tf3.png (183) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_steps20_schedulecosine_Tf10.png (195) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_steps20_schedulecosine_Tf3.png (182) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_steps30_schedulecosine_Tf3.png (182) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_steps50_schedulecosine_Tf10.png (195) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_steps50_schedulecosine_Tf3.png (195) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_steps50_schedulelinear_Tf3.png (190) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_stepsbest_schedulecosine_Tf10.png (184) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_stepsbest_schedulecosine_Tf3.png (183) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_stepsbest_schedulelinear_Tf3.png (185) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim16_stepsbest_schedulequadratic_Tf3.png (185) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim4_stepsbest_schedulecosine_Tf3.png (185) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim8_steps20_schedulecosine_Tf10.png (204) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim8_steps20_schedulecosine_Tf3.png (193) Télécharger le fichier
arxiv/experiment_results_img/loss_barplot_dim8_stepsbest_schedulecosine_Tf3.png (184) Télécharger le fichier
arxiv/experiment_results_img/loss_vs_data_dim_steps50_schedulecosine_Tf3.png (271) Télécharger le fichier
arxiv/experiment_results_img/loss_vs_data_dim_stepsbest_schedulecosine_Tf3.png (286) Télécharger le fichier
arxiv/experiment_results_img/loss_vs_steps_dim16_schedulecosine_Tf3.png (340) Télécharger le fichier
arxiv/experiment_results_img/loss_vs_steps_dim4_schedulecosine_Tf3.png (372) Télécharger le fichier
arxiv/experiment_results_img/loss_vs_steps_dim8_schedulecosine_Tf3.png (376) Télécharger le fichier
arxiv/experiment_results_img/loss_with_and_no_gamma.png (32) Télécharger le fichier
arxiv/experiment_results_img/method_vs_data_dim_stepsbest.png (189) Télécharger le fichier
arxiv/experiment_results_img/method_vs_steps_data_dim16.png (211) Télécharger le fichier
arxiv/experiment_results_img/method_vs_steps_data_dim8.png (195) Télécharger le fichier
arxiv/mnist_experiment_results_img/bar_mu_zeta_eta_gamma_vs_ema_0.99_fid_pairedTrue.png (47) Télécharger le fichier
arxiv/mnist_experiment_results_img/dmpm_default.png (37) Télécharger le fichier
arxiv/mnist_experiment_results_img/dmpm_denoise_renoise.png (43) Télécharger le fichier
arxiv/mnist_experiment_results_img/lines_M_schedule_loss_vs_ema_0.99_fid_by_reverse_steps.png (139) Télécharger le fichier
arxiv/mnist_experiment_results_img/lines_loss_sampling_vs_ema_0.99_fid_by_reverse_steps.png (477) Télécharger le fichier
arxiv/mnist_experiment_results_img/lines_method_vs_ema_0.99_f_1_dc_by_reverse_steps.png (273) Télécharger le fichier
arxiv/mnist_experiment_results_img/lines_method_vs_ema_0.99_fid_by_reverse_steps.png (300) Télécharger le fichier
arxiv/mnist_experiment_results_img/lines_mu_zeta_eta_gamma_vs_ema_0.99_fid_by_reverse_steps.png (363) Télécharger le fichier
arxiv/mnist_experiment_results_img/lines_total_steps_vs_ema_0.99_fid_by_reverse_steps.png (164) Télécharger le fichier
arxiv/mnist_experiment_results_img/schedule_Tf_comparison-final-arxiv.png (198) Télécharger le fichier
arxiv/other_img/saws_1d.png (20) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04951334 , version 1 (17-02-2025)

Licence

Identifiants

Citer

Le-Tuyet-Nhi Pham, Dario Shariatian, Antonio Ocello, Giovanni Conforti, Alain Durmus. Discrete Markov Probabilistic Models. 2025. ⟨hal-04951334⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More